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Abstract Abstract 
The study of uranium-series (U-series) isotopes in soil and sediment materials has been proposed to 
quantify rates and timescales of soil production and sediment transport. Previous works have studied 
bulk soil or sediment material, which is a complex assemblage of primary and secondary minerals and 
organic compounds. However, the approach relies on the fractionation between U-series isotopes in 
primary minerals since they were liberated from the parent rock via weathering. In addition, secondary 
minerals and organic compounds have their own isotopic compositions such that the composition of the 
bulk material may not reflect that of primary minerals. Hence, there is a need for a sample preparation 
procedure that allows the isolation of primary minerals in soil or fluvial sediment samples. In this study, a 
sequential extraction procedure to separate primary minerals from soils and sediments was assessed. 
The procedure was applied to standard rock sample powders (TML-3 and BCR-2) to test whether it 
introduced any artefactual radioactive disequilibrium. A new step was introduced to remove the clay-sized 
fraction (<2>µm). Significant amounts (5–14%) of U and Th were removed from the rock standards during 
the procedure. No significant alteration in (234U/238U) and (230Th/238U) activity ratios of the rock 
standards occurred during the procedure. Aliquots of soil sample were subjected to the sequential 
extraction process to test how each step modifies the uranium-series activity ratios and mineralogy. 
Although no secondary minerals were detected in the unleached soil aliquots, the sequential leaching 
process removed up to 17% of U and Th and modified their activity ratios by up to 3%. The modification of 
the activity ratios poses a demand for careful means to avoid redistribution of isotopes back to the 
residual phase during phase extraction. 
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Abstract 26 

The study of uranium-series (U-series) isotopes in soil and sediment materials has been 27 

proposed to quantify rates and timescales of soil production and sediment transport. Previous 28 

works have studied bulk soil or sediment material, which is a complex assemblage of primary 29 

and secondary minerals and organic compounds. However, the approach relies on the 30 

fractionation between U-series isotopes in primary minerals since they were liberated from 31 

the parent rock via weathering. In addition, secondary minerals and organic compounds have 32 

their own isotopic compositions such that the composition of the bulk material may not 33 

reflect that of primary minerals. Hence, there is a need for a sample preparation procedure 34 

that allows the isolation of primary minerals in soil or fluvial sediment samples. In this study, 35 

a sequential extraction procedure to separate primary minerals from soils and sediments was 36 

assessed. The procedure was applied to standard rock sample powders (TML-3 and BCR-2) 37 

to test whether it introduced any artefactual radioactive disequilibrium. A new step was 38 

introduced to remove the clay-sized fraction (< 2 µm). Significant amounts (5 to 14%) of U 39 

and Th were removed from the rock standards during the procedure. No significant alteration 40 

in (
234

U/
238

U) and (
230

Th/
238

U) activity ratios of the rock standards occurred during the 41 

procedure.  Aliquots of a soil sample were subjected to the sequential extraction process to 42 

test how each step modifies the uranium-series activity ratios and mineralogy. Although no 43 

secondary minerals were detected in the unleached soil aliquots, the sequential leaching 44 

process removed up to 17% of U and Th and modified their activity ratios by up to 3%. The 45 

modification of the activity ratios poses a demand for careful means to avoid redistribution of 46 

isotopes back to the residual phase during phase extraction. 47 
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 57 

1. Introduction 58 

Chemical weathering plays a major role in the evolution of the Earth’s surface. As 59 

such, it is important to constrain timescales of weathering processes during soil production 60 

and sediment transfer to better understand rates of landscape evolution. Over the past decade, 61 

uranium-series (U-series) isotopes have been used to determine the production rates of soil 62 

from bedrock and the transport rates of sediments (e.g., Suresh et al., 2013; Vigier and 63 

Bourdon, 2011; Granet et al, 2010; Chabaux et al., 2008; Dosseto et al., 2012, 2008, 2006; 64 

DePaolo et al., 2006; Dequincey et al., 2002; Vigier et al., 2001; Rosholt, 1982). U-series 65 

isotopes are ideal tools to constrain such timescales as they fractionate during rock-water 66 

interaction and their decay rate is such that radioactive disequilibrium operates on timescales 67 

similar to that of weathering processes. For a system closed for more than one million years 68 

(e.g. bedrock older than lower-Pleistocene), the 
238

U-
234

U-
230

Th isotope system will be in 69 

secular equilibrium; i.e., the parent-daughter activity ratios will be 1. During weathering, 
234

U 70 

may be preferentially leached from damaged crystal lattice sites created by the high energy 71 

alpha decay of 
238

U (Rosholt, 1982). Additionally, if the decay of 
238

U occurs near the surface 72 

of a soil or sediment grain, a fraction of the intermediate nuclide, 
234

Th (parent of 
234

U), may 73 

be ejected out of the grain due to the recoil energy of the decay, decreasing the (
234

U/
238

U) 74 

(herein, a ratio in parentheses denotes the activity ratio) (Kigoshi, 1971). In oxidising 75 

conditions, U will have an oxidation state of +6 and form the uranyl ion, UVIO2
2+

, which is 76 

stabilized by highly soluble carbonate complexes at pH 5 to 8 (Langmuir, 1978). Th will be 77 

present as Th
4+

, which is water-insoluble (at pH near 7). The difference in solubility, and 78 

hence mobility, causes elemental fractionation between U and Th, which contributes to the 79 

radioactive disequilibrium between 
230

Th and 
234

U. Since the activities of the isotopes are 80 

time dependent, it is possible to model their evolution in weathering profiles and sediments 81 

over time (Suresh et al., 2013; Dosseto et al., 2012, 2011, 2008, 2006; Chabaux et al., 2003; 82 

