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to the ‘residual’ signal observed in sunlight-bleached samples. In this paper, we examine the non-bleachable
component of IRSL of K-feldspar for several sedimentary samples from across Eurasia. We observed a large
variability in the residual doses among these samples after prolonged exposure to sunlight. By employing
multiple elevated temperature (MET) IR stimulations at 50–300 °C, we show that the residual dose increases
systematically with stimulation temperature, attaining values as high as ∼50 Gy at 300 °C, even after several
hours to tens of hours of exposure to unfiltered sunlight. We examined two samples in detail and found that
the bleachable and non-bleachable components produced different dose response curves. Pulse annealing
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mathematically and empirically that the simple subtraction of a residual dose from the measured equivalent
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Abstract 

The infrared (IR) stimulated luminescence (IRSL) and post-IR IRSL (pIRIR) signals from K-

feldspar can, for convenience, be divided into two components, bleachable and ‘non-bleachable’, 

where the latter corresponds to the ‘residual’ signal observed in sunlight-bleached samples. In this 

paper, we examine the non-bleachable component of IRSL of K-feldspar for several sedimentary 

samples from across Eurasia. We observed a large variability in the residual doses among these 

samples after prolonged exposure to sunlight. By employing multiple elevated temperature (MET) 

infrared stimulations at 50°C to 300°C, we show that the residual dose increases systematically with 

stimulation temperature, attaining values as high as ~50 Gy at 300°C, even after several hours to tens 

of hours of exposure to unfiltered sunlight. We examined two samples in detail and found that the 

bleachable and non-bleachable components produced different dose response curves. Pulse-annealing 

studies showed that the non-bleachable component is more stable than the bleachable component, 

suggesting that a preheat procedure cannot eliminate the non-bleachable component. Additional 

experiments revealed that the non-bleachable component is dose dependent. Owing to this dose 

dependency, we demonstrate mathematically and empirically that the simple subtraction of a residual 

dose from the measured equivalent dose (De) – which is the most common approach employed (if any 

residual dose is subtracted at all) – will result in underestimation of the actual De. We present a 

method to correct for the dose dependency of the residual dose, which can improve the accuracy of 

either MET-pIRIR or pIRIR age estimates for samples in which the non-bleachable component 

represents a significant fraction of the measured signals.  

Keywords: potassium feldspar, infrared stimulated luminescence, post-IR IRSL, MET-pIRIR, 

residual dose. 
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1. Introduction 

Recent progress in understanding anomalous fading of the trapped charges related to the 

infrared stimulated luminescence (IRSL) signals in K-feldspar—that is, the leakage of electrons from 

traps at a much faster rate than would be expected from kinetic considerations—has raised the 

prospect of isolating a non-fading IRSL component for the dating of Quaternary deposits containing 

feldspars. By first bleaching feldspar grains using IR photons at 50°C and then measuring the post-IR 

IRSL (pIRIR) signal at an elevated temperature (>200°C), it is possible to preferentially sample traps 

that suffer least from fading (Thomsen et al., 2008; Buylaert et al., 2009; Thiel et al., 2011). 

Alternatively, the non-fading component can be identified by using a multiple elevated temperature 

(MET) stimulation procedure—the so-called MET-pIRIR protocol (Li and Li, 2011a, 2012a)—in 

which the feldspar grains are stimulated with IR at successively higher temperatures, from 50°C to 

300°C. 

Although the pIRIR signals measured at elevated temperature (e.g. >200 °C) have significantly 

reduced or negligible rates of fading compared to the IRSL signal measured at low temperatures (e.g., 

50°C), they have also been found to be more difficult to bleach, requiring several hours of sunlight 

exposure to empty most of the light-sensitive traps (Thomsen et al., 2008; Li and Li, 2011a). At higher 

stimulation temperatures, the IRSL signal consists of components that are more resistant to bleaching 

(Li and Li, 2011a). In a study of several modern sand samples from Portugal, Denmark and India, 

Thomsen et al. (2008) measured residual doses of a few Gy in the pIRIR signal at 225°C 

[pIRIR(225)], while for modern aeolian sediments from China, Li and Li (2011a) measured residual 

doses of up to a few Gy in the MET-pIRIR signals at temperatures of 200°C and higher. These studies 

suggested that it may be necessary to consider the residual doses for relatively young samples only 

(e.g., De<100 Gy). 

Significantly higher residual doses have subsequently been reported by others (e.g., Buylaert et 

al., 2011, 2012; Lowick et al., 2012). For example, Buylaert et al. (2011) reported residual doses of up 
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to ~20 Gy for the pIRIR 290°C signal [pIRIR(290)] from samples of modern Chinese loess, and 

Stevens et al. (2011) observed residual doses as high as ~40 Gy for loess samples from the southern 

Carpathian Basin. Lowick et al. (2012) reported highly variable residual doses in the pIRIR(290) 

signals, ranging up to ~150 Gy, and found that significantly large residual doses may be present when 

sunlight is attenuated by water. Sohbati et al. (2012) observed an increase in the pIRIR(225) residual 

doses with the De values of their samples. A similar observation was made by Buylaert et al. (2012) 

for the pIRIR(290) signals of 15 samples, and they suggested that the residual doses at the time of 

burial may be smaller than the residual doses inferred from laboratory measurements. Reimann and 

Tsukamoto (2012) found that the residual doses associated with the 50°C IRSL and pIRIR(150) 

signals were the same after a prolonged bleach, although the pIRIR signal is thought to be bleached 

more slowly than the 50°C IRSL signal. 

In addition to the ‘non-bleachable’ component, the residual doses observed in the pIRIR signals 

are also partly induced by thermal transfer of charge from unstable, light-insensitive traps into the 

IRSL and pIRIR traps, due to the high preheat temperature (>300°C) employed in pIRIR protocols 

(Buylaert et al., 2012). 

