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The path space of a higher-rank graph

Abstract

We construct a locally compact Hausdorff topology on the path space of a finitely aligned k -graph A . We
identify the boundary-path space aA as the spectrum of a commutative C * -subalgebra D A of C * (A) .
Then, using a construction similar to that of Farthing, we construct a finitely aligned k -graph A ™ with no
sources in which A is embedded, and show that a/A is homeomorphic to a subset of 9A ~ . We show that
when A is row-finite, we can identify C * (A) with a full corner of C * (A ™), and deduce that D Ais
isomorphic to a corner of D A 7 . Lastly, we show that this isomorphism implements the homeomorphism
between the boundary-path spaces.
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THE PATH SPACE OF A HIGHER-RANK GRAPH
SAMUEL B.G. WEBSTER

ABSTRACT. We construct a locally compact Hausdorff topology on the path
space of a finitely aligned k-graph A. We identify the boundary-path space OA
as the spectrum of a commutative C*-subalgebra Dj of C*(A). Then, using a
construction similar to that of Farthing, we construct a finitely aligned k-graph
A with no sources in which A is embedded, and show that 9A is homeomorphic
to a subset of A . We show that when A is row-finite, we can identify C*(A)

with a full corner of C*(A), and deduce that Dy is isomorphic to a corner of Dy.
Lastly, we show that this isomorphism implements the homeomorphism between
the boundary-path spaces.

1. INTRODUCTION

Cuntz and Krieger’'s work [2] on C*-algebras associated to (0, 1)-matrices and
the subsequent interpretation of Cuntz and Krieger’s results by Enomoto and
Watatani [4] were the foundation of the field we now call graph algebras. Directed
graphs and their higher-rank analogues provide an intuitive framework for the anal-
ysis of this broad class of C*-algebras; there is an explicit relationship between the
dynamics of a graph and various properties of its associated C*-algebra. Kumjian
and Pask in [7] introduced higher-rank graphs (or k-graphs) as analogues of di-
rected graphs in order to study Robertson and Steger’s higher-rank Cuntz-Krieger
algebras [18] using the techniques previously developed for directed graphs. Higher-
rank graph C*-algebras have received a great deal of attention in recent years, not
least because they extend the already rich and tractable class of graph C*-algebras
to include all tensor products of graph C*-algebras (and thus many Kirchberg alge-
bras whose K; contains torsion elements [7]), as well as (up to Morita equivalence)
the irrational rotation algebras and many other examples of simple AT-algebras
with real rank zero [8].

Although the definition of a k-graph (Definition 1) isn’t quite as straightfor-
ward as that of a directed graph, k-graphs are a natural generalisation of directed
graphs: Kumjian and Pask show in [7, Example 1.3] that 1-graphs are precisely
the path-categories of directed graphs. Like directed graph C*-algebras, higher-
rank graph C*-algebras were first studied using groupoid techniques. Kumjian and
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Pask defined the k-graph C*-algebra C*(A) to be the universal C*-algebra for a
set of Cuntz-Krieger relations among partial isometries associated to paths of the
k-graph A. Using direct analysis, they proved a version of the gauge-invariant
uniqueness theorem for k-graph algebras. They then constructed a groupoid Ga
from each k-graph A, and used the gauge invariant uniqueness theorem to prove
that the groupoid C*-algebra C*(G,) is isomorphic to C*(A). This allowed them
to make use of Renault’s theory of groupoid C*-algebras to analyse C*(A). The

unit space ggo) of G, which must be locally compact and Hausdorff, is a collection

of paths in the graph: for a row-finite graph with no sources, QI(\O) is the collec-
tion of infinite paths in A (the definition of an infinite path in a k-graph is not
straightforward, see Remark 2.4]). For more complicated graphs, the infinite paths
are replaced with boundary paths (Definition 2.9).

In [12], Raeburn, Sims and Yeend developed a “bare-hands” analysis of k-graph
C*-algebras. They found a slightly weaker alternative to the no-sources hypothesis
from Kumjian and Pask’s theorems called local converity (Definition 7). The
same authors later introduced finitely aligned k-graphs in [13], and gave a direct
analysis of their C*-algebras. This remains the most general class of k-graphs to
which a C*-algebra has been associated and studied in detail.