Dequincey et al., 2002; Vigier et al., 2001). Two approaches are used to estimate weathering 83 

timescales using U-series isotopes. The first utilises the fractionation of U and Th isotopes 84 

due to their differences in chemical mobility. The second approach uses the isotopic 85 

fractionation of 
238

U and 
234

U created by the recoil loss of 
234

U from the surface of grains. 86 
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The recoil length for the high energy alpha decay of 
238

U is ~30 nm in most silicate minerals 87 

(Hashimoto et al., 1985; Kigoshi, 1971; Turkowsky, 1969) and therefore this fractionation is 88 

only measurable in grains of a few tens of micrometers or less. The measured 
234

U-
238

U 89 

disequilibrium can be used to estimate the formation age (comminution age) of the grains 90 

following the comminution approach of DePaolo et al. (2006). This approach has been used 91 

to determine rates of soil formation and timescales of sediment transport and their 92 

relationships to past climate changes (Dosseto et al., 2010; Lee et al., 2010; Suresh et al., 93 

2010; DePaolo et al., 2006).  94 

The approaches discussed above are based theoretically on the evolution of U-series 95 

isotopes in primary mineral grains since the onset of bedrock weathering, assuming that these 96 

isotopes are in secular equilibrium prior to weathering, i.e., that the bedrock is older than 1 97 

Ma. However, several previous studies (e.g., Suresh et al., 2013; Dosseto et al., 2012, 2008, 98 

2006; Dequincey et al., 2002) have analysed bulk soils and/or sediments, which are complex 99 

mixtures of primary minerals, secondary phases and organic materials. Separation of primary 100 

minerals from the bulk material for U-series analysis is expected to significantly improve the 101 

accuracy of the results obtained from the approaches described above. Efforts have been 102 

made to separate primary minerals for the comminution age approach using U isotopes by 103 

Dosseto et al. (2010), Lee et al. (2010) and Suresh et al. (2010). However, the effect of the 104 

leaching procedure and separation of clay-sized fraction on the U-series isotopes of the 105 

primary minerals still needs to be tested.    106 

In order to test the reliability and examine the effects on nuclide activity ratios and 107 

elemental concentrations of phase extraction procedures proposed here to isolate the primary 108 

mineral grains of soil/sediments, we have carried out sequential leaching of soil sample 109 

aliquots using a procedure adopted and slightly modified from Schultz et al. (1998) to remove 110 

exchangeable and adsorbed fractions, organic materials, carbonates, and amorphous and 111 

crystalline Fe-Mn oxides (Table 1). We have added an additional step to physically remove 112 

the clay-sized particles by centrifugation (discussed in detail below). The residues from each 113 

step of the sequence were analysed for mineralogy, U and Th elemental and isotopic 114 

composition and particle size distribution to assess the effects of the removal of the different 115 

phases. In addition, powdered standard rock samples were subjected to the same sequential 116 

leaching and clay-size fraction removal procedure to assess whether the procedure induces 117 

any isotopic fractionation. 118 
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 119 

2. Materials and Method 120 

In order to determine whether the sequential leaching and clay separation procedure 121 

itself produces radioactive disequilibrium, we analysed USGS geochemical reference 122 

materials TML-3 and BCR-2. TML-3 (Table Mountain Latite) is a Pliocene lava from 123 

Sonora, California, which has U-series isotopes in secular equilibrium (Sims et al., 2008; 124 

Turner et al., 2001; Williams et al., 1992). BCR-2 (Basalt Columbia River) also has U-series 125 

isotopes in secular equilibrium (Prytulak et al., 2008; Hoffman et al., 2007). Both standards 126 

were subjected to the sequential leaching and clay removal procedure. A soil sample from a 127 

previously studied weathering profile, developed over granitic bedrock at Frogs Hollow, 128 

south-eastern Australia (Suresh et al., 2013, 2010) was used to investigate how the 129 

mineralogical, elemental and isotopic composition of soil material evolves during sequential 130 

leaching and the selective removal of different phases. The Frogs Hollow soil sample is ideal 131 

for such a study as secondary phases were not detectable by X-ray diffraction (XRD), which 132 

therefore, permits determination of how the leaching and clay-separation procedure affects U-133 

series isotopes in primary minerals in soil. 134 

All reagent solutions were prepared using Millipore Milli-Q water with 18.2 MΩ.cm 135 

resistivity. Acid-washed polypropylene bottles were used for the storage of solutions. To 136 

remove exchangeable, adsorbed and organic phases from the soil, a solution of sodium 137 

hypochlorite in hydrochloric acid was prepared, using Merck Ultrapur sodium hypochlorite 138 

(6-14% strength) and Teflon distilled hydrochloric acid (Table 1). Sodium acetate solution, 139 

prepared with Merck Suprapur® sodium acetate and 99.7% pure acetic acid supplied by BDH 140 

Chemicals, was used to remove the carbonate fraction from soil. Amorphous and crystalline 141 

oxides of Fe and Mn were removed using a solution of hydroxylamine hydrochloride, 142 

prepared from ≥ 99% pure hydroxylamine hydrochloride supplied by Fluka. LR grade 143 

sodium hexametaphosphate manufactured by Chem-Supply was used to prepare a dispersant 144 

for separation of the clay fraction from soil.  145 

The soil sample was first dry-sieved at 500 µm and then wet-sieved at 53 µm with de-146 

ionized water without pre-soaking, agitation or dispersion. The <53 µm sieved fraction was 147 

dried and then homogenised using an agate pestle and mortar. Approximately 2 g of soil 148 

material was placed in a pre-cleaned 50 ml polypropylene centrifuge tube. After each 149 

leaching step given below, the mixture was centrifuged at 7000 rpm for 15 minutes and the 150 
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supernatant was discarded using a pipette. The material was then rinsed twice with 10 ml of 151 

18.2 MΩ.cm Milli-Q water, followed by centrifugation at 7000 rpm for 15 minutes and then 152 

careful removal of the supernatant using a pipette. To obtain leached material representative 153 

of each step of the leaching procedure sequential leaching was performed on four aliquots 154 

