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ABSTRACT: 

Xylyl radicals are known intermediates in combustion processes since their parent molecules, 

xylenes, are present as fuel additives. In this study we report on the photoelectron spectra of the 

three isomeric xylyl radicals and the subsequent decomposition reactions of the o-xylyl radical, 

generated in a tubular reactor and probed by mass selected threshold photoelectron spectroscopy 

and VUV synchrotron radiation. Franck Condon simulations are applied to augment the 

assignment of elusive species. Below 1000 K, o-xylyl radicals decompose by hydrogen atom loss 

to form closed-shell o-xylylene, which equilibrates with benzocyclobutene. At higher 

temperatures relevant to combustion engines, o-xylylene generates styrene in a multi-step 

rearrangement, whereas the p-xylylene isomer is thermally stable, a key point of difference in the 

combustion of these two isomeric fuels. Another striking result is that all three xylyl isomers can 

generate p-xylylene upon decomposition. In addition to C8H8 isomers, phenylacetylene and 

traces of benzocyclobutadiene are observed and identified as further reaction products of o-

xylylene, while there is also some preliminary evidence for benzene and benzyne formation. The 

experimental results reported here are complemented by a comprehensive theoretical C8H8 

potential energy surface, which together with the spectroscopic assignments can explain the 

complex high-temperature chemistry of o-xylyl radicals. 
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1) Introduction 

Aromatic hydrocarbons are widely used in fuels as additives due to their high energy densities 

and octane ratings. In order to reduce harmful benzene emissions, fuel compositions are now 

typically regulated to contain less than 1 %vol benzene, and from 2013 the US regulated the total 

amount to a maximum of 0.62 %vol.
1
 In order to increase anti-knock properties of gasoline, 

whilst reducing benzene emissions, toluene and other polyalkylated benzenes (e.g. xylenes, 

trimethyl benzenes, ethylbenzene) are used instead. Since these species can form radicals more 

readily than benzene (sp
3
 vs. sp

2
 hybridized C-H bonds and the stability of corresponding 

radicals), and because the resultant benzylic radicals are generally unreactive towards O2, an 

increased variety of side reactions can occur that may lead to the formation of polycyclic 

aromatic hydrocarbon (PAH) molecules, the precursors of soot. Experimental and theoretical 

investigations revealed that toluene pyrolysis leads mostly to the formation of benzyl radicals, 

which can decompose further by hydrogen atom loss to yield the five-membered ring 

fulvenallene (C7H6).
2-5

 In 2009 it was found that a subsequent hydrogen abstraction could lead to 

fulvenallenyl radical (the global C7H5 minimum), which was unambiguously identified by 

measuring its mass-selected threshold photoelectron spectrum (ms-TPES).
6-8

 The products 

arising from the dissociation of substituted benzyl radicals, however, are less well understood.  
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Scheme 1  Putative decomposition pathways of xylenes. 

The decomposition dynamics of xylenes are also relatively unexplored, despite their 

prevalence in gasoline. It is generally accepted that the first xylene decomposition step is C-H 

bond fission at a methyl group yielding the corresponding xylyl (methylbenzyl) radical
9-10

 

(Scheme 1) but further unimolecular reactions have not been extensively studied. Possible 

decomposition products are the corresponding xylylenes, which appear after hydrogen 

abstraction (Scheme 1). While the ortho and the para isomers possess a closed shell character, 

meta-xylylene exists as a biradical, resulting in a structure that is 40-45 kcal/mol less stable than 

the ortho and para isomers.    

In 1955 Farmer et al. investigated the three xylyl radicals by electron impact mass 

spectrometry (EI-MS) and their results suggested that the meta isomer does not decompose to 

form m-xylylene but rather one of the other two xylylene isomers.
11

 In more recent times, a few 

studies have reported on xylene and xylyl radical decomposition. Shock tube experiments 

revealed that o- and p-xylyl radicals decompose faster than the m-xylyl radical and it was 
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assumed that the triplet m-xylylene does play an important role.
12

 Farrell et al. observed a 

reduced burning velocity of m-xylyene compared to the ortho and para isomers and attributed 

this effect to the enhanced stability of m-xylyl radicals.
13

 In 2009 it was predicted that m-xylyl 

preferably rearranges to p-xylyl and subsequently loses a hydrogen atom to yield p-xylylene via 

a maximum barrier of 70 kcal mol
-1

, whereas the decomposition to m-xylylene and 3-

methylfulvenallene must surmount 109 and 87 kcal mol
-1 

barriers, respectively.
10

 Since the first 

study by Farmer et al. it took almost 60 years until this hypothesis could be proven 

spectroscopically,
14

 with a recent study conclusively identifying p-xylylene as the dominant 

stable product of m-xylyl radical pyrolysis.  Different from the meta case, the ortho and para 

xylyl radicals are widely assumed to decompose to their corresponding xylylenes, though this 

has not yet been demonstrated unequivocally. Moreover, there have been surprisingly few 

theoretical
15

 and experimental
16,17

  investigations carried out on the further rearrangement and 

decomposition processes of the xylylenes and other C8H8 isomers.  