Given the observations of potentially substantial residual doses associated with the high-

temperature pIRIR signals, whether measured at a single elevated temperature (such as 225°C or 

290°C) or at multiple elevated temperatures (Thomsen et al., 2008; Li and Li, 2011a), the use of these 

pIRIR procedures for dating can only be safely applied to samples with a small composition of non-

bleachable signals. In practice, researchers have estimated the residual doses from modern analogues 

or from artificially bleached samples, and these doses have been subtracted from the equivalent dose 

(De) measured using one of the pIRIR procedures (e.g., Buylaert et al., 2011; Li and Li, 2011a). There 

have been no systematic investigations yet, however, of the properties of the residual signal, nor of its 

effect on the accuracy of pIRIR age estimates. In this study, we study the properties of the non-

bleachable IRSL component in samples from different regions of the world (China, France, Georgia, 

India and Oman) that have been deposited in a variety of natural settings. We show that the simple 
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subtraction of a residual dose (such as that obtained from a modern analogue) from the measured De 

can give rise to a significant underestimate in the size of the actual De, and the magnitude of this 

shortfall will be especially acute for young samples and for sediments that have a large residual dose 

at the time of deposition. We also propose a method of De determination that takes this residual dose 

into account. 

2. Sample descriptions 

Five sediment samples were examined in this study. To assess the variability in the properties 

of K-feldspars derived from different source rocks, we selected samples from different regions of 

Eurasia. The sample locations, expected ages and equivalent doses are summarised in Table 1. The 

samples have also been deposited in a variety of environmental settings at different times, from <1 to 

~300 ka ago, and have a range of natural doses of between ~4.5 Gy and ~700-900 Gy. The Chinese 

loess sample (LC-004) consists of sediment grains that had been exposed to sunlight during aeolian 

transport before burial, while two of the samples consist of colluvial and alluvial sediments deposited 

at open-air archaeological sites in north-central India (Dhaba, DHB2-OSL4) and in the southern 

Caucasus, Georgia (Pinavera, PIN-OSL2). The remaining two samples were collected from a 

collapsed rock shelter in Oman (al-Hatab, ALH-1) and a collapsed cave in France (Les Cottés, LC10-

07). Both of these are archaeological sites that have been dated using the optically stimulated 

luminescence (OSL) signal from quartz (R.G.R. and Z.J., unpublished data), as well as radiocarbon 

dating of bone at Les Cottés (Talamo et al., 2012). 

3. Experimental procedures and analytical facilities 

The samples were prepared for IRSL analysis using routine procedures (Aitken, 1998). First, 

they were treated with HCl acid and H2O2 solution to remove carbonates and organic matter, 

respectively, and then they were dried and sieved to obtain grains of 63–90, 90–125 and 125–180 µm 

in diameter (Table 1). The K-feldspar grains were separated from quartz and heavy minerals using a 

solution of sodium polytungstate with a density of 2.58 g/cm3. The separated K-feldspar grains were 
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immersed in 10% HF acid for 40 min to etch the surfaces of the grains and remove the outer, alpha-

irradiated portions, and then rinsed in HCl acid to remove any precipitated fluorides. The dried and 

etched K-feldspar grains were mounted as a monolayer on stainless steel discs of 9.8 mm diameter 

using “Silkospray” silicone oil as an adhesive. Grains covered the central ~5 mm diameter portion of 

each disc, corresponding to several hundred grains per aliquot. 

IRSL measurements were made on an automated Risø TL-DA-20 reader equipped with IR 

diodes for stimulation (870 ∆ 40 nm; Bøtter-Jensen et al., 2003). The total IR power delivered to the 

sample position was ~135 mW/cm2 (Bøtter-Jensen et al., 2000), and laboratory irradiations were 

carried out on the reader using a calibrated 90Sr/90Y beta source. IRSL signals were detected by an 

Electron Tubes Ltd 9235B photomultiplier tube fitted with Schott BG-39 and Corning 7-59 filters to 

restrict transmission to 320–480 nm. Each aliquot was stimulated for 100 s, while being held at a 

chosen temperature of between 50°C and 300°C (see Table 2 for the stimulation temperatures used in 

the MET-pIRIR protocol) and the resulting signal was calculated as the sum of counts over the initial 

10 s of each stimulation, with ‘late light’ subtraction (Aitken, 1998) of the background count rate over 

the final 10 s of each stimulation. We note that the IRSL intensity does not reach a constant level after 

100 s of stimulation, but continues to decay, so the subtracted background consists of ‘dark’ counts 

intrinsic to the photomultiplier tube, scattered incident photons, and IRSL associated with the eviction 

of electrons from traps that are sensitive to IR radiation at the chosen stimulation temperature. 

4. Results 

4.1. Residual dose: variability between samples 

To investigate whether or not samples from different geological settings have different 

residual doses associated with the MET-pIRIR signals, 4-6 aliquots of natural grains from each sample 

were exposed to unfiltered sunlight for 3–5 hr (in Wollongong during February and March 2012, 

between 10 a.m. and 4 p.m., with no cloud cover). We expected several hours of solar exposure to be 

sufficient to reduce the population of electrons in bleachable traps to a negligible level (Li and Li, 
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2011a). This was confirmed by bleaching samples ALH-1 and PIN-OSL2 for 3 days and samples 

DHB2-OSL4 and LC10-07 for one week, which resulted in a negligible further reduction in the 

residual doses compared to those measured after a 3–5 hr bleach. The following studies, therefore, are 

based on the residual doses measured by bleaching aliquots in sunlight for 3–5 hr. 