(FL1-FL4) for which the leaching stages carried out for each sample are detailed in Table 2. 155 

Another aliquot of starting material, FLC, (Table 2) was not chemically leached but had the 156 

clay-sized fraction removed by centrifugation. The final aliquot did not undergo any stage of 157 

the sequential extraction procedure prior to U-series analysis. 158 

The order of extraction of the phases within the procedure is important for the 159 

effectiveness of the method (Miller et al., 1986; Shultz et al., 1998). The order of phase 160 

extraction used in this study is based on Shultz et al. (1998) and is given in Table 1. Schultz 161 

et al. (1998) suggest extraction of the organic fraction immediately after the extraction of the 162 

exchangeable fraction, as the thin organic coating on the grains can inhibit the action of 163 

reagents used to remove other phases, if performed before organic removal. Schultz et al. 164 

(1998) reported that ~ 50% of exchangeable uranium is re-adsorbed when MgCl2 is used for 165 

extraction of exchangeable phases, and therefore that reagent was not used here. We 166 

performed removal of exchangeable, adsorbed and organic phases together, using a solution 167 

of NaOCl at pH 7.5. An electrolyte prepared from a salt of a strong acid and base or a weak 168 

acid and base at pH ~7 can be used for removal of exchangeable fraction from soil (Rauret, 169 

1998). The weak complexing ability of Cl
- 
ions in the solution will be sufficient to dissolve 170 

the heavy metals weakly bound to the surface of the soil grains (Gleyzes et al., 2002). The 171 

use of NaOCl causes re-adsorption of uranium during leaching, but the oxidising nature of 172 

NaOCl in the solution is expected to convert the reduced form of uranium to the more soluble 173 

oxidised form (Duff et al., 1998). The removal of the adsorbed, exchangeable and organic 174 

fractions was accomplished using a solution of 6-14% sodium hypochlorite (15 ml per gram 175 

of sample) adjusted to pH 7.5 with 9 M HCl (Table 1). The mixture of the sample and the 176 

reagent was heated at 90 ºC for 30 minutes. This step was repeated to ensure complete 177 

removal of organic matter. The carbonate fraction was removed by treating the sample with a 178 

1 M solution of sodium acetate, adjusted to pH 4 with acetic acid (Table 1). The mass ratio of 179 

reagent to reactant was 10:1. The mixture was agitated for two hours on a Ratek roller mixer 180 

at 30 rpm. This step was repeated twice to ensure complete removal of carbonates. 181 

Amorphous and crystalline Fe and Mn oxides were then removed from the sample with a 182 

solution of 0.04 M hydroxylamine hydrochloride (Table 1). The mass ratio of reagent to 183 
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reactant was 10:1. The mixture was thoroughly mixed for 5 hours using a Ratek roller mixer 184 

at a speed of 30 rpm.      185 

Secondary clay minerals will have the U-series isotopic signature of the pore water 186 

they precipitate from, which is typically characterised by high (
234

U/
238

U) (Plater et al., 187 

1992). Therefore, it is necessary to remove such material from the sample in order to obtain 188 

only the primary mineral grains of interest. Many secondary minerals are very fine grained 189 

and may include oxides (e.g. of iron), carbonates, silicates (such as clay minerals) and other 190 

phases. Consequently, we have added an additional step to the phase extraction procedure of 191 

Schultz et al. (1998) to remove the clay fraction of the sample. Note that here the term clay 192 

refers to its granulometrical definition, and not mineralogical definition, i.e., particles < 2 µm 193 

in size, but that this size-fraction will contain the fine-grained secondary (mineralogical) clay 194 

material. The method used to remove the clay-sized fraction was adopted from the 195 

centrifugation method detailed in the USGS laboratory manual for X-Ray powder diffraction 196 

(Poppe et al., 2001). Using this procedure, all particles of < 2 µm diameter, including any 197 

primary minerals, are removed. A solution of 5% sodium hexametaphosphate was added to 198 

the sample material to disperse the particles. The mixture was subsequently sonicated with an 199 

ultrasonic probe for 20 seconds at a power of 190 W. It was then thoroughly agitated 200 

overnight on a Ratek roller mixer at 30 rpm. The size fraction of < 2 µm was then removed 201 

through controlled centrifugation by centrifuging the mixture at 1500 rpm for 34 s and 202 

stopped using a brake time of 13 s. The duration of centrifugation and stopping of the 203 

Heraeus Biofuge Primo centrifuge were calculated using USGS guidelines (Poppe et al., 204 

2001). The supernatant was then carefully removed by pipette. The samples were 205 

subsequently centrifuged with Milli-Q water at the same speed and for the same duration, the 206 

supernatant was removed by pipette. This latter Milli-Q water stage was repeated until the 207 

supernatant was clear (usually 3–4 times). Samples were then dried in a dust-free oven, 208 

homogenized in an agate mortar and then sub-sampled for XRD and uranium-series analysis. 209 

The sequential leaching and clay separation procedure is summarized in Table 1. 210 

Particle size distributions of the samples were obtained using a Malvern Mastersizer 211 

instrument with de-ionized water as the dispersant medium. The mineralogy of the samples 212 

were determined by X-ray diffraction using a PANalytical X’pert PRO MPD diffractometer 213 

with a 45 kV, 40 mA CuKα radiation X’celerator detector and Bragg Brentano geometry. 214 

Scans were conducted from 5 to 50º 2θ, at 5º 2θ/min. Highscore Plus software version 2.2.4 215 

with the ICDD PDF2 database by PANalytical was used for mineral identification. The basic 216 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 
 

Rietveld refinement option available in the software was used to quantify the minerals 217 

detected. 218 

Approximately 100 mg of each sample for uranium-series analysis was spiked with ~ 219 