Many results for row-finite directed graphs with no sources can be extended to
arbitrary graphs via a process called desingularisation. Given an arbitrary directed
graph F, Drinen and Tomforde show in [3] how to construct a row-finite directed
graph F with no sources by adding vertices and edges to E in such a way that
the C*-algebra associated to F' contains the C*-algebra associated to E as a full
corner. The modified graph F' is now called a Drinen-Tomforde desingularisation
of E. Although no analogue of a Drinen-Tomforde desingularisation is currently
available for higher-rank graphs, Farthing provided a construction in [5] analogous
to that in [I] for removing the sources in a locally convex, row-finite higher-rank
graph. The statements of the results of [5] do not contain the local convexity
hypothesis, but Farthing alerted us to an issue in the proof of [5, Theorem 2.28]
(see Remark [6.2]), which arises when the graph is not locally convex.

The goal of this paper is to explore the path spaces of higher-rank graphs and
investigate how these path spaces interact with desingularisation procedures such
as Farthing’s.

In Section Pl we recall the definitions and standard notation for higher-rank
graphs. In Section [ following the approach of [9], we build a topology on the path
space of a higher-rank graph, and show that the path space is locally compact and
Hausdorff under this topology. N

In Section M| given a finitely aligned k-graph A, we construct a k-graph A with
no sources which contains a subgraph isomorphic to A. Our construction is mod-
elled on Farthing’s construction in [5], and the reader is directed to [5] for several
proofs. The crucial difference is that our construction involves extending elements
of the boundary-path space OA, whereas Farthing extends paths from a different
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set A= (see Remark 2.I0). Interestingly, although A and A= are potentially
different when A is row-finite and not locally convex (Proposition 2.12)), our con-
struction and Farthing’s yield isomorphic k-graphs except in the non-row-finite
case (Examples and Proposition .12). We follow Robertson and Sims’ nota-
tional refinement [I7] of Farthing’s desourcification: we construct a new k-graph in
which the original k-graph is embedded, whereas Farthing’s construction adds bits
onto the existing k-graph. This simplifies many arguments involving A; however,
the main reason for modifying Farthing’s construction is that AS® is not as well
behaved topologically as A (see Remark B.H) and in particular, no analogue of
Theorem [5.1] holds for Farthing’s construction.

In Section Bl we prove that given a row-finite k-graph A, there is a natural
homeomorphism from the boundary-path space of A onto the space of infinite
paths in A with range in the embedded copy of A. We provide examples and
discussion showing that the topological basis constructed in Section [l is the one
we want.

In Section [@ we recall the definition of the Cuntz-Krieger algebra C*(A) of a
higher-rank graph A. We show that if A is a row-finite k-graph and A is the graph
with no sources obtained by applying the construction of Section ll to A, then the
embedding of A in A induces an isomorphism 7 of C*(A) onto a full corner of

C*(A).

Section [ contains results about the diagonal C*-subalgebra of a k-graph C*-
algebra: the C*-algebra generated by range projections associated to paths in
the k-graph. We identify the boundary-path space of a finitely aligned higher-
rank graph with the spectrum of its diagonal C*-algebra. We then show that
the isomorphism 7 of Section [0l restricts to an isomorphism of diagonals which
implements the homeomorphism of Section [5l

Acknowledgements. The work contained in this paper is from the author’s PhD
thesis, and as such I extend thanks to my PhD supervisors lain Raeburn and Aidan
Sims for their support and willingness to proofread and guide my work.