After bleaching, we estimated the residual doses using the MET-pIRIR protocol of Li and Li 

(2012a), in which the signals induced by the regenerative and test doses are measured at stimulation 

temperatures of 50, 100, 150, 200, 250 and 300°C (Table 2). A preheat at 320°C for 60 s was applied 

to the regenerative and test doses to avoid significant influence from phosphorescence while recording 

the MET-pIRIR signal at 300°C. After IR stimulation of each test dose, a ‘hot’ IR bleach (100 s at 

340°C) was adminstered to reduce the size of residual dose carried forward into the following 

regenerative dose cycle. At the start of each IRSL measurement, an ‘IR-off’ period of 10–50 s (see 

Table 2, footnote ‘b’) was applied to minimise the intensity of isothermal decay induced at elevated 

temperature. Fu et al. (2012) showed that, for some of their samples, there may be significant 

interference from thermoluminescence (TL) for the MET-pIRIR signal at high temperatures, even 

though the samples were preheated at a higher temperature than that used for IR stimulation. They 

observed that this may cause invalid De estimation and suggested that its effect should be monitored 

and minimised by holding the sample at the IR-measurement temperature for a period to decrease the 

size of the isothermal TL signal before IR stimulation. Typical IRSL and MET-pIRIR decay curves, 

including the signals observed during both the IR-off and IR-on periods, for sample LC10-07 are 

shown in Fig. 1. It can be seen that a longer IR-off period is needed for the signals measured at higher 

temperatures, and that the IR-off periods adopted in this study are sufficient to minimise the 

interference from isothermal TL. 

The residual doses associated with the IRSL and MET-pIRIR signals after sunlight bleaching 

are shown in Fig. 2 for each sample. Considerable variation is evident in the residual doses among 

these samples and at the different IR stimulation temperatures. Sample ALH-1 has the smallest 

residual doses (ranging from a few Gy at 50°C to ~15 Gy at 300°C) and sample LC10-07 has the 
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largest (~55 Gy at 300°C). We note that no clear relation between the magnitude of the residual dose 

and the expected depositional age or De of the sample. For example, the two youngest samples (LC-

004 and ALH-1) have the smallest residual doses, but the residual doses of the oldest sample (PIN-

OSL2, ~200-300 ka) are bracketed by those of samples LC10-07 (~38 ka) and DHB2-OSL (~50 ka). 

For all samples, the smallest residual doses (0–4 Gy) were obtained at an IR stimulation 

temperature of 50°C, and the size of the residual dose and the extent of variation (in Gy) both increase 

as the stimulation temperature is raised (Fig. 2). For the MET-pIRIR signal measured at 300°C, the 

residual doses range between ~10 and 55 Gy. Residual doses of this size may be small relative to the 

size of the De for some samples, such as PIN-OSL2, which has a residual dose of 39 Gy and a De of 

~700-900 Gy. By contrast, the youngest sample, LC-004, has a residual dose of ~4 Gy when 

stimulated at 250°C, which is large (>60%) relative to the corresponding De value of ~6.5 Gy. 

It is worth emphasising that a high residual dose of ~55 Gy was obtained for the MET-

pIRIR(300) signal from sample LC10-07 (~38 ka), which corresponds to ~30% of the apparent De 

value (~147 Gy). This highlights the importance of obtaining accurate and precise constraints on the 

residual doses of all samples and not only those deposited recently, especially when stimulated at 

elevated temperatures. From these results and from those of other studies (e.g., Li and Li, 2011a; 

Buylaert et al., 2011; Stevens et al., 2011; Nian et al., 2012), it is clear that the residual dose associated 

with the non-bleachable component is highly variable from sample to sample, and that sunlight 

bleaching tests should be routinely conducted to estimate the likely minimum size of the residual dose 

at the time of sample deposition. 

4.2. IRSL and pIRIR decay curves  

Typical natural IRSL and MET-pIRIR signals for four samples (LC10-07, ALH-1, PIN-OSL2 

and DHB2-OSL4) are shown in Fig. 3 as the measured ‘Total’ natural decay curves, together with the 

‘Residual’ signals after sunlight bleaching measured from separate aliquots. We refer to the latter as 

the residual signals, associated with both the ‘non-bleachable’ traps and thermally transferred signals, 

and we do not distinguish between these two sources in the present study. All of the signals have been 
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normalised to the initial intensity of the natural IRSL signal measured at 50°C. These plots show that 

the proportional relationship between the IRSL and pIRIR signals varies significantly from sample to 

sample, and that the proportion of the residual signal relative to the natural signal also varies widely 

among these samples. To illustrate the latter, the ratios of the residual to total signals are plotted 

against stimulation time and temperature in Fig. 3e. For all four samples, the relative intensity of the 

residual signal increases, often substantially, with stimulation time at each temperature. As a 

consequence, MET-pIRIR signals measured at higher stimulation temperatures include a relatively 

larger contribution from the non-bleachable component, which accords with previous reports of 

elevated temperature pIRIR traps being harder to bleach than are IRSL traps at 50°C (Thomsen et al., 

2008; Li and Li, 2011a). 

4.3. IRSL and pIRIR dose response curves  

Owing to the large size of the residual dose and signal intensity of sample LC10-07 (Fig. 3a), 

we used this sample for detailed study in the following experiments. To investigate the relation 

between the sizes of the residual signal and laboratory dose, we first heated 20 aliquots to 500°C, to 

empty the corresponding IR-sensitive traps, and then gave these aliquots a series of regenerative doses, 

followed by 4 hr exposure to sunlight to empty the bleachable traps. The remaining (‘residual’) IRSL 

and MET-pIRIR signals were then measured using the procedure in Table 2, and these data were used 

to construct sensitivity-corrected dose response curves (DRCs) of the residual signal as a function of 

regenerative dose (Fig. 4, filled squares). The residual signals show a clear dose dependency, and the 

rate of growth in signal with dose can be fitted using a single saturating exponential function. For 

comparison, the sensitivity-corrected ‘total’ IRSL and MET-pIRIR signals, which represent the sum of 

the bleachable and non-bleachable components and were obtained using the single-aliquot 

regenerative-dose (SAR) procedure in Table 2, are also shown in Fig. 4 (as open diamonds). The dose 

response of the ‘bleachable’ component was separated by subtracting the residual signal from the total 

signal, and the corresponding DRCs are shown by dashed lines in Fig. 4. On the basis of these data, it 

is evident that only a small fraction (~3% at 220 Gy) of the IRSL measured at 50°C consists of a non-
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bleachable (residual) component, and that the proportion of this component increases with stimulation 

temperature, accounting for ~28% (at 220 Gy) of the total MET-pIRIR signal at 300°C. 