30 mg of 
236

U-
229

Th tracer solution and then digested using a mixture of HCl, HNO3, HF and 220 

HClO4. The samples were left at room temperature for 30 minutes for reaction in closed 221 

Teflon beakers and then heated at 130 ºC overnight. Sample – tracer equilibration starts 222 

immediately during the reaction and will continue throughout the procedure.  The mixture 223 

was dried at 100 ºC for ~ 5 hours and then dried down at 200 ºC. The samples were then 224 

taken up in 7 M HNO3 in acid-washed 15 ml centrifuge tubes and centrifuged at 4000 rpm for 225 

15 minutes to check that the sample had digested fully. If not, the residue was redigested and 226 

added to the solution. This solution was then loaded on chromatographic columns containing 227 

AG1X8 anionic resin for the separation of U and Th (Sims et al. 2008; Dosseto et al. 2006). 228 

U and Th isotopic analyses were performed using a Nu instrument MC-ICPMS, following the 229 

method detailed in (Sims et al. 2008). The U analyses were bracketed with CRM U010 230 

isotopic standard. CRM U005-A standard was analysed as an unknown to carry out linear 231 

drift correction and to check the normalization of the U isotope measurements of the sample. 232 

For Th, all samples were bracketed with the OU Th ‘U’ isotopic reference material for linear 233 

drift correction (Sims et al., 2008). The UCSC Th ‘A’ standard was analysed as an unknown. 234 

The values of standards measured as unknowns were within 3 ‰ of the recommended values 235 

(Sims et al., 2008). The procedural blank for Th was 70 pg and for U it was 20 pg. An 236 

unleached TML-3 rock standard was analysed to measure accuracy, which was 1.1% for Th 237 

concentration, 0.06% for U concentration, 0.6% for (
234

U/
238

U) and 0.24% for (
230

Th/
238

U). 238 

Reproducibility was measured by replicate analysis of unleached TML-3, which was 0.9% 239 

for Th concentration, 1.8% for U concentration, 0.17% for (
234

U/
238

U) and 1% for 240 

(
230

Th/
238

U).  241 

 242 

3. Results  243 

3.1. Rock standards 244 

Uranium and thorium elemental and isotopic data are presented in Table 3 and Figs. 1 245 

and 2. The TML-3 aliquots T1 and T2, which did not undergo sequential leaching or clay-246 

sized fraction separation (here after referred to as ‘unleached’), have ~ 15 % higher U and Th 247 
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concentration than TL1 and TL2 which were sequentially leached and had the < 2 µm size 248 

fraction removed (here after referred to as ‘leached’) (Fig. 1). The weighted average values 249 

for Th and U concentrations in TML-3 from an inter-laboratory study (Sims et al., 2008) are 250 

within the range of the values measured here for the unleached samples. The Th 251 

concentrations of unleached BCR-2 samples B1 and B2 are ~ 20 % higher than those in the 252 

leached aliquots BL1 and BL2. B1 and B2 have U concentrations 1.612 ± 0.001 and 1.637 ± 253 

0.001 ppm whereas the leached aliquots contain 1.50 ±0.001 and 2.99 ± 0.005 ppm U 254 

respectively. The weighted average values for Th and U concentrations in BCR-2 from an 255 

inter-laboratory study (Sims et al., 2008) are 5.86 ± 0.08 ppm and 1.69 ± 0.03 ppm, 256 

respectively.  257 

The unleached (T1, T2) and one of the leached (TL1) TML-3 aliquots yield 258 

(
234

U/
238

U) and (
230

Th/
238

U) close to secular equilibrium and within ~ 8 ‰ deviation from the  259 

interlaboratory average TML-3 ratios reported by Sims et al. (2008). The other leached 260 

aliquot TL2 yields a (
234

U/
238

U) ratio deviating by 21 ‰ from secular equilibrium ratio (Fig. 261 

2a). Both the BCR-2 unleached (B1, B2) and leached aliquots (BL1, BL2) have (
234

U/
238

U) 262 

close to secular equilibrium (1.003 for the unleached aliquot; 1.007-1.008 for the leached 263 

aliquots). The (
230

Th/
238

U) of the leached aliquot BL2 is significantly different from the 264 

expected value of 1. This aliquot contains ~2 times higher concentration of U compared to 265 

the other aliquots. 266 

3.2. Soil samples 267 

The unleached soil aliquot (FLU) has a particle size distribution with a modal 268 

diameter of 30.7 µm and a clay-sized fraction (< 2 µm) of 10.8 wt. % (Table 2). The modal 269 

diameter of the aliquot that has undergone the entire procedure, including removal of the 270 

clay-sized fraction (FL4), is 32.7 µm but still with 5.2 wt. % clay-sized material. The aliquot 271 

where only the clay removal was undertaken (FLC) has a modal particle diameter of 30.5 µm 272 

and a clay-sized fraction of 4.9 vol. %. SEM (Scanning Electron Microscopy) images of the 273 

unleached aliquot (FLU) and the fully-processed aliquot (FL4) are shown in Fig. 3.  274 

The unleached soil aliquot consists of 69.3 wt. % quartz, 16.9 wt. % albite and 13.7 275 

wt. % microcline (Table 2). At every step of the leaching procedure, the abundance of 276 

minerals varies by less than 2% compared to the initial mineral abundance (Fig. 4). 277 

Authigenic phases were not detected by XRD in any of the leached or unleached aliquots. 278 
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U and Th elemental and isotopic data are shown in Table 2 and Figs. 5 and 6. Overall, 279 

there is an 11 % decrease in Th content through the leaching procedure. However both the 280 

sodium hypochlorite wash step and the hydroxylamine hydrochloride leaching step, the Th 281 

content of the residue increased. The Th content of FLC, subjected only to clay removal was 282 

somewhat higher than the fully leached sample FL4. A similar pattern also holds with respect 283 

