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Is Seladin-1 really a selective Alzheimer's disease indicator?

Abstract

Selective Alzheimer's Disease Indicator-1 (Seladin-1) was originally identified by its down-regulation in the
brains of Alzheimer's disease (AD) patients. Here, we re-examine existing data and present new gene
expression data that refutes its role as a selective AD indicator. Furthermore, we caution against the use
of the name “Seladin-1" and instead recommend adoption of the approved nomenclature, 3B-
hydroxysterol A24-reductase (or DHCR24), which describes its catalytic function in cholesterol synthesis.
Further work is required to determine what link, if any, exists between DHCR24 and AD.
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Abstract. Selective Alzheimer’s Disease Indicator-1 (Seladin-1) was originally identified by its down-regulation in the brains of
Alzheimer’s disease (AD) patients. Here, we re-examine existing data and present new gene expression data that refutes its role
as a selective AD indicator. Furthermore, we caution against the use of the name “Seladin- 1" and instead recommend adoption of
the approved nomenclature, 3B-hydroxysterol A*-reductase (or DHCR24), which describes its catalytic function in cholesterol
synthesis. Further work is required to determine what link, if any, exists between DHCR24 and AD.
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Seladin-1 is often referred to as being down-
regulated in affected brain regions of Alzheimer’s
disease (AD) patients. The acronym, Selective
Alzheimer’s Disease Indicator-1, is a nomenclature
that encourages its reputation for being differen-
tially expressed in AD. Peri and Serio [1] suggested
that “Seladin-1” may be inappropriate considering its
known roles now extend far beyond the apparent down-
regulation observed in AD. We critically evaluate the
evidence that Seladin-1 is a selective AD indicator.
This is important considering that AD treatments may
be based on the reported down-regulation of Seladin-1
(e.g., [2, 3]).

Seladin-1 was identified in 2000 by Greeve et al.
as a gene with differing expression levels between
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regions of AD brains but no difference in control brains
[4]. Northern blotting showed that in three AD brains,
Seladin-1 RNA levels were lower in temporal than
frontal cortex. Seladin-1 protein levels reflected this
pattern in two AD brains. Their single control brain
showed equal Seladin-1 RNA levels in both temporal
and frontal cortex. While frequently cited as estab-
lishing Seladin-1 as a selective AD indicator, these
findings must be reproduced by independent groups
using multiple independent cohorts of sufficient sam-
ple size, with state-of-the-art methodologies. In Greeve
et al. [4), it is critical to note that a very limited sam-
ple size was investigated, and that the techniques used
(e.g., Northern blotting) have since been surpassed by
more accurate and quantitative methods.

livonen and colleagues subsequently examined
Seladin-1 mRNA levels in the temporal versus occip-
ital cortex of AD brains by semi-quantitative RT-PCR
[5]. Using a larger sample size, they found only seven
out of 13 AD brains had lower Seladin-1 mRNA lev-
els in temporal compared to occipital cortex, whereas

ISSN 1387-2877/12/$27.50 © 2012 — 108 Press and the authors. Al rights reserved
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Fig. 1. Seladin-1 is not consistently down-regulated in Alzheimer’s disease (microarray). Seladin-1 microarray expression data from (A) 31
hippocampus samples including early stage (incipient), moderate, and severe AD (m) versus controls (e) [9] and (B) 9 entorhinal cortex samples
with (s) or without (e) neurofibrillary tangles (NFTs) from the same AD brain [11], as extracted from the National Center for Biotechnology
Information’s Geo Profiles Database, October, 201 1. < indicates mean, which has been set to 1 for non-NFT.

their six non-AD brains had no difference or higher
expression. As such, this data does not support the con-
tention that Seladin-1 is a selective indicator of AD.
However, the decrease in Seladin-1 gene expression
was significant when considering the specific AD hall-
marks of neurofibrillary tangles (NFTs) and neuritic
plagues, but not when comparing those without such
lesions, or with other markers such as a-synuclein or
amyloid-B (AB) pathologies. Additionally, Seladin-1
polymorphisms are associated with AD in some [6, 7],
but not all studies {8].

