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Abstract 

Thermodynamic analysis was carried out to interpret the results of corrosion testing of nickel 

ferrite samples in cryolite-based baths. The equilibrium between cryolite-based baths and 

nickel ferrite was considered.  

Isopleths between cryolite-based baths and nickel ferrite confirmed that for the temperature 

range of interest (1223-1273K) there was limited solubility of nickel ferrite in the bath.  

To better understand the formation of the metal from nickel ferrite the effect of reducing 

potentials on nickel ferrite and nickel ferrite-cryolite based bath systems were considered. 

The formation of a metal phase was predicted at relatively high pO2. The metal phase was 

nickel-rich at higher pO2, becoming enriched in iron as the pO2 decreased. The oxide phases 

seen in corroded nickel ferrite samples corresponded to the spinel phase in the 

thermodynamic calculations. Penetration of aluminium oxides into the spinel phase seen in 

the experimental samples occurred only under a reducing potential. 

Keywords: Nickel ferrite; Aluminium production; Hall-Héroult cell; Thermodynamics 
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1 Introduction 

Renewed interest in the sidewall materials used in the Hall-Héroult cells has been driven by a 

desire to eliminate the solid cryolite ledge (Nightingale et al. 2011; Nightingale et al. 2013; 

Mukhlis et al. 2010). Currently used carbonaceous or silicon carbide based sidewall 

refractories rely on the formation of the solid ledge of cryolite to help prevent attack. This 

ledge is formed by wall cooling, and the resultant energy losses can represent up to  35% of 

the total input power (Grjotheim 1988) to the cell. The use of refractories that do not require 

this cooling/ledge formation could result in significant energy/cost savings and reduce the 

environmental impact of aluminium production. It may also allow the use of larger anodes, 

increasing the production capacity and productivity of a given cell or Al pot.  

Recent work on the corrosion of nickel ferrite spinel, NiFe2O4, in cryolite shows that it might 

be suitable as an alternative sidewall refractory (Nightingale et al. 2011; Nightingale et al. 

2013; Mukhlis et al. 2010; Yan et al. 2007; Downie 2007). It could be used as either as a bulk 

refractory in non-metal contact areas, or as part of a multi-refractory system. The primary 

potential weakness of nickel ferrite is the possibility of contamination of the molten 

aluminium product. 

Laboratory scale experiments were undertaken to examine the suitability of nickel ferrite as a 

sidewall refractory in the Hall-Héroult cell (Nightingale et al. 2011; Nightingale et al. 2013). 

The corrosion testing was carried out by immersing nickel ferrite samples in a cryolite based 

bath at 1273K for between 2 and 24 hours. In these experiments it was found that the 

mechanism of corrosion was complex, involving the reduction of the nickel ferrite to a 

nickel-rich nickel-iron alloy and penetration of aluminium oxide from the bath into the 

original oxide material. Figure 1 shows a typical cross section of the interface between the 

bath and a nickel ferrite sample after corrosion testing. 

During the corrosion of the nickel ferrite samples in the cryolite baths two main phenomena 

were observed: the formation of a metal phase, and the deposition and penetration of 

aluminium oxide in the microstructure, in the grain boundaries and near the bath-sample 

interface, which is shown in Figure 1 (Nightingale et al. 2011; Nightingale et al. 2013). 

Corresponding to these phenomena were changes in composition of the nickel ferrite across 

the interface, as well as the formation of new phases. 
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In order to understand the corrosion/degradation products of the corrosion experiments 

thermodynamic analysis has been carried out using published thermodynamic data, as well as 

the thermodynamic modelling package MTDATA 5.10 (Davies et al. 2002).  

The aim of this study was to use thermodynamic modelling to better understand the corrosion 

processes that were observed in the small scale corrosion testing. Two main streams of 

thermodynamic calculations were carried out, the first considered the equilibria between 

nickel ferrite and cryolite-based baths, and the second considered the reduction of nickel 

ferrite as well as the equilibria between nickel ferrite and cryolite-based baths under reducing 

conditions.  

2 Experimental 

Stoichiometric samples of nickel ferrite were corroded by immersing them in a cryolite-based 

bath. The production and corrosion testing of stoichiometric nickel ferrite samples was 

described in detail in Nightingale et al. (2013). Samples from that study were subsequently 

further analysed using electron probe microanalysis (EPMA) for improved elemental 

analysis. Large areas (up to 1024×1024 µm) of each sample were mapped using a step size of 

0.5 µm. The elemental mapping data was then processed using Chimage, a software package 

developed by CSIRO for automated phase analysis from EPMA data (Harrowfield et al. 

1993; Wilson and MacRae, 2005). Regions in the maps were separated into distinct phases, 

and the average composition of each given. 

Initial EPMA conditions used were a 12 kV accelerating voltage, 64 nA beam current, with a 

25 ms dwell time were found to give some apparent intermixing during the phase analysis. To 

improve the resolution of the analysis, the EPMA conditions were changed to 10 kV 

accelerating voltage, 50 nA beam current and 0.4 µm step size. The results of the elemental 

analysis by EPMA are only semi-quantitative as the background and matrix effects were not 

taken into account. 

 

3 Thermodynamic Model Background 

Thermodynamic modelling was carried out using MTDATA 5.10. MTDATA determines the 

chemical equilibrium of a system by minimising its Gibbs energy with respect to the amounts 
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and compositions of all phases that might form (Davies et al. 2002; Taskinen et al. 2005). In 

order to do this, the Gibbs energy of each competing phase is expressed as a function of 

composition and temperature. 

Different models are used for crystalline and liquid solution phases. The model used for 

crystalline solution is the compound energy model, which is described in detail in Barry et al. 

(1992). In this model, ionic species are assumed to mix independently on a series of separate 

sublattices. The sublattice structure within this model is based upon crystallographic data. As 

well as the thermodynamic properties of the crystalline phases, the distribution of ions on 

different sites and other properties are included in the model. 