U content, however, the largest decrease in U concentration occurs in the final clay removal 284 

step (FL4) and the resulting U concentration is similar to that of the sample subject to clay 285 

fraction removal alone (FLC) (Fig. 5). 286 

The activity ratios decreased over the leaching procedure although inreases were also 287 

measured at some steps. (
234

U/
238

U) decreased most significantly at the clay fraction removal 288 

step while (
230

Th/
238

U) decreased most dramatically with the removal of exchangeable, 289 

adsorbed and organic matter. In both the cases the final activity ratios (FL4) are similar to the 290 

values of FLC, subjected only to clay fraction removal (Fig. 6). 291 

 292 

4. Discussion 293 

The measurements of U and Th concentrations of the unleached rock standards are 294 

within the 2σ acceptable limits of their published values.  The Th concentrations of the 295 

unleached TML-3 aliquots T1 and T2 are within ± 4.43 ‰ and U concentrations are within    296 

-9.1 and 9.1 ‰ from those reported by Sims et al. (2008). For the unleached BCR – 2 297 

aliquots, B1 is -1.3 ‰ and B2 is +1.3 ‰ compared with the Th concentration values 298 

published by Sims et al. (2008), and within 2.5 ‰ of each other. U concentrations for B1 and 299 

B2 are within -7.7 and 7.7 ‰ of that published by Sims et al. (2008) and within 15.5 ‰ of 300 

each other (Fig. 1). 301 

The U-series elemental and isotopic data of the rock standards show that the 302 

sequential extraction procedure performed resulted in significant loss of U and Th. This 303 

amounted to < 14 wt. % loss of U from TML – 3 and 7.4 wt. % loss of U from one of the 304 

BCR-2 leached rock standards relative to the mean U concentration in the unleached rock 305 

standards. The second leached BCR-2 standard lost 17 wt. % of Th but gained about 84 wt. % 306 

U. This unexpected result is discussed in detail below. The general loss of Th and U may be 307 

attributed to the dissolution of primary minerals and/or removal of the < 2 µm size fraction. 308 

Surface etching of primary minerals by dissolution occurs in the presence of weak organic 309 
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acids (Welch and Ullman, 1993; Huang and Keller, 1970) and hence the removal of U and Th 310 

is possible during leaching. Also, during the separation of the < 2µm fraction, platy and lower 311 

density minerals may be removed preferentially, as these minerals may not settle as expected 312 

during centrifuging. This preferential removal may also account for the loss of U and Th, as 313 

the content of U and Th in different minerals is expected to be different. 314 

One of the BCR-2 leached aliquots gave a U concentration 77% higher and Th 315 

concentration 22% lower than the interlaboratory value (Sims et al. 2008). The aliquot was 316 

re-analyzed and yielded similar concentrations (4.48 ppm Th and 2.87 ppm U) which rules 317 

out the possibility of analytical problems during analysis by ICPMS. Such a large deviation 318 

from accepted U-Th concentration values could possibly result from incomplete 319 

sample/tracer equilibration. Similar problems were reported by Pin and Zalduegui (1997) 320 

during processing samples for rare earth elements, U and Th. They attributed the problem to 321 

incorporation of some of the elements in the tracer to the early stage intermediates of the 322 

reaction between the sample and the reagents, which then were not available for 323 

equilibration. Formation of stable complex fluorides during dissolution of samples rich in 324 

alkaline earth and/or aluminium may mask the U and Th before a full isotopic exchange 325 

between sample and tracer occurs (Pin and Zalduegui, 1997). The [
236

U]/[
238

U] atomic ratio 326 

measured by the mass spectrometer for the problematic leached BCR – 2 sample (4.79 x 10
-5

) 327 

is less than half of that measured for the other leached BCR-2 aliquot (1.0879 x 10
-4

) and the 328 

unleached aliquot (1.01679 x 10
-4

), where the amount of sample digested, amount of tracer 329 

added and all other measured atomic ratios are similar. The [
229

Th]/[
232

Th] atomic ratio for 330 

the leached aliquot of BCR-2 sample with lower concentration of elemental Th is 6.493 x 10
-331 

5
, whereas for the other leached aliquot it is 7.607 x 10

-5 
and for the unleached aliquot it is 332 

7.30 x 10
-5

, confirming the possibility of an incomplete sample-tracer equilibration, although 333 

all the TML-3 and BCR-2 aliquots were processed in a similar manner following tracer 334 

addition to the sample. Palmer and Edmond (1993) also reported problems due to poor 335 

sample/tracer equilibration during U-Th analysis of water samples.  336 

A 2σ precision of 8 ‰ in the measured (
234

U/
238

U) activity ratio of rock standards is 337 

considered acceptable with the measurement method used at Geochemical Evolution of 338 

Metallogency Of Continents (GEMOC) laboratory (Turner et al., 2011). All the leached and 339 

unleached standard aliquots except one of the leached TML-3 have their (
234

U/
238

U) within 340 

this limit when compared to the ratios reported by Sims et al. (2008). The (
230

Th/
238

U) - of all 341 

the leached and unleached TML – 3 aliquots and the unleached BCR-2 and one of the leached 342 
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aliquots (BL2) are within a 2σ deviation of ~33 ‰ of the value published by Sims et al. 343 