By contrast, larger-scale, microarray studies failed
to identify Seladin-1 as differentially regulated in
AD. Blalock et al. [9] examined gene expression
in hippocampi from 22 AD brains and nine con-
trols. Using microarray analysis and correlating gene
expression with known AD markers, including NFTs,
they found thousands of genes differentially regulated
across the AD hippocampus. When comparing only
control and early stage AD brains, they still identified
several hundred differentially regulated genes. How-
ever, Seladin-1 was not among these (Fig. 1A). In a
follow-up study, Blalock et al. [10] improved upon
their initial microarray study [9] by selectively iso-
lating grey matter from the same brain samples using
laser capture microdissection (LCM). This confirmed
their initial findings that Seladin-1 expression was not
significantly different in AD [10].

In another microarray study, also using LCM,
Dunckley and collaborators [11] selectively isolated
neurons from regions with or without NFTs from the
entorhinal cortex of 19 AD brains and 14 controls.
Seladin-1 was not among the 225 genes consis-
tently up- or down-regulated {Fig. 1B (NFT versus
non-NFT)], though our calculations suggest border-
line significance (1=3.254, df=8, p=0.012, by r-test,

whereas the authors used a more stringent signifi-
cance cut-off of p<0.01). In a follow-up study by
the same group [12], Seladin-1 mRNA expression was
confirmed not to change in pyramidal neurons isolated
from the entorhinal cortex. However, Seladin- 1 expres-
sion was down-regulated in AD in the hippocampus
and medial temporal and posterior cingulate cortices.

Both Liang et al. [12] and Blalock et al. [10] utilized
LCM to isolate brain tissue for subsequent microarray
analyses and the same gene chip (Affymetrix Human
Genome U133 Plus 2.0), but the selected regions dif-
fered, perhaps accounting for the contrasting findings.
Furthermore, although LCM allows for selective and
targeted isolation of cells from a region of interest,
stringent RNase-free conditions during tissue handling
are required as mRNAs are rapidly degraded by ubig-
uitous RNases and are sensitive to fixation protocols.
In Liang et al. [12], tissue sections were fixed and
stained prior to LCM; moreover, no data was presented
regarding the RNA quality and integrity.

To investigate the putative Seladin-1/AD link, we
used quantitative ‘real-time’ polymerase chain reac-
tion (QRT-PCR) to determine Seladin-1 expression in
control versus AD brains from four brain regions. Brain
tissues from the hippocampus and cerebellum (6 AD,
5 controls, [13, 14}), and the temporal and occipi-
tal cortices (9 AD, 8 controls) were all from cases
longitudinally evaluated to autopsy. Controls were age-
range, gender, and postmortem interval matched. We
used total RNA isolated from fresh frozen brain tissue
from each brain region for cDNA synthesis and gene
expression analyses as this yields higher quality RNA
and better recovery of low abundance transcripts. In
addition, we used primers that target the coding region
of Seladin-1 to circumvent the 3’ bias that is inherent
in gene expression profiling by microarray. Seladin-1
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Fig. 2. Seladin-1 is not down-regulated in Alzheimer’s disease (qQRT-PCR). Seladin-1 expression was determined by qRT-PCR using RNA
from control (e) and severe AD (m) brains in (A) cerebellum (5 controls, 6 AD) and hippocampus (5 controls, 6 AD) and (B) occipital
cortex (7 controls, 9 AD) and temporal cortex (8 controls, 8 AD). Data were normalized to the geometric mean of three housekeeping genes
(porphobilinogen deaminase, B-actin, and peptidylprolyl isomerase A), and the control was set to a mean of | for each brain region. Qutliers
were removed. Control versus AD: cerebellum: 1=0.15, df = 10, p = 0.88; hippocampus: r= —0.13, df = 10, p =0.90; occipital cortex: = —0.70,
df = 14, p=0.49; temporal cortex: r=0.34, df = 14, p=0.74). Paired comparison for AD cases for (C) cerebellum () and hippocampus (=) and
(D) occipital cortex (o) and temporal cortex (w). < indicates mean, which has been set to 1 for cerebellum (C) and occipital cortex (D).

