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Abstract. For rocky intertidal invertebrates the transition from pelagic larva to benthic settler 

represents a critical life-history stage characterised by high mortality. This mortality has been 

attributed to biotic factors such as predation and individual larval quality as well as abiotic 

factors such as thermal and desiccation stresses. Surprisingly, however, little is known about 

how temperature varies at very fine spatial scales relevant to newly settled larvae. We used 

infrared (IR) imagery to determine (i) whether in situ rocky substrates during aerial exposure 

exhibit repeatable fine-scale (1mm) temperature variation at the larval scale, and (ii) whether 

the presence of adult conspecifics ameliorates effects of substratum temperature and 

promotes early growth and survival of settlers. We tracked the settlement and early survival 

of larvae to determine whether fine-scale variation in temperature influences early life history 

processes of the intertidal barnacle Tesseropora rosea. Larval settlement did not vary with 

fine-scale variation in rock temperature, but early post-settlement growth and survival were 

both inversely related to temperature. Furthermore, we found that rock temperatures 

decreased significantly with increasing proximity to adult T. rosea and that larvae that settled 

within 15mm of adults survived better than those that settled within 16-30mm highlighting 

positive effects of gregarious settlement. This is partially explained by conspecific adults 

shading rock and reducing rock temperatures. This study represents the first use of IR 

technology to test for variation in rock temperature at a scale relevant to individual larvae, 

demonstrating that such fine-scale variation in thermal stress impacts the early-life history 

stages of a benthic marine invertebrate.  

Key words: Climate change; early post-settlement mortality; infrared imagery; recruitment; 

settlement  
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Introduction 

For rocky intertidal invertebrates, and indeed the majority of benthic marine invertebrates, the 

transition from pelagic larva to benthic settler represents a critical time in their life-history, 

characterised by high rates of mortality (e.g. Keough & Downes 1982, Minchinton & 

Scheibling 1993, Gosselin & Qian 1997), and typically influences the size and distribution of 

adult populations (e.g. Connell 1985, Gaines & Roughgarden 1985, Minchinton & Scheibling 

1991). Newly settled intertidal larvae need to contend with aerial exposure as the tide recedes 

and their small size makes them particularly vulnerable to heat and desiccation stress 

(Gosselin & Qian 1997). Indeed, thermal tolerance is widely considered to play a critical role 

in determining vertical distributions on rocky shores (Somero 2002) and latitudinal range 

limits of limpets (Gilman 2006), barnacles (Herbert et al. 2007) and mussels (Jones & 

Wethey 2010). Still, we understand very little about temperature variability at spatial scales 

relevant to individual organisms or more importantly, the response of their sensitive early life 

history stages. 

The use of infrared imaging techniques have recently emerged as an effective method of 

quantifying small-scale variation in both physical and biological characteristics of rocky 

intertidal shores (Murphy et al. 2006, Caddy-Retalic et al. 2011, Chapperon & Seuront 2011, 

Cox & Smith 2011, Lathlean et al. 2012). The advantage of such infrared sensing is that 

temperature variability of the substrate can be assessed at fine spatial scales (~1mm) relevant 

to settling benthic marine invertebrates. To our knowledge, this technique has yet to be used 

to examine the effects of temperature at the scale of recently settled larvae in the field. Such 

fine-scale assessment of temperature will advance our ecological understanding of how 

temperature influences individual level responses and, ultimately, recruitment variability. 
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Here, using infrared imaging, we first demonstrate that small areas on the rocky shore remain 

consistently warmer or cooler relative to the surrounding substrata. We then ask whether such 

fine-scale variation in rock temperature affects the settlement, early growth and survival of 

the barnacle Tesseropora rosea. This barnacle is an important foundation species within mid 

rocky intertidal regions of south eastern Australia and plays an important role in ameliorating 

adjacent substrate temperatures (Lathlean et al. in press). Because larvae often settle in close 

proximity to adults, we also ask whether rock temperatures close to conspecific adults are 

lower and whether the shade generated by adults ameliorates thermal stress for newly settled 

larvae by reducing adjacent rock temperatures. 