Using VUV photoionization techniques, coupled with a heated reactor source to selectively 

produce xylyl radical isomers, it is possible to intercept decomposition products by mass-

selected threshold photoelectron spectroscopy (ms-TPES). We have shown that the imaging 

photoelectron photoion coincidence (iPEPICO) technique is a versatile tool for the online 

isomer-specific identification of reactive intermediates and their reaction products.
8, 18-19

  

A few literature studies report VUV photoionization of xylyl radicals. The Farmer et al. study 

reported electron impact (EI) ionization potentials yielding values of 7.61, 7.65 and 7.46 eV for 

ortho, meta and para isomers respectively.
20

 Later, photoelectron spectroscopy (PES) 

measurements carried out by Hayashibara and co-workers revised these values to 7.07, 7.12 and 

6.96 eV, respectively.
21

 The discrepancy between the EI study and the PES results was explained 
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by an underestimation of the onset of the ionization efficiency curve as measured with EI 

techniques. There was some evidence for vibrational structure present in the PES data, however 

assignments of these transitions were not carried out.  

In this paper we report threshold photoelectron spectra of xylyl radicals and their 

decomposition products, which is vital for isomer-specific identification of these species in 

flames and other environments. Vibronic features are assigned with the aid of quantum chemical 

calculations and Franck-Condon (FC) simulations. Furthermore, we report a potential energy 

surface for rearrangement and dissociation of the C8H8 isomers to aid in our interpretation of the 

products formed upon o-xylyl radical pyrolysis.  

 

2) Experimental and theoretical methods 

The experiments were carried out at the VUV beamline at the Swiss Light Source (Paul Scherrer 

Institute), located in Villigen, Switzerland. The beamline and the iPEPICO endstation are only 

briefly described as a detailed description can be found in the literature.
22-24

 The X04DB bending 

magnet provides the synchrotron radiation, which is collimated by a mirror onto a  

600 mm
-1

 grating working in grazing incidence. A resolution of 5 meV (resolving power of 

around 1:3000) was achieved, measured by the 11s Rydberg series of argon. Higher grating 

orders are suppressed by a differentially pumped gas filter operating at 10 mbar with a mixture of 

argon (30 mol%), neon (60 mol%) and krypton (10 mol%). Below 7 eV an MgF2 window was 

utilized. The iPEPICO endstation combines velocity map imaging (VMI) of the electrons with 

Wiley McLarren time-of-flight (TOF) mass spectrometry of ions. A constant field of 120 V/cm 

accelerates the charged particles onto a Jordan TOF (C-726) mass spectrometer and delay-line 

anode detector (Roentdek, DLD40) and the events are correlated in real-time in a multiple start – 
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multiple stop scheme.
25

 Threshold electrons were selected with a resolution of 5 meV by 

selecting the central part of the image. The hot electron contamination was subtracted by the 

procedure outlined by Sztaray and Baer.
26

 Subtracting the background in a TOF mass spectrum 

eliminates false coincidences. Chemical samples o-xylylbromide, m-xylylbromide and p-

xylylbromide were commercially obtained from Sigma Aldrich and used without further 

purification.  Infrared spectra of the precursors measured with a Bruker Vertex 70v spectrometer 

(see supporting information Figure S1) show no indication of isomer scrambling. A temperature-

controlled bubbler containing the samples was heated between room temperature and 90 °C, to 

acquire sufficient vapor pressure. A seeding pressure of around 70 mbar argon was applied. The 

mixture was expanded through a 150 μm pinhole directly into a resistively heated SiC reactor, 

where the reactive intermediates are generated and the pyrolysis takes place. A molecular beam 

is formed and enters the spectrometer chamber without applying a skimmer, complicating the 

exact determination of flows, cooling, residence time and pressure in the reactor. The 

temperature was monitored in some experiments by measuring the surface temperature of the 

tubular reactor with a type C thermocouple. Due to variations in the quality of the thermocouple 

contact the accuracy of the temperature is only ± 100 K.
27

 Note that the measured surface 

temperature is not necessarily the same as the gas temperature, and merely serves as an indicator 

of the thermal environment in the reactor which leads to changes in molecular composition.   

Gaussian 09 was utilized for all quantum chemical calculations, applying the B3LYP 

functional and the 6-311++G(d,p) basis set to calculate equilibrium geometries.
28

 These 

geometries and Hessian matrices were used to compute Franck-Condon factors with the program 

ezSpectrum.OSX,
29

 which were subsequently convoluted with a Gaussian function for 

comparison with experiment. Reliable ionization energies and relative energies were calculated 
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using the G4
30

 and CBS-QB3
31-32

 methods. The C8H8 energy surface is developed using the 

composite G4 method. All reported electronic energies are corrected by the zero point energy.  

 

3) Results 

A) Generation and photoionization of the radicals 

 

Figure 1  Mass spectra of o-xylyl bromide as a function of the reactor temperature at 9 eV 

photon energy. At lower temperatures only m/z = 105 is generated, which can be assigned to the 

o-xylyl radical. With increasing temperature the radical decomposes by H loss (m/z = 104), 

which further reacts to m/z = 102. 
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Mass spectra of o-xylyl bromide as a function of the pyrolysis temperature are depicted in 

Figure 1, showing that at as low as around 500 K (lowest trace) the fragment m/z = 105 is 

generated due to pyrolysis of the precursor according to Scheme 2: 

 

 

CH2Br

DT
H3C

CH2

H3C
-Br

 

Scheme 2   Pyrolysis of brominated xylyl radical precursors. 