2. PRELIMINARIES

Definition 2.1. Given k € N, a k-graph is a pair (A, d) consisting of a countable
category A = (Obj(A), Mor(A), r, s) together with a functor d : A — N¥_ called the
degree map, which satisfies the factorisation property: for every A € Mor(A) and
m,n € N¥ with d(\) = m + n, there are unique elements u, v € Mor(A) such that
A= pv, d(u) =m and d(v) = n. Elements A € Mor(A) are called paths. We follow
the usual abuse of notation and write A € A to mean A € Mor(A). For m € N*
we define A™ := {\ € A : d(\) = m}. For subsets F' C A and V' C Obj(A), we
write VEF :={A € F:r(A\) € Vland FV :={\e€ F:s(\) € V}. f V = {v},
we drop the braces and write vF and Fv. A morphism between two k-graphs
(A1, dy) and (Ay, dy) is a functor f : Ay — Ay which respects the degree maps. The
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(0,2) «—— (1,2) —— (2,2)

0.1) — (1.1) — (2.1)

!
|
!
|
|
Y

(0,0) — (1,0) —— (2,0)

FIGURE 1. The 2-graph (5.

factorisation property allows us to identify Obj(A) with A%, We refer to elements
of A° as vertices.

Remark 2.2. To visualise a k-graph we draw its 1-skeleton: a directed graph with
vertices A? and edges Ule A%, To each edge we assign a colour determined by the
edge’s degree. We tend to use 2-graphs for examples, and we draw edges of degree
(1,0) as solid lines, and edges of degree (0, 1) as dashed lines.

Example 2.3. For k € Nand m € (NU{oo})*, we define k-graphs €y, ,, as follows.
Set Obj(Q.m) = {p € N*: p; <m; for all i < k},

Mor(Q.m) = {(p,q) : p,q € Obj(Q.m) and p; < ¢; for all i < k},

r(p,q) = p, s(p,q) = q and d(p, q) = ¢ — p, with composition given by (p,q)(q,t) =
(p,t). If m = (c0)*, we drop m from the subscript and write Q. The 1-skeleton

of Q5 is depicted in Figure[ll

Remark 2.4. The graphs (2 ,, provide an intuitive model for paths: every path
A of degree m in a k-graph A determines a k-graph morphism z) : €, — A.
To see this, let p,q¢ € N*¥ be such that p < ¢ < m. Define z,(p,q) = )\, where
A= XNNA"and d(N) = p, d(\") = ¢ — p and d(\"") = m — ¢. In this way, paths
in A are often identified with the graph morphisms x : Q,, — A. We refer to
the segment \” of A (as factorized above) as A(p,q), and for n < m, we refer to
the vertex 7(A\(n,m)) = s(\(0,n)) as A(n). By analogy, for m € (NU {oo})* we
define A™ := {z : Qx,,, = A : z is a graph morphism.}. For clarity of notation, if
m = (00)* we write A%,

Define
Wy = U A"
ne(NU{oo})k

We call Wy the path space of A. We drop the subscript when confusion is unlikely.

For m,n € N¥, we denote by m An the coordinate-wise minimum, and by mVn
the coordinate-wise maximum. With no parentheses, V and A take priority over
the group operation: a — b A ¢ means a — (b A ¢).

Since finite and infinite paths are fundamentally different, that one can compose
them isn’t immediately obvious.



THE PATH SPACE OF A HIGHER-RANK GRAPH 5

Lemma 2.5 ([19, Proposition 3.0.1.1]). Let A be a k-graph. Suppose A € A and
suppose that x € W satisfies r(x) = s(\). Then that there exists a unique k-graph
morphism A\x : Q. go)td@) — A such that (Ax)(0,d(N)) = A and (Az)(d(N),n +
d(N)) = z(0,n) for alln < d(z).

Definition 2.6. For A\, u € A, write
AN ) = {(a, B) € Ax A da = pfd(Aa) = d(\) Vd(u)}

for the collection of pairs which give minimal common extensions of A and pu, and
denote the set of minimal common extensions by

MCE(X, p) := {Aa: (o, ) € A" (N, )} = {uB : (e, B) € A™™ (X, )}

Definition 2.7. A k-graph A is row-finite if for each v € A° and m € N¥, the set
vA™ is finite; A has no sources if vA™ # () for all v € A° and m € NF,

We say that A is finitely aligned if A™"(\, p) is finite (possibly empty) for all
A€ A

As in [12, Definition 3.1], a k-graph A is locally convez if for all v € A°, all
i,j € {1,...k} with @ # j, all A € vA% and all p € vA%, the sets s(A\)A%
and s(u)A% are non-empty. Roughly speaking, local convexity stipulates that A
contains no subgraph resembling;:

u
|
K
v
Ve— w

A

Definition 2.8. For v € A% a subset E C vA is exhaustive if for every p € vA
there exists a A € E such that A™®(\ u) # 0. We denote the set of all finite
ezhaustive subsets of A by FE(A).