The liquid (bath) phase is modelled in terms of a series of non-ideally interacting species 

(Barry et al. 1993; Taskinen et al. 2005; Gisby et al. 2007). These can either be pure oxides 

or fluorides, such as CaO and SiO2, or associated species, such as CaSiO3 and Ca2SiO4, 

which are used to take into account sharp changes in the thermodynamic properties of the 

liquid phase at particular compositions. The associate model (Chuang and Chang, 1982) is 

used for liquid oxides, fluorides and metals within the same set of data. 

The databases used for the calculations were NPLOX_5NI, NPLOXF and SGSOL. 

NPLOX_5NI was a custom database which added data for nickel to the existing metal oxide 

database (NPLOX_5). NPLOXF was also a custom database that included the Ni-Fe-Na-Al-

Ca-F system. SGSOL (version 4.31) was a standard database for metallic solutions. Both the 

NPLOX_5NI and SGSOL databases included data for oxygen in the gas phase. Overall, 

within the databases the Ni-Fe-O-Na-Al-Ca-F system has been modelled fully taking into 

account thermodynamic and phase equilibrium data for all sub-systems, from binary, ternary, 

and up to septenary, where available. All compounds and solutions within this system known 

to be stable at equilibrium were included in the database.  

To facilitate calculation gases other than oxygen in the gas phase and oxygen solution in the 

metal phase have been neglected in the MTDATA.  It has been assumed that while there may 

be some effect on the absolute pO2 value calculated and the associated phase equilibria, that 

this effect would be small.    

The compositions for the many of the MTDATA calculations were chosen so that there was 

an excess of oxygen. This was done to ensure that there would always be oxygen present in 

the gas phase, and allowing the partial pressure of oxygen to be controlled. 
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4 Constant Pressure Bath-Nickel Ferrite Isopleths 

To understand the behaviour of the nickel ferrite in a cryolite based bath, isopleths were 

calculated using MTDATA. In these calculations the composition was varied from the bath 

composition to nickel ferrite at a constant pressure. The isopleths are phase stability diagrams 

that represent pseudo-binary sections taken across temperature-composition space.  

The isopleth for the simplified system containing cryolite and nickel ferrite is shown in 

Figure 2. The diagram can be seen as a eutectic between the cryolite and the nickel ferrite. 

For the temperatures of interest (1223-1273K), there is generally liquid bath and spinel, with 

solid cryolite present below 1253K. The spinel phase in Figure 2 has a composition close to 

that of nickel ferrite. This is not fully representative of the bath composition used in 

experiments, as it contains CaF2 and has excess AlF3 to lower its melting temperature. 

 

Table 1 Key for phase fields for the cryolite-nickel ferrite isopleth given in Figure 2. 
Phase field Phases present 
A GAS + BATH + HIGH_CRYOLITE 
B GAS + BATH + BATH + SPINEL 
C GAS + BATH + SPINEL + HALITE 
D GAS + BATH + HIGH_CRYOLITE + SPINEL + 

HALITE 
E GAS + HIGH_CRYOLITE + SPINEL + HALITE 

 

To assess a system more representative of the experiments, the experimental bath 

composition (82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3) and nickel ferrite were 

used in generating an isopleth, noted as ‘Bath’ and NiFe2O4 respectively in Figure 3. The key 

for the phases for each field given in Figure 3 are listed in Table 2.  From this figure it can be 

seen that over the temperature range of interest, 1223-1273K, for the majority of 

compositions there will be a two phase region of liquid cryolite bath and spinel (phase field 

B). The bath phase has variable composition, different to the input ‘bath’. The presence of the 

spinel phase over the majority of the composition range shown indicates that there is limited 

solubility of the spinel (nickel ferrite) in the bath. 

At the ‘bath’-rich end of the system, the isopleth shows the formation of a corundum 

(alumina, from the saturated bath) phase (fields F, G, I and J). A miscibility gap in the spinel 
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phase is found at the bath-rich end of the diagram. At low temperatures towards the nickel 

ferrite end of the system, solid cryolite is formed (field O). As expected there is no metal 

formation under the highly oxidising calculation conditions (p = 1 atm, only O2 in gas phase). 

Table 2 Key for phase fields for the bath-nickel ferrite isopleth given in Figure 3. 

Phase Field Phases Present 
A GAS + BATH 
B GAS + BATH + SPINEL 
C GAS + BATH + BATH + SPINEL 
D GAS + BATH + BATH + SPINEL + HALITE 
E GAS + BATH + SPINEL + HALITE 
F GAS + BATH + CORUNDUM 
G GAS + BATH + SPINEL + CORUNDUM 
H GAS + BATH + SPINEL + SPINEL 
I GAS + BATH + SPINEL + SPINEL + CORUNDUM 
J GAS + BATH + SPINEL + CORUNDUM 
K GAS + BATH + HIGH_CRYOLITE + CORUNDUM 
L GAS + BATH + HIGH_CRYOLITE + SPINEL + CORUNDUM 
M GAS + BATH + HIGH_CRYOLITE + SPINEL + SPINEL + CORUNDUM 
N GAS + BATH + HIGH_CRYOLITE + SPINEL + CORUNDUM 
O GAS + BATH + HIGH_CRYOLITE + SPINEL 
P GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
Q GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL + SPINEL + CORUNDUM 
R GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
S GAS + BATH + HIGH_CRYOLITE + SPINEL + CORUNDUM + CORUNDUM 
T GAS + BATH + HIGH_CRYOLITE + SPINEL + CORUNDUM 
U GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM + CORUNDUM 
V GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
W GAS + BATH + HIGH_CRYOLITE + CAF2 + SPINEL 
X GAS + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
Y GAS + HIGH_CRYOLITE + CAF2 + SPINEL + SPINEL + CORUNDUM 
Z GAS + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
1 GAS + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM + CORUNDUM 
2 GAS + HIGH_CRYOLITE + CAF2 + SPINEL + CORUNDUM 
3 GAS + HIGH_CRYOLITE + CAF2 + SPINEL 
 

 

 

5 Assessment of the Reduction of Nickel Ferrite 

The isopleths did not agree with what was found in the experimental samples (Nightingale et 

al. 2011; Nightingale et al. 2013). Further analysis was conducted to better represent the 

reducing experimental conditions, through consideration of published thermodynamic data 

and using MTDATA. 
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5.1 Predicted Nickel Ferrite Reduction by Consideration of Published Data 

Several possible reactions were proposed in Nightingale et al. (2013) to investigate the 

formation of metal by the reduction of nickel ferrite at the bath-sample interface. The 

reactions proposed represented the reduction of nickel ferrite to different combinations of 

nickel and iron metal and oxides. It was found that the reduction of nickel ferrite to metallic 

nickel and wüstite and the reduction of the nickel ferrite to metallic nickel and iron were the 

thermodynamically favoured reactions, shown in equations 1 and 2. The other reactions 

considered were either not thermodynamically favoured or less favoured than the reduction to 

metallic nickel and either wüstite or metallic iron. The Gibbs free energies for these reactions 

under the prevailing conditions found at the bath-solid interface with changing partial 

pressure of oxygen was calculated from equation 3. 