With increasing temperature the o-xylyl bromide signal vanishes while the xylyl radical is 

detected. Starting at around 650 K (Figure 1) the radical then further decomposes by losing a 

hydrogen atom to form m/z = 104. At around 950 K, m/z = 104 is the most abundant peak in the 

mass spectrum. At similar temperatures another decomposition product appears at m/z = 102 

and, as assigned below, most likely signifies a subsequent loss of H2 from m/z 104. Minor 

species appearing in the mass spectra will be discussed later in this manuscript. A temperature 

breakdown diagram is depicted in Figure 2 showing the fractional abundance of the ion signal as 

a function of the temperature at fixed photon energy of 9 eV. Since absolute ionization cross-

sections of the precursor are not available for all species, only the relative signals were taken into 

account in the plot that nevertheless yields a useful qualitative picture. At this photon energy the 

dissociative ionization of the precursor only plays a minor role. 

At ~800 K the precursor, the o-xylyl radical and the m/z = 104 (C8H8) channel possess the 

same signal intensity. The C8H8 species undergo further reactions to form m/z = 102 (and 
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possibly other undetected products that ionize at higher energies, vide infra) at around 800-1000 

K. 

 

 

 

Figure 2  Temperature breakdown diagram of o-xylyl bromide pyrolysis.  

In order to elucidate the decomposition pathways of the three xylyl radicals, one has to ensure 

that each radical can be produced exclusively without the interference of the other isomers. 

Therefore, for each radical population that is generated by pyrolysis of its corresponding 

precursor (Scheme 2) a mass selected threshold photoelectron spectrum (ms-TPES) is recorded, 

which are depicted in Figure 3. It is immediately apparent that the three species have distinct ms-

TPES. o-Xylyl radicals (Figure 3a) possess an adiabatic ionization energy (IEad) of 7.08 eV. Half 

the full width at half maximum (FWHM), 0.014 eV, of the 0-0 vibrational transition is reported 

as the experimental uncertainty. The TPES shows a vibrational progression with 0.061 eV 

spacing, corresponding to ca. 490 cm
-1

. In order to further support this assignment Franck 
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Condon simulations were performed. Both the stick spectra and convolution with a FWHM of 28 

meV are depicted in Figure 3a. The simulated spectra supports the assignment that the largest 

peak corresponds to the 0-0 transition, while the peak at 7.14 eV comprises two vibrational 

transitions, which are assigned as two in plane (ν28 = 503 cm
-1

, a and ν27 = 586 cm
-1

, a) ring 

deformation modes. Both transitions possess totally symmetric character and are thus symmetry 

allowed. 

The TPES of m-xylyl radical is shown in Figure 3b and exhibits what is likely a hot- or 

sequence-band transition at 7.05 eV, which corresponds to a vibrational frequency in the neutral 

of around 500 cm
-1

. The IEad can be assigned to the most intense transition at 7.11 ± 0.01 eV. A 

progression with 65 meV spacing dominates the TPES, which can be assigned according to a 

Franck-Condon simulation also depicted in Figure 3b. 



 

12 

  

Figure 3  ms-TPE spectra of ortho (a), meta (b) and para (c) xylyl radicals. It is evident 

that the three radicals can be selectively generated and distinguished by their ionization energy 

and vibrational structure. 

Two ring deformation modes (ν27 = 545 cm
-1

, a and ν28 = 509 cm
-1

, a) mostly associated 

with C-C-C bending vibrations are active upon ionization of the m-xylyl radical. Both transitions 

CH2

H3C

CH2

H3C

CH2

CH3
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contribute to the peak at 7.18 eV. A combination band 
1
27

1
28 and the first overtone of ν27 

dominate the feature at 7.24 eV. Two C-C stretching vibrations ν10 = 1597 cm
-1

 (a) and ν9 = 

1657 cm
-1

 (a) contribute besides ν28 and ν27, to the broad feature at 7.3 eV, as labeled in Figure 

3b. 

The ms-TPE spectrum and FC simulation of p-xylyl radicals are presented in Figure 3c. Apart 

from the small hot- or sequence-band transition at 6.88 eV the radical ionizes at 6.94 ± 0.01 eV 

adiabatically. A rich progression mostly due to activity in ν23 = 464 cm
-1

 (a), a C-C-C bending 

mode (ring moiety), dominates the spectrum after the origin. The fundamental of the ν6 (1666 

cm
-1

, C-C stretch, a) and the combination band with ν23 can be observed at 7.15 and 7.20 eV. 