To compare the shapes of the DRCs for the total, residual and bleachable signals measured at 

different stimulation temperatures, we normalised each set of curves to unity at a regenerative dose of 

55 Gy (Fig. 5). For the total signals, the shapes of the DRCs differ according to stimulation 

temperature, with the 50°C IRSL dose response being similar to those of the MET-pIRIR signals at 

100, 150 and 200°C, whereas the 250 and 300°C signals—the latter in particular—saturate at lower 

doses (Fig. 5a). By contrast, the residual signal DRCs display less variability in shape with stimulation 

temperature (Fig. 5c), so the bleachable signal DRCs follow a similar pattern to those for the total 

signal. 

We calculated the characteristic saturation dose (D0) values for the saturating exponential 

DRCs fitted to the total, residual and bleachable signals (shown as the lines of best fit in Fig. 4), as 

summarised in Table 3. Similar D0 values were obtained for the total and bleachable signals. The D0 

values are highest for the total and bleachable IRSL signals measured at 50°C (420–450 Gy) and for 

the corresponding MET-pIRIR signals at 100, 150 and 200°C (350–600 Gy). At stimulation 

temperatures of 250°C and 300°C, the total and bleachable signals have D0 values of ~300 Gy or less, 

which is consistent with previous findings for other samples (e.g., Li and Li, 2011a, 2012a). Compared 

to these signals, the residual signals of the sample LC10-07 have much lower D0 values that span a 

narrower range (from ~160 to ~210 Gy) and are broadly consistent with each other at 2σ (Table 3). 

These results indicate that the same source traps are probably responsible for the residual signals 

measured at different stimulation temperatures, and that these traps differ from those associated with 

the bleachable component of the IRSL and pIRIR signals. 

4.4. Thermal stability of the MET-pIRIR traps 

We conducted a pulse annealing study to further test whether the non-bleachable traps 

responsible for the residual signals have a thermal stability similar to that of the bleachable traps. A 

fresh set of 11 aliquots of sample LC10-07 was heated to 500°C and each aliquot was then given a 
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regenerative dose of 330 Gy, after which they were bleached by sunlight for 4 hr and then preheated at 

320°C for 60 s. The aliquots were then cut-heated to different temperatures (‘annealed’) between 300 

and 500°C, before the IRSL and MET-pIRIR signals were measured using the procedure in Table 2 to 

obtain an estimate of Lx for each stimulation temperature. To monitor and correct for any sensitivity 

changes, each aliquot was then given a test dose (of 44 Gy) and the induced IRSL and MET-pIRIR 

signals were measured to estimate Tx for each stimulation temperature. Following these measurements, 

the aliquots were given another regenerative dose of 330 Gy and the above procedure was repeated, 

but without any exposure to sunlight, in order to study the thermal stability of the traps giving rise to 

the total signal. 

Fig. 6a shows the sensitivity-corrected MET-pIRIR signals (Lx/Tx) measured at stimulation 

temperatures of 100, 150, 200, 250 and 300°C after each annealing; the Lx/Tx ratios plotted on the y-

axis of Fig. 6 are normalised to a value of unity at an annealing temperature of 300°C. The pulse 

annealing curves for the IRSL signal measured at 50°C are not shown in Fig. 6 owing to the 

significant scatter in the data for the residual component, which is probably due to its low intensity 

(see Fig. 3a). For the MET-pIRIR signals, it is evident from Fig. 6a that the residual signals measured 

at higher temperatures are more thermally stable than those measured at lower temperatures: for 

example, the residual signal stimulated at 100°C starts to decrease from an annealing temperature of 

350°C, whereas the 250 and 300°C residual signals are stable up to an annealing temperature of almost 

400°C although the residual signal at 300°C appears to decrease at a slightly lower temperature than 

200°C signal. A similar trend was observed by Li and Li (2011b) for the total MET-pIRIR signals of a 

sand dune sample from China, but the pulse annealing curves for the total MET-pIRIR signals from 

the same set of aliquots of sample LC10-07 exhibit a different pattern. As shown in Fig. 6b–f, the total 

MET-pIRIR signals (filled symbols and dashed lines) are stable up to an annealing temperature of 

nearly 350°C for all stimulation temperatures in the range 100–300°C, so the residual signals are 

systematically more thermally stable at the different stimulation temperatures. As the non-bleachable 
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component is more thermally stable than the bleachable component, it is not feasible to apply a 

preheat to preferentially remove the non-bleachable component and retain the bleachable component. 

4.5. A correction method for residual doses 

As indicated above, the residual dose can be responsible for a significant fraction of the total 

pIRIR signal measured, especially at the higher stimulation temperatures that are also the ones 

preferred for dating because of the greater thermal stability and lower fading rates of the associated 

traps. It is important, therefore, to be able to accurately correct for any residual dose when dating K-

feldspar samples using pIRIR procedures, whether at a single elevated temperature or at multiple 

elevated temperatures. 