NiFe2O4(s) = Ni(s) + 2FeO(s) + O2(g)       (1) 

NiFe2O4(s) = Ni(s) + 2Fe(s) + 2O2(g)       (2) 

QRTGG ln+°∆=∆          (3) 

where Q and ΔG° for the different reactions are given in Table 3. In Table 3, ai is the activity 

of species i, and pO2 is the partial pressure of oxygen. The standard Gibbs free energy for 

reactions 1and 2 was calculated from data given in Table 4 (equations 4-7 respectively). The 

ΔG of reactions 1 and 2 were calculated with changing partial pressures of oxygen at a 

constant temperature of 1273K to establish the reducing potentials required for these 

reactions to be thermodynamically favoured, as indicated by a negative ΔG. If both reactions 

had a negative ΔG under given conditions, the reaction having a lower ΔG would be 

thermodynamically favoured over the reaction with a higher ΔG.  

 
Table 3 Reaction coefficients and standard Gibbs free energies for reactions 1 and 2. 

Reaction Q ΔG°/J∙mol-1 

1 
42

2

2

ONiFe

OFeONi

a
paa ⋅⋅

 
ΔG° =546795 – 211.199T 

2 
42

2

22

ONiFe

OFeNi

a
paa ⋅⋅

 ΔG° =1065995 – 336.30T 
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Table 4 Tabulated thermodynamic data. 
Reaction equation ΔG°/J∙mol-1 Reference 
2Fe(s)+3/2O2(g) = Fe2O3(s) 4 ΔG° =-810520 + 254T Gaskell (1973) 
Fe(s) + 1/2O2(g) = FeO(s) 5 ΔG° =-259600 + 66.25T Gaskell (1973) 
Ni(s) + 1/2O2(g) = NiO(s) 6 ΔG° =-235601 + 86.06T Turkdogan (1970) 
NiO(s) + Fe2O3(s) = NiO.Fe2O3(s) 7 ΔG° =-19784 -3.766T Turkdogan (1970) 

 
To give a representation of the thermodynamics of the phenomena occurring across the bath-

nickel ferrite interface during the corrosion process, different zones were identified within the 

microstructures of corroded samples, and the activities of the species in each zone were 

estimated. An example of the zones of a corroded sample is given in Figure 4. Zone 1 was 

related to regions in the corrosion samples away from the bath-sample interface. Zone 3 was 

the interface between the bath and nickel ferrite. Zone 2 was the region intermediate between 

zones 1 and 3. Within the reaction zones, the product phases present were identified and the 

composition for each phase as measured by EPMA is given in Table 5. The compositions 

reported are averages based on the analysis of the bath-nickel ferrite interface of several 

samples.  

MTDATA was used to calculate the activities of both iron and nickel in a binary alloy as a 

function of the composition. The activities of iron and nickel in a binary alloy were then 

determined using the measured compositions.  The activity of nickel ferrite was assumed to 

be unity, while the activity of any product oxides were assumed to be ideal Raoultian (ie. ai = 

xi). The activities used for the thermodynamic analysis are given in Table 6. 

 

Table 5 Semi-quantitative average composition (in mol%), as measured by EPMA at 
CSIRO, of different phases found in the corroded samples and the zones in which the 
phases are typically found.  

Phase Present 
in Zone 

O F Fe Ca Al Na K Ti Si Ni 

Ni ferrite 1 51.9 1.72 28.9 1.38 2.20 2.68 2.16 2.94 2.71 10.3 
Ni depleted 
oxide 1,2 51.7 1.57 28.9 1.10 3.64 1.95 1.87 2.62 2.12 5.44 

Fe-Al oxide 2,3 52.4 4.23 18.5 1.85 27.0 5.27 1.28 2.87 2.79 10.7 
Alumina 3 45.6 7.98 4.7 1.32 26.0 9.06 0.97 1.27 1.63 2.14 
Ni rich metal 1,2,3 34.2 2.23 17.9 1.94 4.26 3.80 2.90 3.95 3.57 33.8 
Fe rich metal 3 14.3 6.20 36.5 3.62 6.15 6.05 – 3.76 3.52 24.4 
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Table 6 Activities of phases found in corroded samples used for thermodynamic 
analysis. 

Phase Zone aFe aNi aFeO 
Ni depleted oxide 1 – – 0.579 
Fe-Al oxide 1,2 – – 0.370 
Alumina 2,3 – – 0.0931 
Ni rich metal 3 0.130 0.265 – 
Fe rich metal 1,2,3 0.329 0.171 – 

 

The effect of pO2 on the Gibbs free energies for reactions 1 and 2 in each of the different 

zones is shown in Figure 5. Under the conditions considered, the Gibbs free energy for 

reaction 1 was more sensitive to the compositions examined than for reaction 2. Reaction 1 

became possible (ΔG < 0) at a pO2 of 1.9×10-11 atm for zone 1, 9.7×10-11 atm for zone 2, and 

7.5×10-10 atm for zone 3. Reaction 2 became favoured over reaction 2 when the pO2 

decreases below 2.0×10-15 atm for zone 1, 3.2×10-16 atm for zone 2, and 5.2×10-17 atm for 

zone 3, with the majority of this difference caused by reaction 1. This can be interpreted as an 

indication of an oxygen potential gradient across the bath-sample interface, with the more 

reducing conditions towards the outside. This agrees with what is seen in the corroded 

samples. In Figure 4 and Table 5 it can be seen that the harder to reduce oxides (alumina) 

were present at the interface, while the more easily reduced oxides (nickel oxide) were more 

prevalent towards the interior of the samples, and iron-rich oxides in the intermediate region.  