The adiabatic ionization energies obtained in this study are in excellent agreement with 

literature values of 7.07 ± 0.02 eV, 7.12 ± 0.02 eV and 6.96 ± 0.02 eV for o-, m-, and p-xylyl 

radicals respectively.
21

 Higher resolution of the vibrational transition is afforded by the threshold 

photoelectron technique compared to the literature PE spectra.
21

 According to DFT calculations 

the highest occupied molecular orbital (HOMO) of all the xylyl radicals are exclusively of π 

character, and are predominant about the CH2 group and at position 2, 4 and 6 of the benzene 

moiety (relative to the radical site). In accord with Koopmans’ theorem the electron is removed 

from the HOMO.  Ions with a methyl group in the ortho and para positions should posses a 

larger stabilization since the positive charge can be efficiently stabilized by a CH3 group due to 

hyperconjugation. The lower ionization energies of the ortho and para compared to the meta 

isomer can be attributed to this effect. Table 1 compares the experimental adiabatic IEs of the 

xylyl radicals with calculations and literature values. The electronic characters of these 

transitions are X
+
 
1
a X 

2
a in the case of the ortho and meta xylyl radical, but X

+
 
1
a X 

2
a 

in the unique case of the para isomer since the mirror plane is perpendicular to the molecular 
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plane. Orbitals of the xylyl radicals are provided in the supporting information (Figure S2). DFT 

calculations further reveal that a moderate change in geometry can be expected upon ionization 

of the radicals. The most pronounced structural change is the shortening of the C-CH2 bond, 

which places some activity in C-C stretching modes in all of the three spectra. However the most 

pronounced vibrational transition is attributed to ring deformation-associated modes. Detailed 

computational data are given in the supporting information. In summary, the experimental TPE 

spectra reveal that the IEad and vibrational fingerprint can readily distinguish the radicals and 

each xylyl is generated cleanly in the pyrolysis reactor without rearrangement to one of the other 

isomers.  Armed with this information, the further pyrolysis decomposition of these radical 

species is investigated. 

 

Table 1 Summary of calculated, literature and experimental adiabatic ionization energies 

of the xylyl radicals 

IEad / eV Exp. Lit. B3LYP/ 

6-311**G(d,p) 

CBS-

QB3 

G4 

o-xylyl 7.08 7.07 7.02 7.14 7.15 

m-xylyl 7.11 7.12 7.06 7.16 7.18 

p-xylyl 6.94 6.96 6.89 7.00 7.01 
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B. Identification of the o-xylyl decomposition products 

 

Figure 4 Reactor temperature dependent ms-TPES (m/z = 104, 102) arising from the 

decomposition of o-xylyl radicals. Four different isomers contribute to the mass channel m/z = 

104. While at lower temperatures the spectrum is dominated by o-xylylene and 

benzocyclobutene, at higher pyrolysis temperatures p-xylylene and styrene are observed (a). 

Mass channel 102 shows a strong vibrational progression that can be assigned to phenylacetylene 

and minor contributions from benzocyclobutadiene (b). 
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The pyrolysis temperature was increased and ms-TPE spectra were acquired to probe the 

decomposition products with isomer specificity. Upon further heating a new signal at m/z = 104 

appears and is consistent with the o-xylyl radical losing a hydrogen atom (see Figure 1). The 

corresponding ms-TPES of m/z = 104 is depicted in Figure 4 (upper part). Several features 

appear in a 7.6 – 8.8 eV energy range. At around 1000 K the broad peak at 7.69 eV can be 

assigned to the o-xylylene isomer. A conventional PES study by Kreile
33

 et al., using 5,6-

dimethylenebicyclo[2.2.1] hept-2-en-7-one as a precursor to pyrolytically generate o-xylylene, 

reported a vertical ionization energy of 7.7 eV for the ground state. Calculated ionization 

energies for this compound on the B3LYP/6-311++G(d,p) level of theory underestimated the IE 

by almost 500 meV (7.19 eV), whereas G4 and CBS-QB3 provide reliable values of 7.70 and 

7.62 eV respectively. Upon ionization the molecular geometry is calculated to change from a 

non-planar structure – with the CH2 groups bent above and below the ring plane – to a planar 

geometry for the cation; in addition both C-CH2 bonds are elongated. The optimized geometries 

and force constants were used to calculate Franck-Condon factors and these are incorporated into 

simulated spectra that are depicted along with the measured spectra in Figure 5a. 
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Figure 5 TPE spectra of mass channel m/z = 104 in the 7.6 - 8.9 eV energy range. The low 

energy part can be assigned to o-xylylene (a), whereas above 8.5 eV benzocyclobutene (b) is 

ionized. The red lines and sticks correspond to FC simulations and convolutions with Gaussian 

functions. 

The simulation shows the first broad band at 7.69 eV consisting of several distinct transitions, 

which can be assigned to a progression of ν22, a CH2 out-of-plane bending (a2) vibration. The 

adiabatic ionization energy is difficult to assign due to the large change in geometry. According 

to the Franck-Condon simulation (red line) the 0-0 transition is located at 7.67 eV, we thus 

assign the IEad with a rather large uncertainty of 50 meV. Between 7.75 and 7.80 eV a 

combination transition between the out-of-plane bending mode of the ring (ν19 = 740 cm
-1

, a2) 

CH2

H2C

CH2

CH2
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and ν22 is populated, as indicated in Figure 5a. The feature above 7.87 eV can be attributed to a 

collection of transitions: ν9, ν7 and ν5 are in-plane C-CH2 stretch and ring deformations  

(1325 cm
-1

, a1), CH2 scissors, CH wagging motions  (1509 cm
-1

, a1) and a combination between 

C-C stretches and CH2 scissors (1589 cm
-1

, a1). All of them appear in combination with the ν22 

vibration. 