(2008). The accepted 2σ precision for (
230

Th/
238

U) measurements in rock standards at 344 

GEMOC is 2 % (Turner et al., 2011).  The very low value of (
230

Th/
238

U)  of BL1 is due to 345 

the anomalously high concentration of U measured in it, most likely due to the poor sample-346 

tracer equilibration, as discussed above.  When compared to the results of U-series activity 347 

ratios of TML – 3 and BCR – 2 standards published by Sims et al. (2008), and  considering 348 

the accepted 2σ precisions by Turner et al. (2011), it can be observed that the leaching and 349 

fine-fraction removal procedure employed to the rock standards does not impart any 350 

artefactual U-series disequilibrium.  351 

The median particle size of the soil sample does not seem to be affected by the clay-352 

size fraction separation step. However, the aliquot subjected to sequential leaching and 353 

removal of the clay-sized fraction (FL4) showed a small increase (6%, compared to 3% 354 

reproducibility for this instrument) in the median particle size. The minor change median 355 

particle size is due to the removal of finer fraction.  356 

The leaching and separation procedure did not affect the relative proportions of the 357 

primary minerals in the soil sample. XRD analysis did not detect any secondary phases in the 358 

soil sample (detection limit ~1%). The mass percentage of primary minerals in the aliquots of 359 

all steps of the sequential leaching procedure did not show any significant variation (Fig. 4). 360 

The implication is that the leaching procedure used here does not cause alteration to the 361 

relative distribution of primary minerals.  362 

The procedure for the removal of the clay-sized fraction will remove particles < 2 µm, 363 

regardless of mineralogy. Therefore, even primary minerals within the 0-2 µm size fraction 364 

will be removed. As the relative distribution of primary minerals in the residue is not affected 365 

by removal of the < 2µm fraction, the primary minerals removed have the same relative 366 

mineralogical distribution as in the bulk sample. After the clay removal step, half of the <2 367 

µm size fraction (~5 % total sample mass) remained in the two aliquots. Townsend (1997) 368 

observed breaking down of soil grains during ultrasonic probing, which affected the particle 369 

size distribution. Ultrasonication of the sample during the clay-sized fraction removal step 370 

may have created smaller grains in excess.   371 

 Removal of the exchangeable phases and organic materials resulted in a 7.4 % 372 

decrease in U concentration, implying that a significant proportion of U is contained in this 373 

phase. No significant change in U concentration was observed after the sodium acetate/acetic 374 
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acid leaching step, consistent with the restricted carbonate content (lower than XRD detection 375 

limits) of the soil. The U concentration increased by 6.6% after removal of Fe and Mn oxides, 376 

showing that there is little or no U in the removed phase. A similar observation was reported 377 

by Lee et al. (2004), while leaching soil samples with ammonium acetate. When the leaching 378 

procedure was complete 0.9% of U was removed from the sample.  379 

When the clay-size fraction was subsequently removed from the leached sample, U 380 

concentration decreased by 17% compared with the previous stage, indicating the presence of 381 

a large proportion of U in the size fraction below 2 µm. Complete removal of the clay-size 382 

fraction would therefore result in an even greater loss of U.  When sequential leaching was 383 

complete and clay size fraction was removed, 21 % U had been removed, when compared to 384 

the starting material. When only the clay-sized fraction was removed from the soil aliquot 385 

without leaching, 22% of U was lost. This shows that a large fraction of U is held in the clay-386 

sized fraction of soil. Lee et al. (2004) and Baeza et al. (1995) also observed increases in the 387 

concentration of U-series isotopes with decreasing soil grain size. Baeza et al. (1995), using 388 

an empirical relation connecting surface and volume activities of actinides and their ionic 389 

size, argued that radionuclides with greatest ionic radii are precluded from incorporating to  390 

crystal lattices and hence their concentrations in refractory minerals will be proportional to 391 

specific surface area.  392 

The 7.3% increase in Th after removal of the exchangeable and organic fractions may 393 

be due to little or no presence of Th in these fractions. Blanco et al. (2004) also reported that 394 

Th was present in less than one percent of the organic and exchangeable fractions extracted 395 

from soil following the method used by Schultz et al. (1998). During the sodium acetate–396 

acetic acid buffer leaching stage 20.2% of the initial Th was removed, indicating the presence 397 

of a large proportion of Th in this leached fraction. Plater et al. (1992) reported removal of up 398 

to 8.2 % of Th from river sediments during extraction of carbonate.  Testa et al. (1999) also 399 

reported extraction of ~ 14 % Th when the carbonate fraction was separated from canal 400 

sediments. Our results show that this leaching step can also leach significant amounts of Th 401 

even when carbonate minerals are absent or in very low abundance (below XRD detection). 402 

The sample used here is from an acidic soil profile of pH = 5.5 (Suresh et al., 2013). It is 403 

known that the presence of organic acids increase the mobility of Th from soil (Chabaux et 404 

al., 2003). It is possible that the mobilized Th might be readsorbed onto the soil grains of this 405 

sample, and remobilized during leaching with the sodium acetate – acetic acid buffer. There 406 

was a 9.5% increase in Th concentration of the residue following the removal of Fe and Mn 407 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

oxides, indicating little or no presence of Th in the removed fraction. Blanco et al. (2004) 408 

also reported that Th was less than one per cent in the Fe and Mn oxide fractions of soil. 409 

When removing the clay-size fraction, the Th concentration decreased by 5.1%, indicating 410 

the presence of a significant amount of Th in that fraction.  411 

Similarly to U concentration variations, (
234

U/
238

U) vary little over the different steps 412 

of the sequential leaching, with a slight increase in 
234

U depletion throughout the procedure, 413 

but show a significant decrease when the < 2 µm fraction is removed. This suggests that the 414 

<2um fraction has a high (
234

U/
238

U). The (
230

Th/
238

U) shows the same systematic changes, 415 

but with a more pronounced increase of the disequilibrium throughout the procedure. The 416 

removal of the <2um fraction does not seem to significantly decrease further the (
230