In previous studies that have used high-temperature pIRIR signals for dating, estimates of the 

size of the residual dose have been made from measurements of modern analogues or samples of 

interest after artificial bleaching. The residual doses so obtained have then either been ignored (e.g., 

Thiel et al., 2011) or been subtracted from the measured De values of the samples of interest to 

calculate the De associated with the bleachable pIRIR traps (e.g., Li and Li, 2011a; Steven et al., 2011; 

Reimann et al., 2011; Lowick et al., 2012; Fu et al., 2012). This simple ‘dose-subtraction’ method is 

straightforward and might appear to be appropriate, but it will yield inaccurate De estimates for 

samples (such as LC10-07) with pIRIR signals that include a significant contribution from the non-

bleachable component. This approach will, in principle, give an underestimate of the actual De, as can 

be demonstrated algebraically, as follows. If we assume that the actual De (i.e., the De associated with 

the bleachable traps) lies in the linear region of the dose response curve, then the measured De—which 

we refer to here as the ‘apparent dose’, Da—is given as: 

 

where LBN and LRN denote the natural signal intensities of the bleachable and residual (i.e., non-

bleachable) components, respectively, and  and  denote the corresponding intensities of the 
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bleachable and residual signals induced by regenerative dose D. Similarly, the residual dose (DR) is 

given as: 

 

The correct equation for determining the equivalent dose for the bleachable signal is: 

 

But in the case of the simple dose-subtraction method, the corresponding quantity  is calculated as: 

 

As a result,  will be smaller than De, owing to the inclusion of  in the denominator on the right-

hand side. The extent of the underestimation will depend on the relative proportion of residual signal 

( ) to bleachable signal ( ), with the magnitude of the shortfall increasing with . As the latter has 

been shown to increase with stimulation temperature in some samples of K-feldspar (e.g., all four 

samples in Fig. 3), it is important to take account of the effect of the residual signal in elevated-

temperature pIRIR dating procedures. 

To appropriately do so, we propose an ‘intensity-subtraction’ method instead of the dose-

subtraction method. In the intensity-subtraction method, the total and residual signals are measured for 

the natural dose and each regenerative dose, and DRCs constructed for both signals. The method is 

illustrated in Fig. 7. Two groups of natural aliquots (Groups A and B) are prepared for each sample. 

Group A is used to measure the total signal of the natural aliquots (N-total), while the aliquots in 

Group B are bleached in sunlight for several hours before the residual signal is measured (N-residual). 
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Test doses are also given to both groups of aliquots, and the resulting MET-pIRIR signals measured 

using the procedure shown in Table 2. The aliquots in Group A are then given a series of regenerative 

and test doses, and the induced signals used to construct a sensitivity-corrected DRC for the total 

signal (DRC-total), again using the procedure in Table 2. Following these measurements, the same 

aliquots are given the same series of regenerative doses, after each of which the aliquots are bleached 

by sunlight for several hours before the residual signals are measured; a test dose is also applied at the 

end of each regenerative dose cycle, and the sensitivity-corrected data used to construct a DRC for the 

residual signal (DRC-residual). 

The De value associated with the bleachable traps is then obtained by subtracting the pIRIR 

signal intensities for the DRC-residual from those of the DRC-total to derive the sensitivity-corrected 

DRC for the bleachable signal, on to which the sensitivity-corrected bleachable signal for the natural 

sample is projected to determine the De by interpolation; the latter signal is calculated by subtracting 

N-residual from N-total. This method is illustrated in Fig. 8, using the MET-pIRIR data obtained for 

LC10-07 at a stimulation temperature of 300°C. The bleachable component of the natural signal (filled 

triangle) has been estimated by subtracting N-residual (filled circle) from N-total (filled square), and 

the DRC of the bleachable traps (dashed line) has been calculated by subtracting DRC-residual (dotted 

line) from DRC-total (solid line). The De of ~130 Gy is then obtained by interpolating the filled 

triangle on to the dashed line. By contrast, the measured De (i.e., the De determined from N-total and 

DRC-total, equivalent to Da in the notation above) is ~177 Gy, and an estimate of ~55 Gy for the 

residual dose can be obtained by projecting N-residual on to DRC-total. Subtracting this estimate of 

the residual dose from Da, as in the dose-subtraction method, gives a  value of ~122 Gy, which is 

slightly smaller than the De value of ~130 Gy for the bleachable component calculated using the 

intensity-subtraction method. 

In Fig. 8, the largest applied dose is 220 Gy. At such low doses, it might appear that the 

natural residual intensity (filled circle) is higher than the saturation intensity of the residual DRC 

(dotted line), whereas this is not so. Extending the fitted residual DRC to larger doses yields a 
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maximum residual signal intensity of 0.92 ± 0.02 at infinite dose. This value is entirely consistent with 

the natural residual intensity of 0.90 ± 0.05, which suggests that the natural residual signal is in, or is 

close to, saturation. This, in turn, supports the proposition that the residual signal is thermally and 

athermally stable (non-fading). 

To further assess the extent of the differences between the estimates of De and  with 

stimulation temperature, we have plotted the MET-pIRIR results for sample LC10-07 in Fig. 9. Fig. 9a 

shows the temperature dependence of the apparent doses associated with the total signal (i.e., Da: filled 

squares) and the residual signal (i.e., DR: open circles), and the corresponding  values obtained for 

the bleachable signal (open squares) by subtracting the latter from the former using the simple dose-

subtraction method. The smallest  values were obtained from the IRSL signal measured at 50°C, 

with progressively larger values obtained at higher stimulation temperatures, culminating in the 300°C 

MET-pIRIR signal yielding a  value of 130 ± 15 Gy (weighted mean and standard error for 6 

aliquots). This dose-subtraction approach produces statistically consistent  values for the MET-

pIRIR signals at 200, 250 and 300°C, which could be interpreted as evidence that a stable (non-fading) 

and bleachable component had been measured. However, if these results are compared to those 

obtained using the intensity-subtraction method, it can be seen that the  values are systematically 

smaller, by 7–12%, than the corresponding De determinations at IR stimulation temperatures of 50–

300°C (Fig. 9b). A similar result was obtained when the two-step pIRIR(50, 290) procedure, in which 

the IRSL and pIRIR signals were measured at 50°C and 290°C, respectively (Thiel et al., 2011), was 

applied to sample LC10-07: the dose-subtraction De was ~13% lower than the intensity-subtraction De 

(Fig. 9b). These observed shortfalls for sample LC10-07 are consistent with the mathematical 

expectation that dose-subtraction estimates will underestimate the intensity-subtraction estimates.  