The mass-selected TPE spectrum at around 1000 K acquired between 8.55 eV and 9.00 eV for 

m/z 104 is depicted in Figure 5(b) shows a contribution that is assigned to benzocyclobutene, 

formed due to intramolecular [2+2] cycloaddition of o-xylylene. In the PES study of Kreile et al. 

benzocyclobutene was also observed at pyrolysis temperatures above 400 °C.
33

 

Again, using quantum chemical calculations it is found that upon ionization the C-C bond of 

the 6-membered ring, where the C2H4 unit is located, expands by ca. 6 pm, which applies also 

for the C-C bond at the opposite side of the benzene ring. Additionally the C2H4 unit contracts by 

roughly 2 pm. Considering the HOMO of benzocyclobutene, electron density is removed from 

the benzene ring moiety, leading to a lowering of the bond order and thus to an elongation of 

these two bonds. This change in geometry influences the Franck Condon factors upon ionization, 

which are discussed as follows. The transition at 8.65 ± 0.015 eV is assigned to the IEad. Five 

active modes dominate the TPE spectrum in Figure 5(b). At 8.72 eV the fundamental of the CH-

CH-C bending vibration is populated, having a computed frequency of 539 cm
-1

 (ν14, a1), which 

compares with an experimentally obtained value of around 560 cm
-1

. Several transitions and their 

combination bands with the ν14 mode govern the range between 8.75 and 8.85 eV. Also assigned 

are ν13, ν10, ν5 and ν4 as mostly in-plane C-C stretch (ν13 = 779 cm
-1

, a1), C-H wagging (ν10 = 

1173 cm
-1

, a1), anti-symmetric (ν5 = 1462 cm
-1

, a1) and symmetric C-C stretching (ν5 = 1578 cm
-

1
, a1) vibrations, respectively, and are indicated in Figure 5(b).  
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Between 1100 and 1200 K the m/z = 104 ms-TPE spectrum (Figure 4(a) changes with new 

features at 7.84 and 8.47 eV appearing. The later one can be assigned to styrene according to its 

ionization energy of 8.46 eV (68 300 cm
-1

) and vibrational fingerprint, a ring bending (ν28 = 470 

cm
-1

) motion.
34-36

 In the low energy region of the spectrum, it is apparent that as the temperature 

is increased the o-xylylene signal decays and another peak at 7.84 eV clearly appears. We assign 

this peak to the p-xylylene C8H8 isomer. This is a particularly striking result – it does not matter 

which isomeric form of the radical is decomposed; all of them produce p-xylylene in appreciable 

amounts (see Figure 6). While the decomposition pathway of the p-xylyl radical to p-xylylene 

seems to be straightforward, since only a H loss channel is observed in the investigated 

temperature range, both the meta and the ortho radical isomers have to undergo complex 

intramolecular rearrangements to form p-xylylene. In a recent study we were able to prove 

experimentally that m-xylyl radicals rearrange to p-xylyl radicals, which subsequently 

decompose by H loss.
14

 The rearrangement in the ortho case will be discussed vide infra. An IEad 

of 7.85 eV can be determined for p-xylylene, in excellent agreement with the literature value of 

7.87 eV.
37

 Several vibrational transitions can be assigned according to a Franck-Condon 

simulation, shown in Figure 6. At around 7.9 eV the ν8 C-C-C bending vibration is populated 

(473 cm
-1

, ag). The band between 8.00 and 8.05 eV consists of several transitions. In the shoulder 

to the lower energy side, transitions into the ν6 (1213 cm
-1

, ag) and ν5 (1380 cm
-1

, ag) are 

observed, corresponding to a CH wagging mode (ring moiety) and a C-C stretch of the CH2 

group. The ν3 (1672 cm
-1

, ag) mode, a C-C stretching vibration of the ring carbon atoms, 

possesses the second highest Franck-Condon factors at 8.05 eV. 
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Figure 6  TPE spectrum and Franck-Condon simulation of p-xylylene.  Green and blue 

curves correspond to spectra taken when m- and p-xylyl radicals were selectively prepared.  

The part above 8.10 eV is governed by less intense transitions into combination bands and 

overtones. Figure 4(b) also shows the appearance of phenylacetylene, m/z = 102, which ionizes 

at 8.82 eV. According to the literature an ionization energy of 71 200 cm
-1

 (8.83 eV) was 

determined and a vibrational progression was assigned to a transition into the ν13 = 460 cm
-1

 

mode (6a1), which is in excellent agreement with our findings and confirms that indeed 

phenylacetylene is formed upon decomposition.
36, 38-39

 Since photoelectron spectra of both 

phenylacetylene and styrene are very well known and assigned, no further analysis of the 

transitions is performed. A summary of all species detected in the decomposition of o-xylyl 

radicals in this study is depicted in Scheme 3.  

CH2

CH2
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Scheme 3  Summary of the decomposition channels observed for the xylyl radicals. 