Th/
238

U) 417 

(compared to FL3 and FLC).  418 

The organic and exchangeable fraction of soil may have (
234

U/
238

U) > 1 (Plater et al., 419 

1992, Chabaux et al., 2003, Dosseto et al., 2008). Removal of the organic/exchangeable 420 

materials with (
234

U/
238

U) > 1 from soil then should cause a decrease in the (
234

U/
238

U) of the 421 

residue, and the same is observed here. No significant change in the (
234

U/
238

U) was observed 422 

after leaching with sodium acetate/acetic acid buffer, again consistent with insignificant or 423 

minor presence of carbonate in the sample. Oxides of Fe and Mn in soil will also be 424 

characterised by the (
234

U/
238

U) of the soil pore water they precipitate from, which is 425 

expected to be > 1 (Dosseto et al., 2008; Plater et al., 1992). Removal of the Fe and Mn oxide 426 

fraction from the soil will therefore, decrease the (
234

U/
238

U) of the residue, which was 427 

observed here.  428 

The lowest (
234

U/
238

U) in the residue was measured for aliquots that underwent the 429 

removal of the clay-sized fraction (FL4 and FLC, Table 2) indicating a higher (
234

U/
238

U) in 430 

the removed fraction. Authigenic clays will have the U-isotopic signature of the pore water. 431 

Clay minerals formed from the pore water are expected to have (
234

U/
238

U) > 1, as U will be 432 

co-precipitated with clay minerals and/or incorporated into the lattices of clay minerals 433 

(Scott, 1968; Mitchell, 1964). However, the soil samples processed here do not have 434 

detectable clay minerals; therefore, the clay-sized fraction removed must contain largely 435 

primary mineral grains. This fraction has the highest specific surface area in the soil, and may 436 

contain the most redistributed uranium from the fluid phase, which is expected to be enriched 437 

in 
234

U due to recoil ejection and preferential leaching (Fleischer, 1982; Kigoshi, 1971). 438 

Removal of a fraction with high (
234

U/
238

U) will leave the residue with a lower (
234

U/
238

U), as 439 
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is observed here. The residual primary minerals after leaching and clay-fraction removal have 440 

a (
234

U/
238

U) of 0.945 ± 0.002, which is comparable to the (
234

U/
238

U) reported by Plater et al. 441 

(1992) for the residual minerals obtained after leaching river bottom sediments.  442 

The (
230

Th/
238

U) increased significantly when the exchangeable and organic fractions 443 

were removed. This suggests that the removed fraction has a very low (
230

Th/
238

U). During 444 

sequential leaching of river sediments, Plater et al. (1992) also reported (
230

Th/
238

U) as low as 445 

0.723 ± 0.362 in extracted organic matter. When the sodium acetate/acetic acid leaching step 446 

was performed, the (
230

Th/
238

U) decreased in the residue, indicating a ratio of > 1 in the 447 

removed fraction, which is consistent with the observations reported by Plater et al. (1992), 448 

when sediment samples were leached to extract carbonate fraction. They also reported that Fe 449 

and Mn oxides in the sediments contained (
230

Th/
238

U) > 2. Removal of a fraction with a 450 

higher (
230

Th/
238

U) than the equilibrium value will leave the residue with a (
230

Th/
238

U) of < 451 

1, and the same was observed here. Removing the clay-sized fraction from the residue again 452 

increased the (
230

Th/
238

U), indicating that the ratio in the removed fraction is lower than the 453 

residue from the previous step.  454 

In summary, when the sequential extraction procedure for removal of different phases 455 

is applied to a soil sample with little or no secondary phases, the U-series isotope ratios vary 456 

in a similar way to that observed with soil/sediment samples containing secondary phases 457 

(Blanco et al., 2004; Lee et al., 2004; Schultz et al, 1998; Plater et al., 1992).  458 

5. Conclusions 459 

The modified sequential extraction procedure for primary minerals in soils was tested with 460 

rock standard samples and a natural soil sample. A considerable amount of U and Th is 461 

removed from the standard rock samples during the procedure. The measured U-series 462 

activity ratios were within the accepted precision levels from the values published, with one 463 

exception due to possible problems during sample preparation. This indicates that the 464 

procedure does not induce artefactual disequilibrium to the sample. The mass percentage of 465 

the primary minerals in the soil sample did not vary significantly during the stages of phase 466 

extraction, which indicates that the procedure does not affect the relative distribution of 467 

primary minerals in the sample. Even though secondary phases or clay minerals were not 468 

detected in the soil sample by XRD, the removal of U-series isotopes during the sequential 469 

extraction procedure tends to modify the (
234

U/
238

U) and (
230

Th/
238

U) from their unleached 470 

sample values. The possibilities of re-adsportion of U back to the residual phases during 471 
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leaching needs more investigation. Unaccounted removal of U and/or Th from soil and 472 

sediment samples during sequential leaching could lead to erroneous estimation of sediment 473 

dynamic timescales using U-series models.  474 
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Tables 638 

Table 1. The leaching and clay separation procedure. 639 

Leached fraction Reagents  Process 

1) Exchangeable/adsorbed/organics 

 

Sodium hypochlorite at pH 7.5 (15 

ml/g of sample) 

Add reagent to the sample. Heat in the oven at 

98°C for 30 minutes. Centrifuge at 7000 rpm for 

15 minutes then discard the supernatant. Repeat 

these steps, add 10 ml ultra-pure water and 

centrifuge to rinse 

 

2) Carbonates 

 

 

1 M sodium acetate, adjusted to pH 4 

with acetic acid  (10 ml/g of sample) 

Add reagent to the sample. Agitate at room 

temperature for 2 hours using a rotary mixer. 

Centrifuge at 7000 rpm for 15 minutes and 

discard supernatant. Repeat these steps. 

Afterwards add 10 ml ultra-pure water, centrifuge 

at 7000 rpm for 15 minutes then discard the 

supernatant. 