Materials and methods 

Study region and species 

We undertook our study at Garie Beach (34º10’38.05S, 151º03’57.77E), a temperate rocky 

shore within south eastern Australia, composed of grey siltstone and has an east to north 

easterly orientation and an overall moderate to slightly sloping (10-20°) inclination. We 

focussed our study on the dominant, habitat-forming barnacle Tesseropora rosea which is 

highly abundant in the mid shore area on exposed rocky shores within this region (Hidas et 

al. 2010, Lathlean et al. 2010). Tesseropora rosea has a largely distinct breeding and 

settlement period, which is well suited to investigating factors affecting early life history 

processes. Adult T. rosea are hermaphroditic planktivores that release planktotrophic larvae 

predominantly from January to June with the larvae estimated to remain within the water 

column for approximately 13 days (Wisely and Blick 1964, Egan and Anderson 1988). 

Although larval settlement may occur throughout the year, the vast majority settle between 

January and July with two peaks, one during January and February and then a second during 

May and June (Caffey 1985). The peak in January to February is generally more prominent at 
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northern locations, and vice-versa for more southern locations (Caffey 1985). Adults 

typically inhabit sun-exposed emergent rock (Denley and Underwood 1979) and are 

geographically distributed across tropical, subtropical and temperate regions of eastern 

Australia (Bennett & Pope 1953, Endean et al. 1956), suggesting that T. rosea is tolerant of a 

wide range of thermal regimes. 

Infrared imaging 

Similarly to Lathlean et al. (2012) and Lathlean and Minchinton (in press) rock temperatures 

were measured using infrared (IR) images taken with a digital IR camera (Forward-looking 

Infrared S65 ThermaCAM, FLIR®) fitted with a germanium coated lens, which captures 

wavelengths between 7.5 - 13µm using a focal plane array uncooled microbolometer 

detector. Images were taken of quadrats 20cm × 20cm in size, from 50cm above the 

substratum with each laser beam producing an arc length of 1.3 milliradians (mrad) when the 

camera is held 1m away from the point of contact. Therefore, each IR image had a spatial 

resolution less than 1mm² per pixel which is the size of recently settled larvae (i.e. 0.2 to 

0.3mm). Measurements at these scales allowed comparison of rock temperature variability 

both within and among quadrats. Importantly, measurements of rock temperature at this 

extremely fine (mm) scale should reflect the thermal stresses experienced by recently settled 

barnacles (see Lathlean et al. 2012).  

The thermal resolution of the IR camera is 0.08°C at 30°C, with an accuracy of ±0.2°C (see 

below). This accuracy of the FLIR S65 ThermaCAM is superior to most other models that 

typically produce accuracies of ±2°C, or 2% of the reading. This is largely due to the 

camera’s ability to automatically recalibrate measurements as frequently as once every 2 min 

(FLIR, personal communication; J.A. Lathlean personal observation). Emissivity (ɛ ) was set 

at 0.95 as previous studies demonstrate that emissivity values of rocky substrata and 
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invertebrates on intertidal shores typically vary between 0.95 to 1 (Helmuth 1998, Denny & 

Harley 2006, Chapperon & Seuront 2011, Cox & Smith 2011). To avoid the potential effects 

of reflectance on estimates of rock temperature, all quadrats were shaded while IR images 

were being taken. Nevertheless, because variations in emissivity and reflectance can 

influence the accuracy of IR temperature measurements, ground-truthing was undertaken 

comparing rock temperatures from IR images and a digital thermocouple (Dick Smith 

Electronics™ Digital Multimeter, P/N: Q-1574). Both instruments were used to record rock 

temperatures within the mid shore region at Garie Beach during low tide. Ambient 

temperatures during this ground-truthing period ranged from 19°C to 31°C which was similar 

to the range of temperatures experienced during the study period. A linear regression 

confirmed a strong and direct relationship between temperatures measured with the IR 

camera and the digital thermocouple (r2=0.84, p<0.001, n=40). The significant linear 

regression between temperatures recorded by the IR camera (TIR) and the digital 

thermocouple (TC) can be represented as TIR =0.904×TC + 2.625. Rock temperatures recorded 

by the IR camera were on average 0.2°C higher than rock temperatures recorded by the 

digital thermocouple. 