 

4) Discussion: Implications for combustion chemistry 

We have assigned up to four C8H8 (m/z 104) and two C8H6 (m/z 102) isomers appearing upon 

decomposition of o-xylyl radicals (m/z 105) at different temperatures using the iPEPICO 

technique. In the following we discuss reaction pathways that can potentially produce these 

products and their connection with combustion chemistry, augmented by high-level quantum 

chemical calculations. Of particular interest is the formation and decomposition of styrene, the 

global minima on the C8H8 surface. Styrene is reported to be formed in much greater quantities 

during the oxidation of o-xylene,
40

 relative to the meta and para isomers.
41

 This has been 

attributed to a direct pathway to styrene via the rearrangement of o-xylylene, and this process is 

thought to contribute to the different combustion properties of the isomeric xylene fuel 

molecules. It is therefore critical that we understand o-xylylene formation from xylyl radical 

pyrolysis, as well as the isomerization and decomposition pathways available to both o-xylylene 

and styrene. 
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Figure 7 Energy diagram for o-xylylene (1) decomposition to benzyne (4) + ethene, 

cyclobutadiene (5) + H2, and the C8H7 radical 6 + H. Energies are 0 K enthalpies relative to o-

xylylene, in kcal/mol, calculated at the G4 level of theory. 

Presented here are energy diagrams corresponding to the formation of salient C8H8 isomers 

and decomposition products in the isomerization and decomposition of o-xylylene. In all 

instances, energies were calculated using the G4 theoretical method. Details of the mechanism of 

these C8H8 rearrangements, as well as kinetic simulations for important isomerization and 

decomposition reactions, will be described in detail in a forthcoming companion paper. 
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At intermediate temperatures (900 – 1000 K) the o-xylyl radical decomposes by hydrogen loss 

to yield two C8H8 isomers, which were identified (Figure 4 & Figure 5) as o-xylylene and 

benzocyclobutene. This observation can be understood as follows. After generation of the o-

xylyl radical it readily yields o-xylylene by C-H bond fission with a barrier of 69.6 kcal/mol.
14

 

Since a broad thermal energy distribution exists in pyrolysis experiments, a proportion of the o-

xylylene population possesses enough internal energy to subsequently overcome a barrier of 27 

kcal/mol to form benzocyclobutene (see Figure 7). The latter species is more stable than o-

xylylene by 11 kcal/mol presumably indicating that the gained aromaticity outweighs the added 

ring strain. Since the reverse barrier to reform o-xylylene is also rather modest (38 kcal/mol) 

both species are formed at equilibrium below around 1100 K. If the temperature is increased to 

1200 K, o-xylylene can further isomerize to form styrene. A barrier of 57.8 kcal/mol (TS5 – 

Figure 8) initiates the reaction to form a carbene intermediate (7), which presents the highest 

barrier for this process (see Figure 8).  Subsequent ring closure to a three-membered ring, ring 

expansion to methyl cycloheptatetraene and again three membered ring formation and opening 

leads to methyl phenylcarbene, which undergoes a 1,2-hydrogen shift to yield styrene (12). This 

mechanism is in concord with the findings of Chapman et al.
16-17

 and the proposal of Emdee et 

al.
40

 that o-xylylene isomerization to styrene can take place during o-xylene combustion. 
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Figure 8 Energy diagram for o-xylylene (1) isomerisation to styrene (12). Energies are 0 K 

enthalpies relative to o-xylylene, in kcal/mol, calculated at the G4 level of theory. 

Once styrene is formed, we identify four energetically competitive routes for its further 

decomposition.  Styrene can initially undergo a 1,2 hydrogen shift to form the carbene 13, 

overcoming a 79.1 kcal/mol energy barrier with respect to styrene (see Figure 9).  Subsequently 

13 can undergo a series of isomerisation steps, culminating in the formation of benzene plus 

vinylidene (CCH2), a carbene isomer of acetylene. The reactive carbene moiety in 13 forms two 

bonds in a concerted process to provide the tricyclic structure 14. A ring opening process then 

takes place to produce a seven membered ring, resulting in the formation of 15. A succession of 

ring destruction and formation processes then follow (16 - 17), whereby the original six 

membered ring structure is recovered. 17 can then dissociate to form benzene via the direct loss 

of vinylidene, resulting in the destruction of the three-membered ring and thus restoring 
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aromaticity to the nascent benzene moiety. This last step also corresponds to the highest barrier 

along this pathway, with the corresponding transition state TS16 being 84.8 kcal/mol above 

styrene. On the other hand, styrene can also directly dissociate to form benzene plus vinylidene 

(TS17), however this is anticipated to only be a minor channel, since this process has a barrier 

height of 94.6 kcal/mol, over 10 kcal/mol larger than the multi-step process. 