 

3) Amorphous and crystalline 

     Fe-Mn oxides 

 

 

 0.04 M hydroxylamine hydrochloride 

(10 ml/g of sample)  

Add reagent to the sample. Agitate at room 

temperature for 5 hours, centrifuge at 7000 rpm 

for 15 minutes, discard supernatant, add 10 ml 

Milli-Q water, centrifuge at 7000 rpm for 15 

minutes then discard the supernatant. 

 

4) Clay 5% sodium hexa meta phosphate 

solution, filtered at 0.45µm, 50 ml 

Add reagent to the sample. Ultrasonicate at 190 

W for 20 s. Agitate overnight. Centrifuge at 1500 

rpm for 34 seconds and break-stop the centrifuge 

in 13 seconds to avoid resettling of clay. Discard 

supernatant, and repeat centrifugation step with 

Milli-Q water until the supernatant is clear. 

 640 

 641 

 642 
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Table 2. U and Th concentrations and isotopic data, mineralogy and particle size data of the soil aliquots.  643 

 

Sample 

name 

Phase extraction steps 

performed 
Th (ppm)* U (ppm)* (234U/238U)* (230Th/238U)* Quartz Albite Microcline 

Modal diameter 

(µm)  

< 2 µm fraction  

(% by wt.) 

FLU Unleached 13.63±0.03 3.968±0.006 0.998±0.002 0.967±0.004 69.3 16.9 13.7 30.7 10.8 

FL1 

Removed exchangeable,  

adsorbed and organic 

material 

14.62±0.03 3.675±0.005 0.987±0.002 0.990±0.008 70.8 15.8 13.4   

FL2 

Removed exchangeable, 

adsorbed  

and organic materials and 

carbonates 

11.66±0.02 3.688±0.005 0.991±0.002 0.958±0.005 70.4 17.5 12.1   

FL3 

Removed exchangeable, 

adsorbed  

and organic materials, 

carbonates and amorphous 

and crystalline Fe-Mn 

oxides 

12.76±0.03 3.932±0.006 0.983±0.002 0.944±0.005 70.9 17.5 11.6   

FL4 

Removed exchangeable, 

adsorbed  

and organic materials,  

carbonates, amorphous and 

crystalline Fe-Mn oxides, 

and the clay fraction 

12.10±0.02 3.126±0.005 0.945±0.002 0.932±0.004 69.1 16.8 14.1 32.7 5.2 

FLC 
Only clay fraction is 

removed 
12.97±0.02 3.091±0.005 0.940±0.002 0.938±0.005 69.4 17.1 13.5 30.5 4.9 

           

*Internal analytical errors of U-series data are 2σ644 
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Table 3. U and Th concentrations and activity ratios of leached and unleached aliquots of TML-3 and BCR-2 rock standards.  645 

 646 

Sample Leached? Th (ppm)* U (ppm)* (234U/238U)* (230Th/238U)* 

TML-3      

T1 No 29.15±0.12 10.34±0.03 0.992±0.003 0.998±0.007 

T2 No 29.41±0.01 10.53±0.02 0.994±0.002 0.998±0.007 

Mean  29.28±0.12 10.44±0.04 0.993±0.003 0.993±0.009 

      

TL1 Yes 27.57±0.13 9.76±0.02 1.004±0.003 1.004±0.007 

TL2 Yes 25.18±0.06 8.94±0.02 1.022±0.002 1.031±0.005 

      

BCR-2      

B1 No 5.513±0.009 1.612±0.001 1.003±0.002 0.984±0.005 

B2 No 5.527±0.007 1.637±0.001 0.996±0.001 0.973±0.005 

Mean  5.52±0.01 1.624±0.001 1.000±0.002 0.979±0.007 

      

BL1 Yes 5.517±0.008 1.503±0.001 1.007±0.001 1.016±0.004 

BL2 Yes 4.573±0.01 2.989±0.005 1.008±0.002 0.451±0.003 

      

From Sims et al. (2008)    

TML-3  30.19±0.64 10.70±0.37 1.000±0.004 0.998±0.015 

BCR-2   5.86±0.08 1.69±0.03 1.001±0.005 1.001±0.011 

*Internal analytical uncertainties are 2σ. 647 
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Figure Captions 661 

Figure 1. Concentration of U and Th in rock standards a) TML-3 and b) BCR-2. Open 662 

symbols represent the unleached aliquots and filled symbols represent leached aliquots 663 

Internal analytical errors (2σ) are smaller than the symbol size for most samples. Diamond 664 

symbols represent the interlaboratory averaged values reported by Sims et al. (2008). The 665 

associated error bars show 2 standard deviation of the individual laboratory values (n = 35 for 666 

TML-3 and 20 for BCR-2). 667 

 668 

Figure 2. Activity ratios of U-series isotopes of a) TML-3 and b) BCR-2 rock standards. 669 

Open symbols represents unleached aliquots and filled symbols represent leached aliquots. 670 

Internal analytical errors are 2σ. Diamonds represent averaged interlaboratory values (n = 35 671 

for TML-3 and n = 20 for BCR-2) with 2 standard deviation error bars (Sims et al. 2008). 672 

 673 

Figure 3. SEM images of the unleached (FLU) and fully leached, including separation of the 674 

clay-sized fraction (FL4) aliquots. 675 

 676 

Figure 4. Quantitative mineralogy of leached and unleached aliquots of the soil sample. The 677 

labels on the x-axis follow the phase extraction steps for sequential leaching and clay removal 678 

outlined in Table 2.  679 

 680 

Figure 5. Concentration of U and Th in leached and unleached aliquots of the soil sample. 681 

The labels on the x-axis follow the phase extraction steps for sequential leaching and clay 682 

removal outlined in Table 2. 2σ internal analytical errors (shown) are similar to the symbol 683 

size. 684 

 685 

Figure 6. U-series activity ratios of leached and unleached aliquots of soil sample. The labels 686 

on the x-axis follow the phase extraction steps detailed in Table 2. Internal analytical errors 687 

(2σ) are shown. 688 
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