Definition 2.9. An element z € W is a boundary path if for all n € N¥ with
n < d(x) and for all E € x(n)FE(A) there exists m € N*¥ such that z(n,m) € E.
We write A for the set of all boundary paths.

Define the set AS™ as follows. A k-graph morphism z : 2, — A is an element
of A= if there exists n, < d(z) such that for n € N¥ satisfying n, < n < d(x)
and n; = d(z);, we have x(n)A% = (.

Remark 2.10. Raeburn, Sims and Yeend introduced AS* to construct a nonzero
Cuntz-Krieger A-family [13, Proposition 2.12]. Farthing, Muhly and Yeend intro-
duced OA in [6]; in order to construct a groupoid to which Renault’s theory of
groupoid C*-algebras [I5] applied, they required a path space which was locally
compact and Hausdorff in an appropriate topology, and A<* did not suffice. The
differences between OA and A= can be easily seen if A contains any infinite re-
ceivers (e.g. any path in a l-graph A with source an infinite receiver is an element
of A \ A=), but can even show itself in the row-finite case if A is not locally
convex.
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Example 2.11. Suppose A is the 2-graph with the skeleton pictured below.

[ ] [ ] [ J ® <«
| | | |

Jo! 11 Ja ! 3
A4 Xo oo ¥ X9 A4
Vo (1 (%) Vg <«
AN NP NN

° [ ] L] °
Consider the paths x = zgxy ..., and W" = zoxy ... T, w, for n =0,1,2,....

Observe that z ¢ A=*: for each n € N, we have d(z); = 0 = (n,0),, and
x((n,0))A2 = v, A°> £ ().

We claim that © € OA. Fix m € N and F € v, FE(A). Since E is exhaustive,
for each n > m, there exists A" € E such that MCE(\", z,, ...z, _1w,) # 0. Since
E is finite, it can not contain x,,...x,_ 1w, for every n > m, so it must contain
Ty ..., for some p € N. So z((m,0), (m + p)) = z,, ... x, belongs to E.

The 2-graph of Example 2.TT] first appeared in Robertson’s honours thesis [16]
to illustrate a subtlety arising in Farthing’s procedure [5] for removing sources in
k-graphs when the k-graphs in question are not locally convex. It was for this
reason that only locally convex k-graphs in the main results of [16], [17].

Proposition 2.12. Suppose A is a finitely aligned k-graph. Then AS>® C OA. If
A is row-finite and locally convez, then AS® = OA.

To prove this we use the following lemma.

Lemma 2.13. Let A be a row-finite, locally convex k-graph, and suppose that
v € A satisfies vA% # O for some i < k. Then vA% € vFE(N).

Proof. Since A is row-finite, vA® is finite. To see that it is exhaustive, let u € vA.
If d(p); > 0, then g = (0, ¢e;) € vA% implies that A™"(u, g) # 0. Suppose that
d(p); = 0. Let o = gy ...y, be a factorisation of p such that |d(p;)| = 1 for each
j < n. Since A is locally convex, s(u)A% = s(pu,)A% # 0. Fix g € s(u)A%. Let
f = (1g)(0,¢;). Then f € vA%. Since d(u;) = 0, we have d(ug) = d(p) Vv d(f).
Hence (g, (19)(ei, d(pg))) € A™(u, f) as required. O

Proof of Proposition[Z14. Fix z € AS®. Let m < d(z) and F € z(m)FE(A).
Define t € N* by

 [d() if d(x); < o0,
ti = max (nx vV (m+ OZ()\)))Z if d(z); = oo.