 

Figure 9 Energy diagram for styrene (12) decomposition to benzene (18) + vinylidene 

(CCH2), phenylacetylene (20) + H2 and the C8H7 radical 21 + H. Energies are 0 K enthalpies 

relative to o-xylylene, in kcal/mol, calculated at the G4 level of theory 

Although this represents the first exposition of the dominant styrene decomposition 

mechanism, our finding that vinylidene (not acetylene) is the direct pyrolysis product of styrene 

is consistent with the previous assertion of Grela et al.
42

 Note however that the almost negligible 
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barrier for isomerisation of vinylidene to acetylene (only a few kcal/mol)
43

 means that vinylidene 

will promptly rearrange to yield acetylene in our experiments as well as when produced in 

flames. The calculated barrier height for decomposition of styrene of around 80 kcal/mol is also 

commensurate with previously reported experimental activation energies for this process.
42, 44

  

Comparing the overall barrier height for styrene decomposition relative to the originating 

molecule o-xylylene (61.3 kcal/mol) we find that it is only marginally above that for the initial 

rearrangement of o-xylylene to styrene (57.8 kcal/mol), and some direct (chemically activated) 

dissociation of o-xylylene to yield benzene is expected at the low pressures encountered in these 

experiments. The direct formation of benzene from o-xylylene produced in o-xylene oxidation, 

in addition to styrene, may need to be considered in combustion models. It is also of interest to 

note that the overall barrier height for o-xylylene decomposition is similar to that for the 

isoelectronic molecule o-quinone methide,
45-47

 despite the latter process being considerably less 

endothermic due to the formation of CO vs. CCH2. 

Another decomposition channel to be discussed is the loss of a hydrogen molecule to yield 

phenylacetylene (20) (m/z = 102). In a two-step process, styrene (see Figure 9) can undergo a H 

shift to an ortho site on the benzene ring (TS18, 94.7 kcal/mol, relative to styrene), resulting in 

an allenic structure. A six membered transition state (TS19, 93.6 kcal/mol, relative to styrene) 

corresponding to the simultaneous removal of a H atom from the ortho site on the benzene ring 

and the β-carbon on the allenic side-chain allows for the expulsion of a hydrogen molecule to 

yield phenylacetylene. Furthermore, styrene can lose a hydrogen atom to form the resonantly 

stabilized C8H7 radical 21. This requires a barrier of 102.4 kcal/mol to be overcome. This C8H7 

species can then lose another hydrogen to form phenylacetylene with barrier of only 41.2 kcal 

mol
-1

; under the temperatures encountered in the experiments reported here this C8H7 radical will 
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rapidly decompose, providing an additional source of phenylacetylene. Seeing as bimolecular 

reactions between styrene and available free radicals (likely H atoms) within the flow reactor 

will also yield this same C8H7 isomer, this provides yet another pathway to the observed product 

phenylacetylene. 

While we have shown that o-xylylene can decompose to a variety of different species after first 

isomerising to styrene, a couple of other high temperature dissociation pathways are also 

accessible via benzocyclobutene. The four-membered ring on benzocyclobutene can rearrange to 

yield a three-membered ring structure to produce the carbene isomer 3 (see Figure 7). This is 

then followed by subsequent C2H4 loss to form benzyne (4).  The latter step has the highest 

barrier to overcome, at 72.1 kcal/mol with respect to o-xylylene. Although we are unaware of 

any previous studies that have considered benzyne as a C8H8 decomposition product, the reverse 

process has been investigated before using both experimental and theoretical methods.
48,49

 

Benzocyclobutene can also lose a H atom on the four-membered ring to form another C8H7 

radical (6) after surmounting a barrier of 80.7 kcal/mol relative to o-xylylene. This species can 

then lose a further H atom to form benzocyclobutadiene (with barrier of 60.7 kcal mol
-1

), thus 

providing a possible explanation for the presence of benzocyclobutadiene in the experiments. In 

this case, given the high energy required for C-H bond homolysis in the parent, bimolecular 

chemistry first leading to the C8H7 species is likely to be the dominant originator of the small 

quantities of benzocyclobutadiene observed. Also note that it is possible to directly eliminate H2 

in benzocyclobutene to form benzocyclobutadiene (TS4 in Figure 7), but the barrier is too high 

to compete with the other identified reaction channels. 

The observation of p-xylylene is somewhat puzzling if o-xylyl is the decomposing radical. We 

would like to note that Figure 6 shows the appearance of p-xylylene independent of which 
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isomeric form of the radical decomposed. Our recent work can explain this observation of p-

xylylene at around 1300 K.
14

 m-Xylyl radicals do not appear to decompose to form m-xylylene 

diradicals,
50-52

 since a thermodynamically more stable pathway is accessible.
14

 This reaction 

channel describes the rearrangement of the meta radicals over bicyclic intermediates followed by 

rate-determining ring-opening/ring-closing sequences, with subsequent hydrogen loss. A similar 

mechanism can be applied starting with o-xylyl radicals, where these radicals undergo a 

rearrangement process to m- then p-xylyl radicals, which subsequently decompose to the 

detected p-xylylene. The reason that this reaction channel is not observed at lower temperatures 

is purely due to kinetic considerations. While at lower temperatures the rearrangement to form p-

xylyl is slow, this reaction will be more rapid at higher bath gas temperatures and significant 

branching between either H loss to form o-xylylene or the rearrangement to p-xylyl radicals can 

occur. The latter radical subsequently decomposes by H loss. The thermal decomposition of the 

less-stable o-xylylene isomer at higher temperatures will also increase the relative signal 

intensity of thermally stable p-xylylene. 
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Figure 10   Mass spectra of o-xylyl bromide at 1250 K measured at 10 and 11.5 eV photon 

energy. 

 

Although the above analysis can explain all of the observed C8H8 and C8H6 products 

originating from o-xylyl radical pyrolysis, it also suggests a number of other important 

decomposition products for which ms-TPES were unavailable. Here we would like to 

discuss the appearance of these lighter fragments ionizing at higher photon energies. 