15 

 

We note that the De values obtained at high stimulation temperatures (>200°C) using both 

subtraction methods yield ages that are consistent at 2σ with the radiocarbon ages of ~38 cal. ka 

(Talamo et al., 2012) that bracket the layer of sample LC10-07. Thus, although the different 

approaches produce equally accurate ages for this particular sample, there are mathematical grounds to 

support the validity of the intensity-subtraction procedure for robust age estimation more generally. 

To further test the accuracy of the alternative correction methods, a dose recovery test was 

conducted on sample DHB2-OSL4. Two groups of natural aliquots were first bleached by sunlight for 

1 week. One group of aliquots was then given a laboratory dose of 55 Gy, which was subsequently 

measured using the MET-pIRIR protocol. The other group of aliquots was used measure the residual 

signals underlying the natural and regenerative doses, using the procedure outlined in Fig. 7. A total 

dose (Da) of 72 ± 4 Gy was recovered for the MET-pIRIR (300°C) signal (Fig. 10a). If the residual 

dose (DR) of 25 ± 3 Gy, obtained from the bleached aliquots, is subtracted from Da, then the recovered 

dose associated with the bleachable signal (De) is calculated as 47 ± 5 Gy. This corresponds to a ratio 

of recovered to given dose of 0.85 ± 0.08, so the given dose is underestimated by ~15%. If the 

intensity-subtraction method is, instead, used to correct for the residual dose, a De value of 56 ± 3 Gy 

is obtained (Fig. 10a), which is in much closer agreement with the given dose of 55 Gy. 

Fig. 10b shows the results of the dose recovery test for the MET-pIRIR signals of sample 

DHB2-OSL4 measured at different temperatures. The recovered/given dose ratios obtained using the 

dose-subtraction method are systematically smaller than unity at all temperatures, whereas the 

intensity-subtraction method yields ratios consistent with unity at temperatures of 150°C and above. 

The results for the two subtraction methods are, in general, most similar at lower stimulation 

temperatures; this pattern reflects the decreasing size of the residual (or non-bleachable) component 

relative to that of the bleachable component (Fig. 3d). 

We conclude, therefore, that the dose-subtraction method should be used with caution, 

especially for samples in which the total pIRIR signal measured at temperatures of 200°C and above 

includes a relatively high proportion of the non-bleachable component, as may commonly be the case 



16 

 

with recently deposited sediments. However, we recommend that similar tests should be performed on 

more samples with independent age control, spanning a wide time interval, to check that the intensity-

subtraction procedure is broadly applicable. 

5. Implications for pIRIR dating of K-feldspars 

The results presented above have a number of consequences for the accurate estimation of 

depositional ages for K-feldspars using elevated-temperature pIRIR signals. 

First, based on the findings of previous studies and of this study, it has been shown that the 

relative proportion of bleachable and non-bleachable components is highly variable from site to site 

and from sample to sample (Fig. 2); it may also vary from grain to grain within any particular sample. 

Such variability precludes any simple generalisations about the likely significance of the non-

bleachable signal in samples of K-feldspar, and we recommend that sunlight bleaching experiments be 

routinely conducted to establish the importance of the residual component for the samples of interest. 

If a significant non-bleachable component is found to be present, then a suitable method should be 

applied to correct for its influence on De and, hence, age estimation. 

An alternative method to minimise the residual dose problem for young samples is to use a lower 

preheat temperature and pIRIR stimulation temperature (Madsen et al., 2011; Reimann et al., 2011, 

2012), both of which should reduce the size of the residual dose. However, fading corrections are 

required at lower pIRIR stimulation temperatures (Reimann et al., 2011), and this involves additional 

uncertainties associated with fading rate measurements, as well as assumptions and limitations 

inherent to the fading correction model. The latter are especially problematic in the case of older 

samples, for which a fading correction procedure is not applicable. 

Another important finding for the sample studied in detail in this paper is that the non-bleachable 

signal progressively increases in size at higher IR stimulation temperatures, and that it also increases 

relative to the size of the bleachable signal (Fig. 3a). This effect has the potential to lead to incorrect 

age estimation, and limits the value of the high-temperature pIRIR dating signals that appear to suffer 
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less from anomalous fading than the conventional IRSL signal measured at 50°C (Thomsen et al., 

2008; Buylaert et al., 2009; Li and Li, 2011a). When choosing a suitable IR stimulation temperature 

using the pIRIR method, it is therefore necessary to consider not only the effects of anomalous fading, 

but also the possible existence of a significant non-bleachable component—especially for pIRIR 

signals stimulated at high temperature. The latter might be less prone to age shortfalls due to fading, 

but the existence of a significant residual dose at the time of deposition may give rise to De 

underestimates if the simple dose-subtraction method is used to account for it. On the other hand, if 

the sample had not been exposed to sufficient sunlight before burial to empty the bleachable traps 

and/or if no correction is made for the residual dose, then the use of pIRIR signals may give rise to De 

overestimates, rather than underestimates. 

The calculated De ultimately depends on the relative importance of these competing influences, 

and an accurate estimate of the actual De will only be obtained using a pIRIR procedure if 3 conditions 

are met: (1) the bleachable component of the pIRIR signal was fully zeroed at the time of sample 

deposition; (2) the De associated with the bleachable traps that were filled and did not fade during the 

period of sample burial can be measured using one or more pIRIR signals; and (3) the residual dose 

associated with the non-bleachable pIRIR component can be estimated and subtracted correctly. 