Then z(m,t) € x(m)A, so there exists A € E such that A™"(z(m,t),\) is non-
empty. Let (o, 3) € A™®(z(m,t), \). We first show that d(a) = 0. Since x € AS®
and n, <t < d(x), if d(x); < oo then x(t)A% = (). So for each i such that
d(z); < oo, we have d(a); = 0. Now suppose that d(x); = co. Then d(z(m,t)); =
t; —m; > d(N);. So d(z(m,t)a); = max{d(x(m,t));,d(\);} = d(x(m,t));, giving
d(a); = 0. Then we have x(m,t) = AS, so x(m,m + d(\)) = .
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Now suppose that A is row-finite and locally convex. We want to show A C
AS*®. Fix # € 9A, and n € N* such that n < d(z) and n; = d(x);. It suffices
to show that z(n)A® = (). Since n; = d(x);, we have z(n)A® ¢ x(n)FE(A).
Lemma then implies that x(n)A% = 0. O

3. PATH SPACE TOPOLOGY

Following the approach of Paterson and Welch in [9], we construct a locally
compact Hausdorff topology on the path space W of a finitely aligned k-graph
A. The cylinder set of p € Ais Z(u) == {v € W : v(0,d(n)) = p}. Define
a: W — {0,1}* by a(w)(y) = 1 if w € Z(y) and 0 otherwise. For a finite subset
G C s(p)A we define

(3.1) Z(u\G) = Z(w\ | Z(w).

veG

Our goals for this section are the following two theorems. The basis we end up
with is slightly different to that in [9, Corollary 2.4], revealing a minor oversight
of the authors.

Theorem 3.1. Let A be a finitely aligned k-graph. Then the collection

{Z(,u \G):peNand G C U(s(,u)Aei) is ﬁm’te}

is a base for the initial topology on W induced by {a}.

Theorem 3.2. Let A be a finitely aligned higher-rank graph. With the topology
described in Theorem[3.1, W is a locally compact Hausdorff space.

Let F be a set of paths in a k-graph A. A path § € W is a common extension
of the paths in F if for each p € F, we can write 8 = uf, for some 3, € W.
If in addition d(8) = \/MeF d(p), then B is a minimal common extension of the
paths in F'. We denote the set of all minimal common extensions of the paths in
F by MCE(F). Since MCE ({1, v}) = MCE(u, v), this definition is consistent with
Definition

Remark 3.3. If F' C A'is finite, then (), Z(1) = Ugenorr) Z(8)-

Proof of Theorem[31l. We first describe the topology on {0,1}*. Given disjoint
finite subsets F,G C A and p € A, define sets U to be {1} if u € F, {0} if

p € G and {0,1} otherwise. Then the sets N(F,G) := [[,c UFY where F,G

HEA
range over all finite disjoint pairs of subsets of A form a base for the topology on

{0, 1}~
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Clearly, « is a homeomorphism onto its range, and hence the sets a (N (F, G))
are a base for a topology on W. Routine calculation shows that

o Y (N(F,@)) = U 2w \(UZ(V))=
)

HEMCE(F veG

so the sets Z(p) \ U e Z(1v) = Z(p \ G) are a base for our topology.

To finish the proof, it suffices to show that for p € A, a finite subset G C s(u)A
and A € Z(u\ G), there exist o € A and a finite F  [J¥_ (s(a)A%) such that
A€ Z(a\F)C Z(u\G). Let N := (V,cqd(pr)) Ad(N) and a = A(0,N). To
define F, we first define a set F}, associated to each v € G, then take F' = | J, . F).
Fix v € G. We consider the following cases:

(1) If N > d(pwv) or MCE(a, pv) = 0, let F,, = 0.

(2) If N # d(pv) and MCE(a, pv) # 0, define F, as follows:
Since N %# d(pv), there exists j, < k such that N;, < d(uv);,. Hence each
v € MCE(a, pv) satisfies d(v);, = (N V d(uv));, > N;,. Define F, = {y(N,N +
e;,) v € MCE(a, pv)}. Since A is finitely aligned, F), is finite.

We now show that A € Z(«a \ F). We have A € Z(«) by choice of a. If FF = ()
we are done. If not, then fix v € G such that F, # 0, and fix ¢ € F,. Then
e =y(N,N +e¢,,) for some v € MCE(a, pv). Then d(X);, = N;, < (N +e¢j,);, =
d(ae);,. So A ¢ Z(ae), hence A € Z(a'\ F).