As expected, decreasing the activity of the products decreases the ΔG at a constant pO2 or 

decreased the pO2 at which the reactions became favourable. The activity of iron oxide had a 

larger effect than the activity of either of the metal products. This is consistent with what may 

be expected from consideration of pO2 effects on the equilibrium constant. The pO2 in 

reaction 2 is proportional to aFeO
2, and proportional to aNi. In reaction 2 pO2 is proportional to 

aNi
1/2 and aFe. Thus it would be expected that variations in aFeO have a larger effect than 

variations in the metal activities. 

 

5.2 Predicted Nickel Ferrite Reduction using MTDATA 

The effect of reducing potential on the nickel oxide-iron oxide system at 1273K was assessed 

using MTDATA and is shown in Figure 6. Metal formation occurs at quite high oxygen 

partial pressures, from 2.5×10-6 Pa (2.5×10-11 atm). As the metal phase forming is nickel-rich, 
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the spinel phase was found to become progressively rich in iron. At pO2 values below around 

10-13 atm the remaining spinel is reduced to a nickel rich metal (designated as Alloy) and iron 

rich monoxide (Halite) phase with a composition close to wüstite. At lower partial pressures 

of oxygen, below approximately 10-15 atm, the stable phase is an iron-nickel alloy. These 

results are in agreement with what was found and reported previously (Nightingale et al. 

2013) and those presented in Figure 6. The formation of metal occurs at oxygen partial 

pressures that would be possible within the experimental set-up.  

Table 7 Key for phase fields for the bath-nickel ferrite isopleth given in Figure 6. 
Phase field Phases present 
A HALITE + GAS 
B HALITE + ALLOY + GAS 
C HALITE + GAS 

 

The effect of reducing potential on the nickel ferrite-alumina system at 1273K, using 

MTDATA is given in Figure 7. This system was used to represent/investigate the deposition 

of aluminium oxides at the bath-sample interface seen in the experimental samples.  

The formation of several different oxides at different reduction potentials, as well as the 

formation of metal was predicted. Metal formation occurs at quite high oxygen partial 

pressures, from 2.7×10-6 Pa (2.6×10-11 atm) at the nickel ferrite side of the diagram to 5.5×10-

8 Pa (5.3×10-13 atm) at the alumina-rich side of the diagram. At lower partial pressures of 

oxygen, below approximately 10-10 Pa (~10-15 atm), the stable phases are an iron-nickel alloy 

and an aluminium-rich corundum phase.  

A halite phase forms at the left hand side of the diagram at two different oxygen partial 

pressure ranges. The halite that forms at the higher oxygen partial pressures was found to be 

nickel-rich, while that which formed at the lower pO2 values was iron-rich. At high oxygen 

partial pressures (5.5×103 Pa, 5.4×10-2 atm) there a miscibility gap in was found in corundum, 

with one composition being close to alumina, and the other being close to hematite. In other 

areas of Figure 7, corundum was seen to have a composition close to alumina.  

Additional detailed calculations have been carried out using MTDATA to give the expected 

compositions of the phases for the case of 0.3 mole fraction alumina (0.7 mole fraction nickel 

ferrite). The results of these calculations are given in Figure 8. Again the phases presented in 



12 
 

Figure 8 agree well with those found in the corroded samples, while the potential needed for 

the formation of these phases would be reasonably achieved during the corrosion testing. 

The spinel phase was found to be the major oxide phase in the system. It can be seen that at 

higher pO2 values, ~10-6 Pa (~10-11 atm), the spinel phase is largely nickel ferrite with some 

alumina in solution. Between pO2 levels of ~10-6 and ~3×10-9 Pa (~10-11 to 3×10-14 atm) the 

nickel level of the spinel drops rapidly as the nickel oxide is reduced to form a nickel-rich 

alloy, leaving the spinel phase predominantly as iron oxides. This result agrees with the 

experimental findings, where oxides depleted in nickel were adjacent to the nickel-rich alloy, 

in zones 1 and 2 indicated in Figure 2 and Table 3. 

At pO2 values of ~3×10-9 to ~3×10-12 Pa (~3×10-14 to ~3×10-17 atm), the aluminium content of 

the spinel rapidly increases. This also agrees with the experimental findings, as iron-

aluminium oxides were found in the samples, in zones 2 and 3 as indicated in Figure 2 and 

Table 3. Under these conditions, the composition of the alloy changes rapidly from being 

nickel-rich to being iron-rich. An iron-rich metal was found in zone 3 as shown in Figure 2 

and Table 3. 

At pO2 levels below ~3×10-12 Pa (~3×10-17 atm), all of the nickel and iron oxides are reduced, 

leaving non-spinel alumina as the only oxide remaining in the system. Alumina was found on 

the outer edges of the interface of the cross sections of the samples after corrosion testing. 

There is good agreement between the results of the thermodynamic modelling of the Ni-Fe-

Al-O system in Figures 7 and 8 correspond well with the phases and compositions found in 

the samples after the corrosion testing in the cryolite-based bath. The formation of the 

aluminium containing phases is dependent on a reduction of the nickel ferrite. This perhaps 

indicates that the penetration of the aluminium oxides in the samples during the corrosion 

testing is also dependent on the presence of a reducing potential to occur. 

The composition of the spinel phase could be interpreted in terms of the oxidation state of 

iron in the spinel phase, starting with Fe3+ in the initial nickel ferrite at high pO2 levels. The 

iron is then reduced to a mix of Fe2+ and Fe3+ when the spinel was mostly iron oxide. At 

lower pO2 levels the iron in the spinel phase is predominantly Fe2+ when the spinel consisted 

of iron and aluminium oxides. 
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The compositions of the phases present in the cross sections of the samples after the 

corrosion tests indicate the presence of a reduction potential gradient across the interface. 