Identifying small hot and cold spots on rocky shore 

To test whether fine-scale temperature variation influences settlement, early post-settlement 

survival and growth of T. rosea, we first needed to verify that fixed points (1mm×1mm) were 

consistently hot or cold. Without this consistent temperature variability we would not expect 

to find significant effects of temperature on early life history processes at this scale. To do 

this we established 10 permanent 20cm×20cm sites separated by one to two metres within the 

mid shore region at Garie Beach on the 8 February 2010. All sites: (1) were within the mid 

shore region dominated by the barnacle Tesseropora rosea (0.8 to 1.6 m above the mean low 
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water mark of neap tides: MLWN), (2) had at least a 400cm² area of flat surface without 

crevices, depressions or macroalgae that could retain water during low tide, (3) had 

horizontal to moderately sloping surfaces, and unless otherwise stated initially had no sessile 

invertebrates (although in previous years adult T. rosea had been present indicating the 

suitability of such areas as habitat – J.A. Lathlean, personal observation).  Stainless steel 

screws were drilled into diagonally opposite corners of each site to ensure accurate 

resampling of sites and identification of individuals. Infrared images of these sites were taken 

on 25 and 26 February, and 2, 9 and 16 March 2010 during low tides that fell between 

1030am and 340pm. Differences in the time of sampling would have had a minimal affect on 

rock temperature variability because on each day the mid-intertidal zone had sufficient time 

(at least 3 hrs) to heat up with little variation in the incidence of sunlight. Differences 

between sampling events are more likely to differ due to daily variability in weather.  

To determine whether relative rock temperatures within sites were highly correlated over 

time we used IR images and the software package ThermaCAM Pro 2.9 to compare the 

temperatures of 49 evenly spaced fixed pixels within each site taken on the 5 sampling dates 

(i.e. one IR image per quadrat per sampling date). Areas within these sites were identified as 

being consistently warmer or cooler than surrounding substrata by ranking the 49 temperature 

values within each site and making comparisons across the five sampling events. Consistent 

fine-scale temperature variation would allow us to make predictions concerning the effects of 

fine-scale temperature variability on early life history processes. Consequently, we then used 

those sites that consistently yielded strong relationships amongst sampling events (as 

indicated by high and significant Spearman rank correlation values) to test the effect of 

temperature variability at the larval scale on settlement, early post-settlement survival and 

growth of T. rosea. 
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Early life history processes and fine-scale temperature variability 

We identified and followed 585 newly settled barnacles within the three sites that produced 

the most consistent temperature variability and highest larval settlement (i.e. Sites 1, 2 and 8; 

see Table 1). We monitored the fate of each individual every 2 to 4 days from 5 February to 

23 March 2010 using a high resolution digital camera (Fujifilm S9600). Settlement was 

greatest within these three sites between the 5 and 9 March. Therefore, we classified settlers 

as individuals that appeared within sites on the 5 and 9 March and recruits as settlers that 

were still alive on the 23 March. The small number of individuals that settled before the 5 

March were ignored during analysis. Newly settled barnacles were identified by digitally 

mapping the location and morphology of individuals within each site and counting the 

number of newly metamorphosed T. rosea, including empty tests of individuals that had 

settled, metamorphosed and died, since the previous census. The position of each newly 

settled barnacle within each site was then overlaid onto the corresponding IR image. Because 

of their small size and sessile existence, the body temperatures of recently settled larvae are 

most likely equivalent to that of the underlying substrata (J.A. Lathlean, personal 

observation). Hereafter, for simplicity, we refer to these measures on the substrata as body 

temperatures. Therefore, body temperature of each settler was estimated using the value of 

the underlying pixel from the IR image. Mean body temperatures of individual settlers and 

recruits were calculated from IR images taken on 9 and 16 March. We then used logistic 

regression (χ²) to test for significant effects of temperature variation on settlement and 

recruitment for each site separately. These logistic regressions used likelihood-ratios to 

compare (i) the distribution of mean rock temperatures (n=200 pixels per site) with mean 

body temperatures of settlers, and (ii) mean body temperatures of recruits with the mean body 

temperatures of settlers that died. To test whether fine-scale temperature influences early 

post-settlement growth, we measured the growth in maximal test length of 76 individuals 
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from the 9 to 16 March and 66 different individuals (taken from the same cohort of settlers as 

the 76 individuals) from the 16 to 23 March. For growth estimates of the 76 individuals 

measured from the 9 to 16 March mean body temperatures were calculated using IR images 

taken on 9 and 16 March. However, for growth estimates of the 66 individuals measured 

from the 16 to 23 March only a single temperature value derived from IR images taken on the 