We now show that Z(a\ F) C Z(p\ G). Fix € Z(a\ F). Since a € Z(u),
we have f € Z(u). Fix v € G. We show that § ¢ Z(uv) in cases:

(1) Suppose that N > d(uv). Since g € Z(a) = Z(A(0,N)) and X ¢ Z(uv), it
follows that 8 ¢ Z(uv).
(2) If N # d(uv), then either
(a) MCE(«, pv) = ), in which case 8 € Z(«) implies that 8 ¢ Z(uv); or
(b) MCE(a, pv) # 0. Then for each v € MCE(«, uv), we know (N, N +
e;,) #7(N,N +e;j,). It then follows that 5 ¢ Z(uv). O

Lemma 3.4. Let {v™} be a sequence of paths in A such that
(i) d(™ V) > d(v™) for alln € N, and
(it) v (0,d(v™)) = v™ for all n € N.
Then there exists a unique w € W with d(w) =\/
™ for allm € N.

PT’OOf. Let m = V d(y(")) c (N U {oo})k Then
(3.2) For a € N¥ with a < m, there exists N, € N such that d(z®™e)) >
a.

For each (p,q) € Q. apply B2) with a = ¢ and define w(p, q) = vV (p, q).
Routine calculations using (3.2]) show that w : Q4 ,,, — A is a well-defined graph
morphism with the required properties. O

d(™) and w (0,d(v™)) =

neN

neN
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Proof of Theorem[32. Fix v € AY. We follow the strategy of [9, Theorem 2.2]
to show Z(v) is compact: since « is a homeomorphism onto its range, and since
{0,1}* is compact, it suffices to prove that a(Z(v)) is closed in {0, 1}*. Suppose
that (w™),en is a sequence in Z(v) such that converging to f € {0, 1}*. We seek
w € Z(v) such that f = a(w). Define A = {v € A : a(w™)(v) = 1 as n — oo}.
Then A # () since v € A. Let d(A) :=\/, ., d(v).

vEA

Claim 3.2.1. There ezists w € vA“Y such that:

e d(w) >d(u) forall p € A, and
e w(0,n) € A for all n € N* with n < d(A).

Proof. To define w we construct a sequence of paths and apply Lemma [3.4. We
first show that for each pair u, v € A, MCE(u, v) N A contains exactly one element.
Fix u,v € A. Then for large enough n, there exist * € MCE(u,v) such that
= B"(w")’. Since MCE(p, v) is finite, there exists M such that w™ = M (w™)
for infinitely many n. Define §,, := 8. Then j,, € A. For uniqueness, suppose
that ¢ € MCE(u, v) N A. Then for large n we have 3, = w"(0,d(n) V d(v)) = ¢.
Since A is countable, we can list A = {v,v?,...,v™, ... }. Let y! := v} and
iteratively define y™ = Byn-1,n. Then d(y") = d(y" ') v d(v") > d(y* '), and
y"(0,y" 1) = y" 1. By Lemma[3.4] there exists a unique w € W satisfying d(w) =
d(A) and w(0,d(y™)) = y™ for all n. It then follows from ([B.2) that w(0,n) € A for
all n S d(A) DClaim

To see a(Z(v)) is closed, fix A € A. We show that a(w™)()\) — a(w)(A). If
a(w)(A) = 1, then A = w(0,d()\)) € A by Claim B.21] and thus a(w™)(\) — 1
as n — 0o0. Now suppose that a(w)(A) = 0. If d(\) £ d(w), then X ¢ A by
Claim B.2.1] forcing al(w™)(\) — 0. Suppose that d(\) < d(w). Since w(0,d(\)) €
A, we have w™(0,d()\)) = w(0,d()\)) for large n. Then a(w)(\) = 0 implies
that w(0,d(\)) # A. So for large enough n we have w™(0,d(\)) # A, forcing
a(w™)(\) — 0. O

Remark 3.5. It has been shown that OA is a closed subset of W [0, Lemma 5.12].
Hence 0A, with the relative topology, is a locally compact Hausdorff space. Con-
sider the 2-graph of Example 211l For each n € N, we have w” € AS®. Notice
that w™ — o ¢ AS>®. So AS* is not closed in general, and hence is not locally
compact.