Phases corresponding to lower pO2 values occur towards the bath side of the interface, while 

phases corresponding to higher pO2 values occur further away from the bath. 

 

5.3 Predicted Nickel Ferrite Reduction in Bath-Nickel Ferrite Systems 

While the reduction of nickel ferrite and nickel ferrite-alumina systems allowed interpretation 

of the phases found in the corroded nickel ferrite samples, the effect, if any, of the cryolite-

based bath on the reduction also needed to be examined. This was done by examining two 

systems, a simplified pure cryolite-nickel ferrite system, and a more thorough examination 

using the experimental bath composition.  

The nickel ferrite-cryolite system, Figure 9, shows the formation of different oxides at 

different reduction potentials, as well as the formation of metal. Metal formation occurs at 

quite high oxygen partial pressures. At the nickel ferrite side of the diagram, metal will form 

when pO2 is below ~10-6 Pa. Dissolution of nickel and iron into the cryolite is limited at low 

(below 10-9 Pa or 10-14 atm) and high (above 10-3 Pa or 10-8 atm) pO2 values, but is higher (up 

to 20 mol%) at intermediate reduction potentials when a halite (monoxide) phase is present.  

Table 8 – Key for phase fields for the bath-nickel ferrite isopleth given in Figure 9. 
Phase field Phases present 
A BATH + GAS + HIGH_CRYOLITE 
B BATH + GAS 
C BATH + BATH + GAS 
D BATH + BATH + SPINEL + GAS 
E BATH + SPINEL + ALLOY + GAS 
F BATH + BATH + ALLOY + GAS 
G BATH + SPINEL + ALLOY + GAS 
H BATH + SPINEL + HALITE + ALLOY + GAS 
I BATH + HALITE + ALLOY + GAS 
J BATH + ALLOY + GAS + HIGH_CRYOLITE 

 

Additional calculations were carried out using MTDATA to give the expected compositions 

of the phases for the case of 0.8 mole fraction nickel ferrite and 0.2 mole fraction cryolite. 

The results of these calculations are given in Figure 10. The phases presented in Figure 10 

and the compositions in Figure 10 broadly agree with those found in the corroded samples, 
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while the potential needed for the formation of these phases would be reasonably achieved 

during the corrosion testing.  

Spinel was the main oxide phase found in the thermodynamic analysis of the cryolite-nickel 

ferrite system. At higher pO2 values, above ~10-3 Pa (~10-8 atm), the spinel is largely nickel 

ferrite. As the pO2 decreases from ~10-3 to 3×10-8 Pa (~10-8 to 3×10-13 atm) the nickel content 

of the spinel decreases, with the formation of a nickel-rich monoxide. Nickel-rich oxides 

were noted in the corroded samples, but were interpreted as an indication of incomplete 

formation of nickel ferrite as similar features were noted in uncorroded samples. 

At pO2 values below ~10-5 Pa (~10-10 atm) aluminium oxides begin to enter the spinel phase, 

with the aluminium content increasing rapidly below ~10-8 Pa (~10-13 atm). Again the 

presence of an iron-aluminium oxide phase was noted in the corroded samples, however, in 

these calculations the aluminium content of the spinel was relatively low. The spinel phase 

became thermodynamically unstable at pO2 values below ~3×10-9 Pa (~3×10-14 atm). 

In these calculations, the alloy phase was seen to form when the pO2 dropped below 5×10-8 

Pa (5×10-13 atm). Initially the alloy was nickel-rich, with the iron content of the alloy rapidly 

increasing with decreasing pO2. The iron and nickel contents of the alloy largely levelled off 

below ~10-11 Pa (~10-16 atm), when almost all of the iron and nickel was reduced. While 

nickel-rich metal was found in the corroded samples, it was largely found adjacent to a 

nickel-depleted nickel ferrite, rather than the largely iron oxide predicted in Figure 10. 

The results of the thermodynamic modelling of the simplified cryolite-nickel ferrite system 

with changing pO2 do not agree particularly well with the analysis of the microstructures of 

the corroded samples. This is most likely due to the lack of Al2O3, CaF2 and excess AlF3 in 

the cryolite which were present in the experimental bath. Due to this, reduction of nickel 

ferrite under the experimental conditions could not be adequately approximated using the 

simplified cryolite-nickel ferrite system.  

To better explain the experimental results further calculations were carried out using the full 

bath composition. The pressure-composition isopleth at 1273K for the bath-nickel ferrite 

system is given in Figure 11. The composition of ‘bath’ in Figure 10 is the composition of the 

alumina saturated bath used in the experiments (82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-
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10.0% Al2O3). Metal formation occurs at quite high pO2 values. At the nickel ferrite side of 

the diagram, metal will form when pO2 is below ~10-6 Pa (~10-11 atm).  

Table 9 Key for phase fields for the bath-nickel ferrite isopleth given in Figure 11. 
Phase field Phases present 
A BATH + CORUNDUM + GAS 
B BATH + SPINEL + CORUNDUM + GAS 
C BATH + BATH + SPINEL + HALITE + GAS 
D BATH + SPINEL + GAS 
E BATH + BATH + SPINEL + ALLOY + GAS 

 

Additional calculations were carried out using MTDATA to give the expected compositions 

of the phases for the case of 0.8 mole fraction nickel ferrite and 0.2 mole fraction ‘bath’. The 

results of these calculations are given in Figure 12. The phases presented in Figure 11 and the 

compositions in Figure 12 agree well with those found in the corroded samples. There is 

better agreement between the thermodynamic predictions in this system than were found for 

the simplified cryolite-nickel ferrite system. The potential needed for the formation of these 

phases would be reasonably achieved during the corrosion testing.  

Again, spinel was the main oxide phase found in the thermodynamic analysis of the ‘bath’-

nickel ferrite system. At higher pO2 values, above ~10-3 Pa (~10-8 atm), the spinel is largely 

nickel ferrite. As the pO2 decreases from ~10-3 to 3×10-8 Pa (~10-8 to 3×10-13 atm) the nickel 

content of the spinel decreases, with the formation of a nickel-rich monoxide (halite) and an 

iron-rich spinel. As noted above, nickel-rich oxides in the samples were interpreted as an 

indication of incomplete formation of nickel ferrite.  