16 March could be used. Maximal test length was used instead of aperture length because it 

was difficult to distinguish the aperture from the test of newly metamorphosed settlers. Only 

individuals that settled within sites during the 5 and 9 March were chosen for growth 

measurements. Additionally, to avoid the potentially confounding effects of crowding, 

individuals that were in contact with one another at any stage of the sampling period were not 

included for estimates of growth or survival. We used Pearson correlations to examine the 

relationship between rock temperature and growth of settlers using IR images taken on the 9 

and 16 March. 

Proximity to adults 

To test whether conspecific adults ameliorate thermal stress for newly settled T. rosea at fine-

spatial scales we established an additional 10 permanent 20cm×20cm sites separated by one 

to two metres within the mid intertidal zone on the 8 February 2010. These sites were 

established in areas with high adult T. rosea densities (i.e. <25% free space) which were then 

experimentally manipulated to produce sites with ≈ 50% randomly distributed free space. 

Using IR images taken on the 9 March we then measured rock temperatures for 320 random 

points across all these sites. This generated values for points within both shaded (n=193) and 

exposed (n=127) areas at varying distances from the closest conspecific adult (0 to 60mm). 

At the time IR images were taken (10:30am), adult T. rosea shaded areas up to approximately 

15mm from the base of their test. Therefore, we classified shaded areas within sites as rock 
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adjacent to the eighth (45°) of the adult barnacle facing away from direct sunlight and within 

15mm of the adult test (Fig. 2). Conversely, unshaded or exposed areas were classified as 

rock within sites adjacent to the eighth of the barnacle facing directly towards the sun (Fig. 

2). However, unlike shaded areas, unshaded areas were not restricted to 15mm from base of 

barnacle test. We therefore used temperature measurements for unshaded points within each 

site to test the effect of proximity to closest adult conspecific on rock temperatures using 

Pearson correlation. Of course, the shaded side of a barnacle would be expected to shift with 

the movement of the sun. Consequently, the total area around the circumference of the adult 

test influenced by shading would be greater than the 45° within which rock temperatures 

were measured. 

Next, we measured the distance between settlers and their nearest adult conspecific for 346 

individuals that settled within these sites during the 5 to 7 March. These settlers were chosen 

irrespective of whether they were shaded at the time measurements were taken. We then 

followed the fate of these 346 settlers until 23 March and used a one-tailed logistic regression 

to test whether individuals closer to adults had greater recruitment success. Lastly, to test 

whether proximity to adults influences early post-settlement growth, we measured the 

maximum test length of 51 individuals on 9 and 16 March and calculated growth as the 

percentage increase in shell length by 16 and 23 March, respectively. These individuals were 

chosen because (i) they settled within sites between 5 and 9 March, (ii) they were not in 

contact with other individuals at any stage of the sampling period, and (iii) they varied in 

their proximity to adult conspecifics. We used linear regression to examine the relationship 

between growth of individuals and proximity to closest adult conspecific.  

Results 

Consistent fine-scale temperature variation 



 
11 

 

Based on the number of significant positive correlations, eight of 10 sites displayed 

consistently warm and cool areas at fine-scales. For example, 66 of 96 (68.8%) 

correlations between the temperatures of fixed points within sites over the 5 sampling 

events returned significant positive relationships (Table 1). Areas within all sites 

produced correlated temperature variation for at least three sampling events, while four 

sites displayed temperatures that were correlated across all five sampling events (see 

Fig. 1 for an illustration of this consistent temperature variability). IR images revealed 

that rock temperatures within sites (measured at the mm scale) varied by as much as 

5°C and that this temperature variability was consistent through time (Table 1) (see 

Figure 4 in Lathlean et al. 2012 for additional temporal and spatial analysis of IR 

images). Consequently, our results indicate that individual larvae only centimetres apart 

consistently experienced substantially different temperatures.  