4. REMOVING SOURCES

Theorem 4.1. Let A be a finitely aligned k-graph. Then there is a finitely aligned
k-graph A with no sources, and an embedding v of A in A If A is row-finite, then
s0 is A.

Definition 4.2. Define a relation ~ on V, := {(z;m) : x € dA,m € N¥} by:
(x;m) =~ (y;p) if and only if
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(V1) z(m Ad(x)) = y(p Ad(y)); and

(V2) m—mAd(z) =p—pAd(y).
Definition 4.3. Define a relation ~ on Py := {(z;(m,n)) : x € OA,m < n € N¥}
by: (z;(m,n)) ~ (y; (p,q)) if and only if

(P1) z(m Ad(z),n Ad(x)) = y(p Ad(y),q A d(y));

(P2) m—mAd(x) =p—pAd(y); and

(P3) n—m =q—p.

It is clear from their definitions that both ~ and ~ are equivalence relations.
Lemma 4.4. Suppose that (x; (m,n)) ~ (y; (p,q)). Thenn—nAd(x) = g—qNd(y).
Proof. Tt follows from (PIl) and (P3)) that

n—nAd@)—(m-—mAdx))=q—qgNd(y) - (p—pAdy))
The result then follows from (P2). O

Let Py := P/ ~ and Vi = Vi/ =~. The class in Py of (x;(m,n)) € Py is
denoted [z; (m,n)|, and similarly the class in V}, of (x;m) € V} is denoted [z;m].

To define the range and source maps, observe that if (x;(m,n)) ~ (y;(p,q)),
then (x;m) = (y;p) by definition, and (z;n) = (y;q) by Lemma 4. We define
range and source maps as follows.

Definition 4.5. Define 7, s : ﬁ\ — f/x by:
[z (m,n)]) = le;m]  and  5([z; (m,n)]) = [z, n].

We now define composition. For each m € N¥, we define the shift map o™ :
Unsm A" = A by a™(N)(p,q) = AMp + m, g+ m).

Proposition 4.6. Suppose that A is a k-graph and let [z; (m,n)] and [y; (p,q)] be
elements of Py satisfying [x;n] = [y;p]. Let z := x(0,n A d(z))o? Wy, Then

(1) z € OA;

(2) mAd(x) =mAd(z) and n Nd(z) =nAd(z);

(3) x(m Ad(z),n Ad(z)) = z(m Ad(z),n Ad(z)) and y(p A d(y),q A d(y)) =

z(n Ad(z), (n+q—p) Ad(z)).

Proof. Part (1) follows from [0, Lemma 5.13], and (2) and (3) can be proved as in
[5, Proposition 2.11]. O

Fix [z;(m,n)],[y; (p,q)] € Py such that [z;n] = [y;p], and let z = x(0,n A
d(z))oP ¥y, That the formula

(4.1) [z; (m,n)] o [y; (p, @)] = |z (m,n 4 q — p)]
determines a well-defined composition follows from Proposition 4.6
Define id : V) — Py by idpm) = [x; (m, m)].

Proposition 4.7 ([5, Lemma 2.19]). A= (IA/X,IBX,F, s,0,id) is a category.
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Definition 4.8. Define 67/5 — NF by d(v) =  for all v € Vi, and d([z; (m,n)]) =
n —m for all [x; (m,n)] € Py.

Proposition 4.9 ([5 Theorem 2.22]). The map d defined above satisfies the fac-
torisation property. Hence with A as in Proposition [{.7, (A, d) is a k-graph with
no sources.

Example 4.10. If we allow infinite receivers, our construction yields a different k-
graph to Farthing’s construction in [5, §2]: consider the 1-graph E with an infinite
number of loops f; on a single vertex v:

fi

v

Here we have E<*® = (), so Farthing’s construction yields a 1-graph E = FE.
Since v belongs to every finite exhaustive set in F, we have 0F = E. Furthermore

[f5:p] = [fi;p] = [v; p] for all i, j,p € N, and
[ (0 @) = [fis (. @)] = [vs (p — 1,4 — 1)]
for all 7, 7, p,q such that 1 < p < ¢. Thus there is exactly one path between any

two of the added vertices, resulting in a head at v, yielding the graph illustrated
below

fi

v( — ...