These conditions will not always be met, and the competing factors will not always be 

compensatory, so how can one validate the accuracy of De estimates? To reduce the extent of De 

underestimation associated with the residual dose, we recommend the use of the intensity-subtraction 

procedure to properly account for the non-bleachable pIRIR component. For an appropriate IR 

stimulation temperature, we would, in general, recommend the use of the MET-pIRIR procedure to 

identify the high-temperature region with a ‘plateau’ in De values, as this should include the most 

stable signals that are least affected by fading. However, as the non-bleachable component also 

increases in absolute and relative size with stimulation temperature, there may be advantages—

particularly for young samples—in determining the De at lower stimulation temperatures, where the 

bleachable component accounts for a larger proportion of the total pIRIR signal. 
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Consequently, although the MET-pIRIR signals above 200°C are relatively immune to 

anomalous fading, these signals have relatively larger uncertainties associated with the correction for 

the non-bleachable component. For young samples, therefore, the effect of the residual dose may 

outweigh that of anomalous fading, so it might be preferable to determine the final ages from the 

MET-pIRIR signals stimulated at temperatures of no more than 200°C. By contrast, anomalous fading 

may be of primary concern for older samples, in which case the higher-temperature MET-pIRIR 

signals (e.g., at 250°C) would be more appropriate (Li and Li, 2012a, 2012b). For the latter samples, a 

plateau in the MET-pIRIR De/temperature or age/temperature plot could be used to identify the 

existence of a non-fading, bleachable component, and the De value at the low-temperature end of this 

plateau should have the highest ratio of bleachable to non-bleachable signal and, hence, yield the most 

accurate and precise estimate of age (e.g., Fig. 9b). 

The use of the intensity-subtraction method to account for the non-bleachable pIRIR component 

suffers from the same drawback as the dose-subtraction method: namely, at least two sets of aliquots 

are required to determine the De of each sample (Fig. 7). One set is used to measure the natural signal 

intensity and regenerative dose intensities for the total and non-bleachable signals (Group A), while 

the other set is needed to estimate the residual intensity of the natural signal, following exposure to 

sunlight (Group B). This approach requires that both groups of aliquots consist of grains that were 

bleached to the same extent at the time of deposition, and that both respond similarly to the laboratory 

treatments. This degree of homogeneity may be reasonable to assume in some cases, such as aliquots 

composed of hundreds or thousands of grains that had been fully bleached in antiquity, but the residual 

dose may vary greatly from grain to grain in partially bleached samples, which would invalidate the 

use of a dual-aliquot correction procedure—whether it be based on the dose-subtraction or intensity-

subtraction method. Sunlight bleaching experiments are not able to establish the residual intensity of 

the natural signal for those grains that had been bleached most completely at the time of deposition 

without some independent means of identifying the latter. Studies of the non-bleachable component 

among individual grains of K-feldspar would, therefore, be a useful first step to determining its range 
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of variability at the single-grain level, and discern any patterns that could be used to recognise the 

most fully bleached grains in a heterogeneously bleached population. 

6. Conclusions 

Given our present state of knowledge about the size of the non-bleachable component in 

different samples of K-feldspar, both in absolute terms and relative to the size of the sample De, it is 

premature to expect that accurate ages can be obtained routinely for recently deposited and/or partially 

bleached sediments using elevated-temperature pIRIR signals. Although the latter are less prone to 

fading than the conventional IRSL signal measured at 50°C, they are accompanied by much higher 

residual doses, which can greatly exceed the De values of young samples, in particular. For partially 

bleached samples of any age, it is not clear how to determine the appropriate residual dose for the 

grains that were bleached most completely at the time of deposition. In the case of fully bleached 

samples, the residual dose can be estimated using an intensity-subtraction method, which we have 

shown mathematically is more appropriate than simply subtracting either the dose remaining after 

bleaching the sample in sunlight or the dose measured in a modern analogue. The latter, dose-

subtraction, method is apt to yield De underestimates, as we have demonstrated experimentally using a 

dose recovery test. 

To maximise the benefits gained by preferentially stimulating the electron traps that are least 

prone to anomalous fading, future research could usefully focus on documenting the variability in the 

non-bleachable component of elevated-temperature pIRIR signals among individual grains of the same 

sample and of different samples. To obtain accurate pIRIR ages routinely will require an improved 

understanding of the extent and cause of variation in residual doses within and between samples. 

Incorporation of this knowledge into pIRIR dating procedures may make it feasible to determine 

reliable ages from the De values and residual doses estimated for individual aliquots and grains. 
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Figure captions 

Figure 1: Typical IRSL and MET-pIRIR signals from sample LC10-07 measured at different stimulation 

temperatures. The shaded area shows the signal observed in the ‘IR-off’ period. 

Figure 2: The residual doses obtained after sunlight bleaching of different samples, plotted against the MET-

pIRIR stimulation temperature. The data for the Chinese loess sample (LC-004) are from Fu et al. (2012). 

All data points are based on the average of four aliquots. The legend includes the approximate measured or 

expected De value and depositional age of each sample. 

Figure 3: Comparison of the natural (solid lines) and residual (dashed) IRSL and MET-pIRIR signals 

obtained from samples (a) LC10-07, (b) ALH-1, (c) PIN-OSL2 and (d) DHB2-OSL4 at different stimulation 

temperatures (shown below the curves). All IRSL curves are normalised to the initial intensity of the natural 

50°C IRSL signal (stimulation time at t = 0 s). The total and residual signals are each based on one separate 

aliquot. (e) Ratios of residual/total signal intensities as a function of stimulation time and temperature 

(shown at the top of the plot) for each of these samples. 

Figure 4: Dose response curves (DRCs) for the total, residual and bleachable MET-pIRIR signals at different 

stimulation temperatures. The residual DRCs (red solid lines) were obtained using aliquots bleached by 

sunlight for 4 hr. The DRCs of the bleachable signals (dashed lines) were obtained by subtracting the 

residual DRCs from the total DRCs (black solid lines). 

Figure 5: Comparison of the dose response curves from the (a) total signals, (b) bleachable signals and (c) 

residual signals for the IRSL and MET-pIRIR signals measured at different stimulation temperatures. All 

DRCs are normalised to unity at 55 Gy. 

Figure 6: (a) Pulse annealing results for the residual IRSL and MET-pIRIR signals measured at different 

stimulation temperatures. (b) to (f) Pulse annealing curves for the residual and total signals measured at 100, 

150, 200, 250 and 300°C, respectively. All curves are normalised to the initial value (i.e., at an annealing 

temperature of 300°C). 