Aluminium oxides begin to enter the spinel at pO2 values below ~10-5 Pa (~10-10 atm). The 

aluminium content of the spinel increased rapidly when the pO2 was below ~10-8 Pa (~10-13 

atm). At pO2 values lower than ~10-10 Pa (~10-15 atm) the spinel is predominantly an iron-

aluminium oxide. As noted previously, an iron-aluminium oxide phase was present in the 

corroded samples. Below partial pressures of oxygen of 3×10-12 Pa (3×10-17 atm) the spinel 

phase becomes thermodynamically unstable. 

These pO2 values noted for the changes in composition of the spinel are similar to those in 

the simplified cryolite-spinel system. However, in this case the spinel remained stable at 

lower pO2 values than in the simplified system. At the lower pO2 values, the aluminium 

content of the spinel was higher, better agreeing with the experimental results (Table 3). 
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In these calculations, the alloy phase was seen to form when the pO2 dropped below 5×10-6 

Pa (5×10-11 atm). Initially the alloy was nickel-rich, but the iron content of the alloy rapidly 

increased with decreasing pO2. The iron and nickel contents of the alloy largely levelled off 

below ~10-10 Pa (~10-15 atm). These results agree quite well with the compositions of the 

metal found within the cross-sections of the corroded samples, with nickel-rich metal found 

further away from the bath (zones 1 and 2 in Figure 2, Table 3) and iron-rich alloy found 

closer to the sample-bath interface (zone 3 in Figure 2, Table 3). 

In the thermodynamic calculations examining the effect of reducing potentials on the nickel 

ferrite-alumina, cryolite-nickel ferrite and ‘bath’-nickel ferrite systems, it was found that the 

majority of the phases seen in the corroded samples could be interpreted from the results of 

the spinel phase. This would indicate that the oxides within the samples maintained a spinel 

structure, over quite a large composition range going from nickel ferrite, through 

predominantly iron oxide to an iron-aluminium oxide spinel. 

5.4 Nickel Ferrite Solubility in Cryolite-Based Baths and Driving Force for Reduction 

Up to now, we have examined in depth the thermodynamics of the reduction of nickel ferrite 

in cryolite-based baths. However, two key issues remain to be discussed: the solubility of 

nickel ferrite in the cryolite-based baths; and what is driving the reduction of the nickel ferrite 

in the experimental corrosion tests. 

The solubility of nickel ferrite in cryolite and cryolite based baths can be seen in Figures 2, 3, 

9 and 11. From Figures 2 and 3, it can be seen that the solubility of nickel ferrite is a function 

of temperature and bath composition. At 1200°C, Figure 2 shows that the bath phase can 

contain up to ~30 mass% of nickel ferrite, which drops as the temperature decreases to ~15% 

at 1000°C. When the bath composition was changed to that used experimentally, as shown in 

Figure 3, the solubility of nickel ferrite dropped significantly. This is most likely due to the 

presence of alumina in the bath, as alumina has been shown in several previous experimental 

studies to have a large effect on the solubility of nickel ferrite. DeYoung (1986) and Lai et al. 

(2005) found that the solubility of nickel ferrite decreased with increasing alumina content of 

the melt. Alcorn et al. (1993) found that the corrosion rate of nickel ferrite based cermet inert 

anodes increased at low alumina contents of the bath. Yan et al. (2007) examined the use of 

nickel ferrite as Hall-Héroult cell sidewall refractories, and found that the alumina content of 

the bath had a large effect on the corrosion of the nickel ferrite. At 5% alumina, the test piece 
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was significantly corroded after 24 hours. At 10 and 15% alumina, the measureable corrosion 

was much lower. 

The solubility of was also found to vary with the partial pressure of oxygen. It can be seen in 

Figure 9 that the solubility of nickel ferrite in cryolite increased from 10 mol% at a pO2 of 1 

atm, to 40 mol% at a pO2 of 6.3×10-9 Pa. These values are quite high, but similarly to the 

differences between Figures 2 and 3, solubility also varies with the bath composition. Figure 

11 showed that with the experimental bath composition used that the solubility of nickel 

ferrite in the bath was low, at ~2 mol%. 

The variability of the solubility of nickel ferrite with oxygen partial pressure was also 

expected, based on previous findings in the literature. Yan et al. (2007) in particular 

examined the corrosion behaviour of nickel ferrite under different atmospheres. It was found 

that the solubility of nickel ferrite decreased with increasing pO2, as the atmosphere from 

argon to carbon dioxide to air. 

The second key question is what is driving the reduction of the nickel ferrite during the 

corrosion tests. Consideration of the experimental set-up (Nightingale et al. 2013) indicates 

that the pO2 in the experimental set-up is low due to two factors. The atmosphere used during 

the test is high purity (99.99%) argon, which is dried by passing it through drierite and 

ascarite. However, the main possibility for the creating the pO2 values required for the 

reduction of nickel ferrite would be from the graphite crucible used to contain the 

experimental bath. Considering the reaction: 

C(graphite) + 1/2O2(g) = CO(g)        (8) 

with a standard Gibbs free energy (Turkdogan, 1996) and equilibrium constant given by: 

ΔG° = -114400 - 85.8T        (9) 

2/1
2OC

CO

pa
pK =            (10) 

we find that at 1000°C, and assuming an aC of 1 and a pCO of 1 atm, that the equilibrium 

pO2 is 4.5×10-14 Pa (4.4×10-19 atm). This is lower than the pO2 values that were calculated 

to be required for reduction of the nickel ferrite. Lowering the pCO towards levels that would 

be expected in a flowing argon atmosphere would decrease the pO2 further. From this basic 
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analysis, it can be seen that the graphite crucible used in the experiments has the potential to 

lower the pO2 to that required for the reduction of nickel ferrite, and thus is likely to be 

responsible for the reduction seen in the corrosion testing. 