Early life history processes and fine-scale temperature variability 

We detected significant but spatially variable effects of fine-scale temperature variation using 

each of our three measures of early life-history performance. In total, we identified and 

followed the fate of 585 newly settled T. rosea larvae within sites 1, 2 and 8 (the three sites 

with the highest number of settlers and most consistent fine-scale temperature variability) 

(See Appendix I for temperature frequency plots of all eight sites that produced consistent 

fine-scale temperature variability). For sites 2 and 8, larval settlement did not vary between 

warmer or cooler areas at the 1mm scale (χ²= 0.28, d.f.=1 p=0.60 and χ²=1.14, d.f.=1, 

p<0.29, respectively) (Fig. 3). In contrast, cooler areas within site 1 had greater numbers of 

settlers compared to warmer areas (χ²=18.59, d.f.=1, p<0.001).  

The response of recruitment to variation in temperature varied among sites but recruitment 

was generally greater in cooler spots. For the 254 and 143 individuals that settled in sites 1 
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and 8, respectively, increased rock temperatures significantly reduced the chance of settlers 

surviving to the 23 March (χ²= 4.46, d.f.=1 p=0.03 and χ²=35.92, d.f.=1, p<0.0001, 

respectively) (Fig. 3). In contrast, for the 188 individuals that settled in site 2 survival to the 

23 March was not dependent on temperature (χ²=0.07, d.f.=1, p=0.795).  

Early post-settlement growth during the first week after settlement was inversely related to 

temperature (r=0.24, p<0.001, n=76) but not during the second week (r<0.01, p=0.314, n=66) 

(Fig. 4). During the first week individuals that experienced temperatures less than 30°C grew 

to an average size of 1.50mm in basal length while individuals that experienced temperatures 

higher than 30°C grew to approximately 1.17mm in basal length (i.e. a 22% reduction in 

growth). 

Proximity to adults 

Rock temperature varied strongly with proximity to adults and this variation was at least 

partially explained by the shade generated by adults. Within unshaded areas rock temperature 

was inversely correlated with distance to the nearest adult (r=0.127, p<0.001, n=193) (Fig. 

5a). Points within 15mm of adults were on average 0.62°C cooler on shaded verses unshaded 

sides of adults (t=7.00, d.f.=252, p=0.008) revealing that the shade generated by adults 

lowers rock temperatures. We found that the survival of settlers significantly increased the 

closer they were to adults, regardless of whether they were shaded by adults or exposed to the 

sun at the time measurements were taken (χ2=3.19, d.f.=1, p=0.041) (Fig. 5b). In contrast, 

proximity to closest adult had no effect on early post-settlement growth, irrespective of 

whether estimates were made during the first or second week after settlement (r²<0.01, n=48, 

p=0.635, and r²<0.01, n=51, p=0.62, respectively) (Fig. 5c). 

Discussion 
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While a considerable number of studies claim that temperature significantly influences early 

life history processes (see Gosselin & Qian 1997, Hunt & Scheibling 1997 for reviews), this 

study, to the best of our knowledge, represents the first time that fine-scale temperature 

variability has been shown to influence the early growth and survival of a benthic marine 

invertebrate. Our results reveal that small-scale variability in rock temperature occurs on even 

finer scales than is usually reported (Helmuth et al. 2006) with areas only centimetres apart 

differing by up to 5°C. Such fine-scale rock temperature variability could be caused by 

minute topographic variability which can only be detected through the use of high-resolution 

IR imagery (Lathlean et al. 2012, Lathlean and Minchinton in press). Our results support an 

increasing number of studies that have demonstrated considerable rocky intertidal 

temperature variability across small spatial scales (Jackson 2010, Denny et al. 2011, Meager 

et al. 2011). For example, Denny et al. (2011) deployed 221 temperature data loggers along a 

336m transect within the mid shore region and found temperatures to differ by as much as 

25°C. We found consistent temporal variation in rock temperatures within sites at the same 

tidal height, suggesting that at the larval scale, small areas (1mm2) on a rocky shore can be 

identified as being consistently warmer or cooler than the surrounding substrata. Furthermore 

we show that these ‘hot’ and ‘cold’ spots (which are consistently warmer and cooler than the 

surrounding substrata) influence both the early post-settlement growth and survival of 

recently settled larvae, two processes important for structuring the adult population (Connell 

1985, Gaines & Roughgarden 1985, Minchinton & Scheibling 1991) (see Fig. 2 in Lathlean 

et al. 2012 for a detailed description of local-scale temporal variability at Garie Beach during 

the current sampling period) . Interestingly, Underwood and Chapman (1996) found that T. 

rosea abundance was most variable at small spatial scales (centimetres to metres) in 

comparison to variation in abundance across sites separated by hundreds of metres and 

kilometres. Our results suggest that this small-scale variation in the abundance of T. rosea 
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may be the result of fine-scale rock temperature variability, which could co-vary with a 

number of other factors including fine-scale topographic variation.  