expression was normalized using the geometric mean
of three stable, low variability housekeeping genes of
high, medium, or low expression as this is more effec-
tive than one single housekeeping gene in removing
non-specific variation in a given sample to reveal true
gene expression differences [15]. We found no dif-
ference in Seladin-1 gene expression levels between
control and AD brains in any of the four brain regions
examined (Fig. 2A, B). Moreover, in a paired com-
parison between less and more affected brain regions
within the same AD cases, as in the seminal studies by
Greeve et al. [4] and livonen et al. [5], Seladin-1 gene
expression was not altered in more affected (hippocam-
pus, temporal cortex) versus less affected (cerebellum,
occipital cortex) brain regions (Fig. 2C, D).

Although Seladin-1 may not necessarily be down-
regulated in AD, it may still play a neuroprotective
role, in which case treatments that upregulate Seladin-
1 may be beneficial for AD. In the original Seladin-]
report [4], overexpression of Seladin-1 protected cells
from A toxicity and cell death through inhibition of
caspase-3 activity. Silencing Seladin-1 using siRNA

increased caspase-3 activity and ultimately AB pro-
duction [16].

Seladin-1 has been further characterized in the
last decade and identified as the ultimate enzyme
in cholesterol synthesis—3pB-hydroxysterol A24-
reductase (a.k.a 24-dehydrocholesterol reductase, or
DHCR24, EC: 1.3.1.72), catalyzing the conversion
of desmosterol to cholesterol [17]. Using a mouse
model of AD (ABPPSLxPSImut), Vanmierlo and
colleagues [18] found that desmosterol levels were
increased in AD mice, which was accompanied by a
decrease in Seladin-1 mRNA. However, as Seladin-1
was upregulated at 9 months and down-regulated at 21
months, this may be secondary to AD pathology rather
than causative. Accordingly, Seladin-1 expression was
reduced in both cortex and cerebellum [18], but A
deposits occur in cortex and not cerebellum [19], again
suggesting a secondary rather than causative associa-
tion.

In a Seladin-1 knockout mouse model, Crameri and
coworkers [20] found reduced brain cholesterol lev-
els, and increased amyloid-f3 protein precursor (ABPP)
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processing and Af accumulation. These observations
were reversed when Seladin-1 was overexpressed in
SH-SY5Y human neuroblastoma cells, again impli-
cating a neuroprotective role for Seladin-1. While an
association between lower Seladin-1 expression levels
and AD markers in a knockout mouse model is infor-
mative, itdoes not directly address the issue of whether
Seladin-1 gene expression levels are lowered in human
AD brains.

AD patients may have lowered brain choles-
terol levels [21] which increases APPP processing
and AR accumulation (e.g., {22]). A lowering of
cholesterol levels would be expected if Seladin-1 is
decreased; however, increased cholesterol levels may
also increase AD risk (e.g., [23]). Clearly, the relation-
ship between cholesterol and AD is controversial and
requires further investigation (reviewed in [24]).

Given the possible link between cholesterol and AD,
itis not surprising that statins, which inhibit cholesterol
synthesis, have been proposed as a potential treatment
{3, 25]. Additionally, statin use is associated with a
decreased risk of AD [25]. However, there are caveats
to consider (reviewed in [26}). For example, it is likely
that only lipophilic statins can cross the blood brain
barrier and decrease cholesterol synthesis [27], but the
decreased risk of AD was not dependent on this abil-
ity [25]. Furthermore, non-statin cholesterol-lowering
drugs do not have the same effect, suggesting that low-
ering of cholesterol levels itself may not influence AD
risk {25].

While Seladin-1 was originally identified as being
down-regulated in some AD brains, this name is a mis-
nomer as it implies that Seladin-1 plays an important
role in AD based on ambiguous data. Moreover, there
are several other genes (e.g., ApoE, ABPP, Presenilin-1
and -2) that are far better correlated with AD. There-
fore, we urge caution when claiming that Seladin-1
is down-regulated in AD, and suggest that the official
name DHCR24 should be used for this gene. Further
work is required to determine what link, if any, exists
between DHCR24 and AD as the possibility remains
that DHCR24 is involved in a subgroup of AD patients.
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