Figure 10 shows two mass spectra taken at 10.0 and 11.5 eV photon energy and a reactor 

temperature of 1250 K. Some impurities should be mentioned first. Mass spectra without 

pyrolysis show traces of benzylbromide (m/z = 170, 172), which can react to form benzyl 

radicals, fulvenallene, fulvenallenyl and toluene and can explain the peaks between m/z = 

89 and 92. In previous experiments acetone (m/z = 58) has been used as a mass calibrant, 

delivering ketene (m/z = 42) and methyl radicals (m/z = 15) upon pyrolysis. The 

appearance of o-benzyne (m/z = 76) and ethene (m/z = 28) is consistent with the thermal 
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decomposition of o-xylylene via the mechanism presented in Figure 7. The appearance of 

acetylene (m/z = 26) and benzene (m/z = 78) can be explained by unimolecular 

dissociation of styrene (Figure 9). According to the literature both the benzyne and 

benzene products cannot be formed by benzyl, fulvenallene or fulvenallenyl 

decomposition reactions, since this would involve C, CH or CH2 bond rupture.
53

 

Recombination of two propargyl radicals (m/z = 39) to benzene or fulvene only plays a 

subordinate role, since other bimolecular reaction products like HBr (m/z = 80/82) and 

xylenes (m/z = 106) can be observed only in small amounts in the mass spectra. Taking 

into account the relative cross-sections at 10 eV of benzene and propargyl, the signal 

intensity can be approximated as the ratio 1:4 propargyl to benzene.
54-55

 If the 

recombination was playing a large role one would expect a reversed relative abundance. 

C4H2, diacetylene, and acetylene are reaction products of o-benzyne (m/z = 76) 

decomposition, which is also present in the mass spectrum at 11.5 eV (see Figure 10).
56

  

The propargyl radical could have several origins. Benzyl radicals can decompose to form 

fulvenallenyl radicals, which can subsequently dissociate to yield diacetylene (m/z = 50, C4H2) 

and propargyl radicals.
48

 However, in the fulvenallenyl measurements
48

 it seemed that at a higher 

temperature the ratio between m/z = 89 and m/z = 39 was very similar, whereas in the mass 

spectra of Figure 10 the propargyl is the dominating peak, which suggests that the contribution of 

m/z = 89 to 39 is only of minor importance. Consequently most of the propargyl is thought to 

result from decomposition of other species, including C8Hn and C6Hn compounds.  

 

5) Conclusion 

In this study the threshold photoionization of combustion relevant xylyl (methylbenzyl) 

radicals were investigated. We were able to show that ortho, meta and para isomers can be 
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synthesized in a pyrolysis reactor in an isomer-specific manner. In order to verify this, we 

performed Franck-Condon simulations and were able to assign the peaks in the ms-TPES to their 

vibrational transitions. The adiabatic ionization potentials were determined to be 7.08 ± 0.02 eV, 

7.11 ± 0.02 eV and 6.94 ± 0.02 eV for o-, m-, and p-xylyl radicals respectively in excellent 

agreement with literature values and quantum chemical calculations. 

By increasing the pyrolysis temperature the o-xylyl radical decomposes by hydrogen atom loss 

to yield o-xylylene and benzocyclobutene at lower temperatures. At higher temperatures the 

latter compound vanished from the ms-TPE spectrum and p-xylylene and styrene are generated 

instead. Another decomposition channel (C8H6) can also be observed starting at intermediate 

reactor temperatures and can be assigned to phenylacetylene and minor contributions of 

benzocyclobutadiene. The assignments were supported by literature threshold ionization spectra 

or by performing Franck-Condon simulations and high-level quantum chemical calculations. 

Each xylyl radical isomer decomposes by H loss to yield p-xylylene. This is obvious as far as 

the p-xylyl radical is concerned, since simple hydrogen abstraction takes place from the 

remaining CH3 group. Direct C-H bond fission in the case of m-xylyl would result in the triplet 

m-xylylene, a diradical, which is not observed. In a recent study we found that indeed a 

rearrangement to p-xylyl radicals occur upon pyrolysis, which further decompose by H atom 

loss.
14

 We propose that a fraction of o-xylyl radicals that do not follow its dissociation to o-

xylylene, undergoes a similar rearrangement, ultimately yielding p-xylylene.  

We were able to identify four distinct C8H8 isomers as the decomposition products of o-xylyl 

radicals, by means of reactor temperature dependent ms-TPE spectra. Furthermore, another two 

C8H6 isomers could be observed, namely phenylacetylene and smaller contributions of 

benzocyclobutadiene, enabling us to map the potential energy surface of gas phase o-xylyl 



 

32 

radicals. Benzene, benzyne, acetylene and ethylene were also identified as further decomposition 

products of the o-xylyl radical. 

To complement the experimental work performed and discussed in this paper, a 

comprehensive C8H8 energy surface was also developed for o-xylylene isomerisation and 

decomposition. Five distinct dissociation products were determined, of which three are 

accessible via styrene and two are accessible via benzocyclobutene. The mechanism was shown 

to account for many of the products observed in the experiments, and serves to demonstrate the 

complex chemistry that takes place during o-xylyl pyrolysis  
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