By removing adult conspecifics we were also able to show that those larvae settling within 

15mm of adults experience lower temperatures and survive better than those that settle 

further away. Shading provides at least partial explanation for this effect. It seems likely that 

in using a threshold distance of 15mm we may have underestimated the effect of shading due 

to variation in the size of adults. Additionally, we might also expect the presence of adults to 

modify temperature through effects such as evaporative cooling (Kawai & Tokeshi 2004) and 

our data imply that adults are unlikely to be randomly distributed with respect to temperature 

since we have shown that recruitment rates are higher in consistently cooler areas. Future 

studies could tease apart the effects of adult shading and consistently cooler areas by 

manipulating adult densities (similar to present study) and arranging moulds of adult 

barnacles in areas that don’t support high adult densities. 

Early life history processes and fine-scale temperature variability 

Newly settled intertidal invertebrates are believed to be particularly vulnerable to heat and 

desiccation stress (e.g. Gosselin & Qian 1996). Our results provide evidence that even at fine 

spatial scales increased temperatures reduce early post-settlement growth and survival. This 

supports previous work undertaken at larger spatial scales by Shanks (2009) who found that 

early post-settlement survival of the intertidal barnacle Balanus glandula was lower on 

warmer settlement plates covered in safety walk tape than cooler ceramic tiles. It also 

supports the findings of Chan and Williams (2003) who found that heat stress was the major 

limiting factor influencing the survival of two tropical intertidal barnacle species Tetraclita 

japonica and Tetraclita squamosa. In contrast, laboratory and field experiments carried out 

by Findlay et al. (2010) showed that temperature had no effect on the early post-settlement 



 
15 

 

survival and growth of the intertidal barnacles Semibalanus balanoides and Elminius 

modestus. Such discrepancies are not uncommon, suggesting certain species are more 

thermally tolerant than others, and further highlights the importance of measuring 

temperature variability at the larval scale.  

Since early post-settlement survival and rates of recruitment are strong determinants of adult 

population size and structure (e.g. Connell 1985, Roughgarden et al. 1985, Minchinton & 

Scheibling 1991), and large-scale temperature variability affects settlement and recruitment 

(Lagos et al. 2005), future research should focus on the relative importance of large-scale 

versus small-scale temperature variability on recruitment processes. Indeed, if fine-scale 

temperature variability is equivalent to or greater than latitudinal variation in temperature, 

predicting how organisms will respond to the increasing frequency of extreme temperature 

events associated with climate change may be equally as challenging for a single population 

as it is for multiple populations spread across large geographic regions (Denny et al. 2011). 

The task of predicting future thermal consequences on intertidal taxa are further complicated 

since any two species occupying the same habitat may experience different levels of thermal 

stress (Broitman et al. 2009) and their responses may differ depending on the strength of 

particular biological interactions (Kordas et al. 2011). Recent studies have also suggested that 

small spatial scale heterogeneity in rock temperatures may increase the survival of 

invertebrates in the warming climate (Chapperon & Seuront 2011; Denny et al. 2011).   

Strikingly, we found that rates of early post-settlement growth at the scale of the individual 

were negatively associated with increasing substrate temperature during the first week after 

settlement. Although sublethal, the effect of increased temperatures on early post-settlement 

growth might be expected to prolong the time it takes for juveniles to either reach 

reproductive maturity or a particular size whereby they are no longer as vulnerable to 
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environmental stress or predation. For example, the ability of an intertidal invertebrate to 

withstand extreme air temperatures is largely related to its ability to regulate heat shock 

proteins (Somero 2002) and, consequently, juveniles or newly metamorphosed individuals 

may experience reduced growth rates or survival at high temperatures due to an inability to 

produce heat shock proteins in sufficient quantities.  