 

6 Conclusions 

Thermodynamic analysis has been carried out to interpret the results of corrosion testing of 

nickel ferrite samples in cryolite-based baths. This was done by considering the equilibria 

between cryolite-based baths and nickel ferrite and by considering the effect of reducing 

potentials on nickel ferrite and nickel ferrite-cryolite based bath systems. 

Isopleths between cryolite-based baths and nickel ferrite at 1 atm confirmed that for the 

temperature range of interest (1223-1273K) that there was limited solubility of nickel ferrite 

in the bath. The bath composition was found to play a large role in the solubility of the nickel 

ferrite, with the alumina content of the bath most likely lowering the solubility of nickel 

ferrite. Further isopleths calculated with varying pO2 showed that the solubility of the nickel 

ferrite changed with pO2. 

Reducing potentials were necessary to replicate the results seen in the corroded nickel ferrite 

samples. From investigation of the reduction of nickel ferrite it was found that the formation 

of a metal phase was predicted at relatively high partial pressures of oxygen. The metal phase 

was found to be initially nickel-rich at higher pO2, while becoming progressively enriched in 

iron as the pO2 decreased.  

The calculated compositions of the spinel phase corresponded well with many of the oxide 

phases observed in nickel ferrite samples after corrosion in cryolite-based baths. Penetration 

of the aluminium oxides into the spinel phase, as seen in the experimental samples, occurred 

only under a reducing potential. The predicted phases at equilibrium at different partial 

pressures of oxygen agreed well with the phases found in close proximity for the nickel 

ferrite-alumina and ‘bath’-nickel ferrite system (for the full bath composition). It was found 

that the simplified cryolite-nickel ferrite system did not give an adequate representation of the 

experimental system. 
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The reduction of the nickel ferrite seen during the corrosion testing, and thermodynamically 

simulated here, was most likely driven by the graphite crucible used to contain the cryolite-

based bath. 

 

Acknowledgments 

The authors would like to express their gratitude to the CSIRO’s Light Metals and Minerals 

Down Under Research Flagships for supporting this research as part of the ‘Breakthrough 

technology for primary aluminium’ research cluster, and to Mark Pownceby for his assistance 

with the EPMA analysis. The authors acknowledge the use of the JEOL-JSM6490 LV SEM 

at the UOW Electron Microscopy Centre. 

 

References 

Alcorn, T. R., Taberaux, A. T., Richards, N. E., Windisch, C. F. Jr., Strachan, D. M., Gregg, 

J. S. and Frederick, M. S., 1993. Operational Results Of Pilot Cell Test With Cermet “Inert” 

Anodes, Light Metals 1993, Denver, USA, February 21-25, pp. 433-443. 

Barry, T. I., Dinsdale, A. T., Gisby, J. A., Hallstedt, B., Hillert, M., Jansson, B., Jonsson, S., 

Sundman, B. and Taylor, J. R., 1992. The compound energy model for ionic solutions with 

applications to solid oxides, Journal of Phase Equilibria, 13(5), 459-475.  

Barry, T. I., Dinsdale, A. T., Gisby, J. A., 1993. Predictive Thermochemistry and Phase 

Equilibria of Slags, The Journal of The Minerals, Metals & Materials Society, 45(4), 32-38. 

Chuang, Y. Y., and Chang, Y. A., 1982. Extension of the associated solution model to ternary 

metal-sulfur melts: copper-nickel-sulfur, Metallurgical Transactions B: Process Metallurgy, 

13B(3), 379-85. 

Davies, R. H., Dinsdale, A. T., Gisby, J. A., Robinson, J. A. J. and Martin, S. M., 2002. 

MTDATA – Thermodynamic and Phase Equilibrium Software from the National Physical 

Laboratory, Calphad, 26 (2), 229-271. 



20 
 

DeYoung, D. H., 1986. Solubilities of Oxides For Inert Anodes In Cryolite-Based Melts, In 

Light Metals 1986, New Orleans, USA, March 2-6, pp. 299-307. 

Downie K., 2007.  NiFe2O4 as a sidewall material in Hall-Héroult cells, Honours thesis, 

University of Wollongong, Wollongong. 

Gaskell, D. R., 1973. Introduction to Metallurgical Thermodynamics. Washington: Scripta 

Publishing, pp. 497-498. 

Gisby, J. A., Dinsdale, A. T., and Taskinen, P. A., 2007. Predicting phase equilibria in oxide 

and sulphide systems, In: European Metallurgical Conference, Dusseldorf, Germany, June 

11-14, pp. 1721-1736. 

Grjothiem, K., Krohn, C., Malinovsky, M. and Thonstad, J., 1982. Aluminium Electrolysis, 

Fundamentals of the Hall Héroult Process, 2nd edition. Düsseldorf: Aluminium-Verlag. 

Grjotheim, K., and Welch, B. J., 1988. Aluminium smelter technology, 2nd edition, 

Dusseldorf: Aluminium-Verlag. 

Harrowfield, I. R., MacRae, C. M. and Wilson, N. C., 1993. Chemical imaging in electron 

microprobes, In : Proceedings of the 27th Annual MAS Meeting, Microbeam Analysis Society, 

New York, pp. 547-548. 

Kowalski, M., Spencer, P. J. and Neushütz, D., 1995.  “Chapter 3, Phase Diagrams”, in 

Verein Deutscher Eisenhüttenleute, ed. Slag Atlas , 2nd Edition, Düsseldorf: Verlag Stahleisen 

GmbH, pg. 77. 

Mukhlis, R., Rhamdhani, M. A., and Brooks, G., 2010. Sidewall materials For Hall-Héroult 

process, In: The Materials, Minerals & Metals Society Annual Meeting, Light Metals 

Division (TMS2010), Seattle, USA, February 17, 2010 (edited by John A. Johnson), pp. 883-8 

(TMS: Warrendale). 

Nightingale, S. A., Longbottom, R. J. and Monaghan, B. J., 2011. Nickel Ferrite - Does it 

have potential as a sidewall material? In: Proceedings of the 10th Australasian Aluminium 

Smelting Technology Conference. (pp. 1-11). Sydney: UNSW. 