23 

 

Figure 7: Procedure to determine the bleachable signal DRC and the natural total and residual signal 

intensities using the ‘intensity-subtraction’ method.  

Figure 8: An example of the ‘intensity-subtraction’ method based on the results of the 300°C MET-pIRIR 

signals from sample LC10-07. The natural bleachable signal (N-bleachable, filled triangle) is estimated by 

subtracting the natural residual signal (N-residual, filled circle) from the natural total signal (N-total, filled 

square). The DRC of the bleachable signal (dashed line) is obtained by subtracting the DRC of the residual 

signal (dotted line) from that of the total signal (solid line). Da is the apparent dose obtained from the total 

signal, and De is the equivalent dose of the bleachable signal. 

Figure 9: (a) The MET-pIRIR equivalent doses for sample LC10-07 obtained from the total (Da), residual 

(DR) and bleachable (Da-DR) signals using the ‘dose-subtraction’ method, plotted against IR stimulation 

temperature. (b) Comparison of results obtained for sample LC10-07 using the ‘dose-subtraction’ and 

‘intensity-subtraction’ methods. The filled and open squares represent the results of the MET-pIRIR 

procedure. The filled and open diamonds are the results of the two-step pIRIR(50, 290) procedure (Thiel et 

al., 2011), in which the IRSL and pIRIR signals were measured at 50°C and 290°C, respectively.  

Fig. 10: (a) N-total, N-residual and N-bleachable intensities and DRCs for the 300°C MET-pIRIR signals 

measured during a dose recovery test on sample DHB2-OSL4. Symbols and abbreviations are the same as in 

Fig. 8. (b) Comparison of dose recovery ratios obtained for sample DHB2-OSL4 using the ‘dose-subtraction’ 

and ‘intensity-subtraction’ methods. 
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Figure 6 
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Figure 7
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Figure 8 
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Table 1: Sample locations, grain size fractions used for experiments, expected ages and equivalent doses.  

Sample    
code 

Country of 
origin 

Grain size used (µm) Approximate expected 
depositional age (ka) 

Measured or expected 
equivalent dose (Gy) a 

LC-004 China 63–90 0.65 6.5 ± 0.7 

ALH-1 Oman 90–125 3 4.5 

LC10-07 France 90–125 38 147 ± 28 

DHB2-OSL4 India 125–180 50 183 ± 18 

PIN-OSL2 Georgia 90–125 200-300 700-900 

 

a The equivalent dose of sample PIN-OSL2 is based on the expected depositional age multiplied by the measured environmental dose rate, while the value shown for 

sample ALH-1 represents the measured OSL equivalent dose for 90–125 µm grains of quartz with an adjustment for the larger internal dose rate to K-feldspar grains. 

The equivalent doses for other 3 samples are estimated from the MET-pIRIR(250°C) signal without any residual dose correction. 
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Table 2: Single-aliquot regenerative-dose (SAR) procedure used for multiple elevated temperature post-IR IRSL (MET-pIRIR) measurements. 

MET-pIRIR protocol 
Step Treatment Observed 

1 Give regenerative dose, Di 
a  

2 Preheat at 320°C for 60 s  

3 b IRSL measurement at 50°C for 100 s Lx 

4 b IRSL measurement at 100°C for 100 s Lx(100) 

5 b IRSL measurement at 150°C for 100 s Lx(150) 

6 b IRSL measurement at 200°C for 100 s Lx(200) 

7 b IRSL measurement at 250°C for 100 s Lx(250) 

8 b IRSL measurement at 300°C for 100 s Lx(300) 

9 Give test dose, Dt   

10 Preheat at 320°C for 60 s  

11 b IRSL measurement at 50°C for 100 s Tx(50) 

12 b IRSL measurement at 100°C for 100 s Tx(100) 

13 b IRSL measurement at 150°C for 100 s Tx(150) 

14 b IRSL measurement at 200°C for 100 s Tx(200) 

15 b IRSL measurement at 250°C for 100 s Tx(250) 

16 b IRSL measurement at 300°C for 100 s Tx(300) 

17 IR bleaching at 340°C for 100 s  

18 Return to step 1  
 

a For the ‘natural’ and sunlight-bleached samples, i= 0 and D0 = 0. The whole sequence is repeated for several regenerative doses including a zero dose and a repeat dose. 

b For each IRSL measurement, an ‘IR-off’ period was applied to minimise the isothermal decay signal (Fu et al., 2012). That is, the aliquots were held for 10, 10, 20, 20, 30 and 50 s 

at the stimulation temperatures of 50, 100, 150, 200, 250 and 300°C (steps 3–8 and 11–16), respectively, before switching on the IR diodes to measure the IRSL signal.  
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Table 3. Summary of the characteristic saturation doses of the dose response curves for various MET-pIRIR signals from sample LC10-07. 

 

Signal 
Characteristic saturation dose (D0, in Gy) of MET-pIRIR signal at specified stimulation temperature 

50°C 100°C 150°C 200°C 250°C 300°C 

Total 450 ± 83 600 ± 80 420 ± 71 395 ± 86 301 ± 26 189 ± 17 

Residual 184 ± 31 163 ± 6 210 ± 45 196 ± 16 207 ± 42 176 ± 25 

Bleachable 423 ± 28 453 ± 73 350 ± 109 352 ± 96 257 ± 65 157 ± 25 

 

 

 

 


	University of Wollongong
	Research Online
	2013

	On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: improved procedures for luminescence dating of Quaternary sediments
	Bo Li
	Richard G. Roberts
	Zenobia Jacobs
	Publication Details

	On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: improved procedures for luminescence dating of Quaternary sediments
	Abstract
	Keywords
	Disciplines
	Publication Details


	Microsoft Word - Li_et_al_3_final_updated.docx