We did not find consistent effects of rock temperature variability on larval settlement since 

only one of three sites displayed greater settlement within small areas that experience lower 

temperatures during aerial exposure. This is not surprising since larvae arrive during high tide 

when substrate temperatures are less variable and are unlikely to reflect the temperature 

variability that occurs during low tide. Previous studies have demonstrated, however, that 

settling larvae can distinguish between biofilms that have developed under different 

environmental conditions (Qian et al. 2003, Hung et al. 2005). For example, settlement of the 

barnacle Balanus amphitrite varies depending on whether biofilms are established within the 

high, mid or low intertidal region (Qian et al. 2003), while settlement of the polychaete 

Hydroides elegans is lower on biofilms exposed to high ultraviolet radiation (UVR) (Hung et 

al. 2005). Therefore, we may expect larvae to settle in response to bacterial communities 

grown under particular thermal regimes. 

Proximity to adults 

Many authors have observed that sessile invertebrates settle preferentially in close proximity 

to adults or experience reduced mortality when recruit densities are high due to neighbours 

buffering thermal stress (Bertness et al. 1999). For filter feeders such as barnacles aggregated 

settlement will also increase rates of intraspecific competition for food and space (Connell 

1985). Our results show that bare substrata immediately adjacent to adult barnacles are 

significantly cooler than equivalent areas just a few centimetres further away from adults and 
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that this is partially the result of adults shading nearby rock. We also found that individuals 

that settled closer to adults were more likely to survive than those that settled further away 

because these areas closer to adults are less thermally stressful. This supports the findings of 

Kawai & Tokeshi (2004) who show that on a moderately exposed rocky shore in southern 

Japan, shading effects of the goose barnacle Capitulum mitella ameliorates heat stress for the 

mussel Septifer virgatus by lowering body temperatures and increasing interstitial humidity 

within patches. Alternatively, our results may reflect a greater proportion of competent larvae 

with greater energy reserves settling and surviving within close proximity to adults which 

may be their preferred habitat (Jarrett and Pechenik 1997, Thiyagarajan et al. 2003). Adults 

may also influence rates of larval settlement through consumption (Navarrete & Wieters 

2000), settlement cues (Raimondi 1988), altering the availability of suitable substrate 

(Minchinton & Scheibling 1993) and water flow (Wright & Boxshall 1999). Consequently, 

adult conspecifics may indirectly affect the early life history processes of benthic marine 

invertebrates in multiple ways other than reducing thermal stress. This may explain why 

temperature in the present study had no effect on early post-settlement growth when adult 

conspecifics were present, but did when they were absent. 

The results of our study have broad ranging implications for attempts to predict the effect of 

changing temperatures associated with climate change on species distributions. Indeed, 

poleward range retractions and expansions have already been documented for several 

intertidal species along the southeast coast of Australia (Pitt et al. 2010; Wernberg et al. 

2011). Our results provide an important link between rock temperature variability and the 

response of individual invertebrates during a critical stage in their life history. Such a focus 

on the small-scale variability in rock temperature and the early life stages of invertebrates is 

rare since most climate change studies focus on adults. Yet for benthic marine invertebrates it 

is these processes influencing the early life stages that are most likely to have the greatest 
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impact on their ability to respond to further climate change. The increasing attention to 

climate change research has also indirectly caused an overrepresentation of large-scale (10’s 

metres to kilometres) temperature studies within the literature (Denny et al. 2011). This study 

presents evidence that small-scale temperature variability may be just as variable as large-

scale temperature variability, and, consequently, we expect future research to become 

increasing concerned with incorporating temperature measurements at various large and 

small spatial scales. 
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Table 1. Summary of Spearman rank correlation values (r) between the mean rock temperatures of 
49 fixed points within sites across the 5 sampling events. Bold font indicates significant positive 
relationship with p-value <0.05 (n= 49 pixels). Settlers/ Recruits refer to the number of T. rosea 
that settled within site from the 5 to 9 March and the number of these individuals that were 
recounted as recruits on the 23 March 2010. Shaded sites are those that did not produce consistent 
fine-scale temperature variability. Individuals within sites 1, 2 and 8 were used to estimate early 
life history processes. 