21 
 

Nightingale, S. A., Longbottom, R. L. and Monaghan, B. J., 2013. Corrosion of nickel ferrite 

refractory by Na3AlF6-AlF3-CaF2-Al2O3 bath. Journal of the European Ceramic Society, 

33(13-14), pp. 2761-2765. 

Taskinen, P., Dinsdale, A., and Gisby, J., 2005. Industrial slag chemistry: A case study of 

computational thermodynamics. Scandinavian Journal of Metallurgy, 34(2), pp.100-107. 

Turkdogan, E. T., Physical Chemistry of High Temperature Technology, Academic Press, pp. 

5, 1970. 

Turkdogan, E. T., Fundamentals of Steelmaking, Maney Publishing, pp. 95, 1996. 

Wilson, N. C. and MacRae, C. M., 2005. An automated hybrid clustering technique applied 

to spectral data sets. Microscopy and Microanalysis, 11, Suppl. 2, pg. 434CD. 

Yan, X. Y.,  Pownceby, M. I., and Brooks, G., 2007. Corrosion behaviour of nickel ferrite-based 

ceramics for aluminium electrolysis cells. , In: The Materials, Minerals & Metals Society 

Annual Meeting, Light Metals Division (TMS2007), Orlando, USA, February 25, 2007 

(edited by Morten Sorlie), pp. 909-13 (TMS: Warrendale). 

  



22 
 

List of captions   

1 Typical microstructure of nickel ferrite after corrosion testing in 10% alumina -cryolite bath 
at 1273oC for 4 hours. a Nickel ferrite - bath interface. b Elemental map of aluminium for the 
same region (Nightingale et al. 2013).  

2 Na3AlF6-NiFe2O4 isopleth, calculated at P = 101325 Pa (1 atm). 

3 ‘Bath’-nickel ferrite isopleth, calculated at P = 103125 Pa (1 atm). The composition of the 
‘bath’ is 82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3.  

4 Representative image indicating different zones within the corroded samples. Image is 
taken from a nickel ferrite sample corroded for 4 hours. 

5 Change in the Gibbs free energy at 1000ºC for reactions 1 and 2 with changing partial 
pressure of oxygen in the different zones within a sample. 

6 The effect of reducing potential on the nickel oxide-iron oxide system at 1273K, as 
calculated by MTDATA. 

7 Partial pressure-composition isopleth in the nickel ferrite-alumina system at 1273K. 

8 Changes in the compositions of a spinel and b alloy phases with pO2 in the Ni-Fe-Al-O 
system, at 1273K and 70% NiFe2O4-30% Al2O3. 

9 Pressure-composition isopleth in the cryolite-nickel ferrite system at 1273K. 

10 Changes in the compositions of a spinel and b alloy phases with pO2 in the Na-Al-F-Ni-
Fe-O system, at 1273K and 80% NiFe2O4-20% Na3AlF6. 

11 Pressure-composition isopleth in the ‘bath’-nickel ferrite system at 1273K. The 
composition of the ‘bath’ is 82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3. 

12 Changes in the compositions of a spinel and b alloy phases with pO2 in the Na-Al-Ca-F-
Ni-Fe-O system, at 1273K and 80% NiFe2O4-20% ‘bath’, where the ‘bath’ composition is 
82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3. 
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                                    (a)      (b) 

1 Typical microstructure of nickel ferrite after corrosion testing in 10% alumina -
cryolite bath at 1273oC for 4 hours. a Nickel ferrite - bath interface. b Elemental map of 
aluminium for the same region (Nightingale et al. 2013).  

 

2 Na3AlF6-NiFe2O4 isopleth, calculated at P = 101325 Pa (1 atm). 
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3 ‘Bath’-nickel ferrite isopleth, calculated at P = 103125 Pa (1 atm). The composition of 
the ‘bath’ is 82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3.  

 

 
4 Representative image indicating different zones within the corroded samples. Image is 
taken from a nickel ferrite sample corroded for 4 hours. 

   

Zone 1 Zone 2 Zone 3 
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5 Change in the Gibbs free energy at 1000ºC for reactions 1 and 2 with changing partial 
pressure of oxygen in the different zones within a sample. 

 
6 The effect of reducing potential on the nickel oxide-iron oxide system at 1273K, as 
calculated by MTDATA. 
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7 Partial pressure-composition isopleth in the nickel ferrite-alumina system at 1273K. 

 
(a) 

 
(b) 

8 Changes in the compositions of a spinel and b alloy phases with pO2 in the Ni-Fe-Al-O 

system, at 1273K and 70 mol% NiFe2O4-30 mol% Al2O3. 
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9 Pressure-composition isopleth in the cryolite-nickel ferrite system at 1273K. 

 
(a) 

 
(b) 

10 Changes in the compositions of a spinel and b alloy phases with pO2 in the Na-Al-F-

Ni-Fe-O system, at 1273K and 80 mol% NiFe2O4-20 mol% Na3AlF6. 
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11 Pressure-composition isopleth in the ‘bath’-nickel ferrite system at 1273K. The 
composition of the ‘bath’ is 82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3. 

 

 
(a) 

 
(b) 

12 Changes in the compositions of a spinel and b alloy phases with pO2 in the Na-Al-Ca-
F-Ni-Fe-O system, at 1273K and 80 mol% NiFe2O4-20% ‘bath’, where the ‘bath’ 
composition is 82.1wt% Na3AlF6-2.9% AlF3-5.0% CaF2-10.0% Al2O3. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-15 -10 -5 0 5

m
as

s f
ra

ct
io

n 

log (pO2/Pa) 

Al
Ni
Fe
O

0

0.2

0.4

0.6

0.8

1

1.2

-15 -10 -5 0 5

m
as

s f
ra

ct
io

n 

log (pO2/Pa) 

Ni
Fe


	Thermodynamic considerations of the corrosion of nickel ferrite refractory by Na3AlF6-AlF3-CaF2-Al 2O3 bath
	Recommended Citation

	Thermodynamic considerations of the corrosion of nickel ferrite refractory by Na3AlF6-AlF3-CaF2-Al 2O3 bath
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1410737430.pdf.MDhy6