 25 Feb 26 Feb 2 March 9 March (Settlers/ Recruits) 
Site 1      

26 Feb 0.54     
2 March 0.08 0.26    
9 March 0.66 0.46 0.03   

16 March 0.03 <0.01 0.01 0.07 (254/ 57) 
Site 2      

26 Feb 0.50     
2 March 0.26 0.45    
9 March 0.66 0.36 0.31   

16 March 0.05 0.29 0.12 <0.01 (188/ 112) 
Site 3      

26 Feb 0.03     
2 March 0.06 0.27    
9 March 0.02  – 0.12 – 0.14   

16 March 0.15 0.27 0.54  – 0.12 (284/ 20) 
Site 4      

26 Feb 0.37     
2 March 0.26 0.27    
9 March 0.35 0.58 0.23   

16 March <0.01 <0.01 <0.01 <0.01 (68/ 0) 
Site 5      

26 Feb 0.32     
2 March 0.33 0.80    
9 March 0.26 0.46 0.28   

16 March 0.42 0.85 0.78 0.51 (60/ 0) 
Site 6      

26 Feb Na     
2 March Na 0.46    
9 March Na 0.74 0.41   

16 March Na 0.67 0.59 0.54 (119/ 0) 
Site 7      

26 Feb 0.30     
2 March 0.23 0.75    
9 March 0.12 0.33 0.60   

16 March 0.23 0.82 0.82 0.45 (121/ 1) 
Site 8      

26 Feb 0.22     
2 March 0.55 0.09    
9 March 0.56 0.05 0.71   

16 March 0.17 0.17 0.09 0.05 (143/ 56) 
Site 9      

26 Feb 0.04     
2 March 0.44 0.01    
9 March 0.23 0.01 0.32   

16 March 0.52 <0.01 0.57 0.37 (76/ 5) 
Site 10      

26 Feb 0.72     
2 March 0.57 0.52    
9 March <0.01 <0.01 <0.01   

16 March <0.01 <0.01 0.06 0.03 (173/ 8) 
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Figure Legends 

Figure 1. Infrared images of a single site (20cm × 20cm) on the 25 and 26 February (a – b) and the 

2 and 9 March 2010 (c – d). Images are displayed in greyscale with darker colours representing 

cooler temperatures. 

Figure 2. Schematic diagram illustrating shaded and unshaded areas adjacent to an adult barnacle 

during a morning low tide in the southern hemisphere. Shaded temperature measurements sampled 

from IR images were taken of rock adjacent to the eighth (45°) of the adult barnacle facing directly 

away from the main direction of the sun and within 15mm of the adult test. 

Figure 3. Frequency distribution of rock temperatures, and larval settlement and recruitment 

corresponding to different rock temperatures of 3 sites with 100% naturally available free space. 

Settlers are individuals that settled within sites from the 5 to 9 March, while recruits are settlers 

that survived to the 23 March 2010. Fatalities represent the temperature of individuals that did not 

survive to the 23 March (n is either the number of rock temperature measurements, settlers or 

recruits). 

Figure 4. The influence of mean body temperature on the early post-settlement growth 

(percentage increase from initial maximum test length) of recently settled individual T. rosea from 

the 9 to 16 March (white circles) and the 16 to 23 March (black circles). Body temperatures for 

individuals that were measured between the16 to 23 March only represent values derived from IR 

images taken on 16 March.  

Figure 5. The influence of proximity (mm) to closest adult conspecific on (a) rock temperatures 

(includes only exposed areas), (b) settlement and recruitment (includes both exposed and shaded 

individuals), and (c) early post-settlement growth (includes both exposed and shaded individuals). 
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Appendix I. Mean rock temperature frequency distributions (%) taken from IR images recorded 

on the 9 and 16 March of the ten 20 x 20cm permanent quadrats (sites) used throughout this 

study. Individuals that settled in sites 1, 2 and 8 were used to assess the effect of small-scale 

temperature variability on settlement, growth and recruitment. Sites marked with an asterisks (*) 

indicate those sites which had less than 10 individual recruits (see Table 1). Plots not connected 

by a similar letter denote sites that displayed significantly different rock temperatures following 

a SNK post hoc analysis. 
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