It is intriguing that following Drinen and Tomforde’s desingularisation, a head
is also added at infinite receivers like this, and then the ranges of the edges f;
are distributed along this head — we cannot help but wonder whether this might
suggest an approach to a Drinen-Tomforde desingularisation for k-graphs.

4.1. Row-finite 1-graphs. While one expects this style of desourcification to
agree with adding heads to a row-finite 1-graph as in [I], this appears not to have
been checked anywhere.

Proposition 4.11. Let E be a row-finite directed graph and F be the graph obtained
by adding heads to sources, as in [Il pd]. Let A be the 1-graph associated to E.

Then A = F*, where F* is a the path-category of F.

Proof. Define ' : Py — F* as follows. Fix x € OF and m,n € N. Then either
x € E* orx € E* and s(z) is a source in E. If x € E*, define n/((z; (m,n))) =
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x(m,n). For x € E*, let u, be the head added to s(z), and define n'((x; (m,n))) =
(zpg)(m,n). It is straightforward to check that 7" respects the equivalence relation
~ on Py. Define n: A — F* by n([x; (m,n)]) = n'((z; (m,n))). Easy but tedious
calculations show that n is a graph morphism. N

We now construct a graph morphism £ : F* — A. Let v € F*. To define ¢
we first need some preliminary notation. ¢ will be defined casewise, broken up as
follows:

(i) v € E¥,
(ii) r(v) € E* and s(v) € F*\ E*, or

(iii) r(v),s(v) € F*\ E*.

If v e B fix a, € s(v)OE. If v has r(v) € E* and s(v) € F*\ E*, let
p, = max{p € N:v(0,p) € E*}. Then v(p,) is a source in £E*, and v(0,p,) € OF.
If v € F*\ E*, then v is a segment of a head pu, added to a source in E*, and we
let g, be such that v = p1,(qy, ¢, + d(p)).

We then define £ by

[vaw,; (0,d(v))] if ve B*
() = (0, ); (0, d(v))] if r(v) € E* and s(v) ¢ E*
[r(10); (qvs @p +d(w))] i r(v), s(v) € F*\ E7.

Again, tedious but straightforward calculations show that £ is a well-defined
graph morphism, and that {on =15 and no{ = 1p-. U

When A is row-finite and locally convex, Proposition implies that AS® =
OA. In this case our construction is essentially the same as that of Farthing [5], §2],
with notation adopted as in [I7]. If A is row-finite but not locally convex, then
A= C OA (Example 217] shows that this may be a strict containment). Thus it
is reasonable to suspect that our construction could result in a larger path space
than Farthing’s. Interestingly, this is not the case.

Proposition 4.12. Let A be a row-finite k-graph. Suppose that x € N\ A= and
m < n € Nk, Then there exists y € A such that (z; (m,n)) ~ (y; (m,n)).

Proof. Since x ¢ A=>, there exists ¢ > n A d(z) and i < k such that ¢ < d(z),
¢; = d(x);, and x(q)A° # 0. Let

J:={i<k:q =d(z); and z(q)A“ # 0}.

Since x € JA, for each E € x(q)FE(A) there exists t € N¥ such that z(q, ¢+t) € E.
Since ¢; = d(x); for all ¢ € J, the set |J,.; #(¢)A* contains no such segments of
x, and thus cannot be finite exhaustive. Since A is row-finite, (J;., z(q)A% is
finite, so (J;c; #(q)A® is not exhaustive. Thus there exists p € x(q)A such that
MCE(u,v) = 0 for all v € {J,.; #(¢)A%. By [13, Lemma 2.11], s(p)A=> # 0. Let
z € s(u)A=>°, and define y := (0, ¢)uz. Then y € AS* by [13, Lemma 2.10].
Now we show that (z; (m,n)) ~ (y; (m,n)). Condition (P3)) is trivially satisfied.
To see that (PIl) and (P2)) hold, it suffices to show that nAd(z) = nAd(y). Firstly,
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let i € J. If d(uz); # 0, then (p2)(0,d(pn) + e;) € MCE(p, v) for v = (u2)(0,¢;) €
r(p)A% = x(q)A%, a contradiction. So for each i € J, d(uz); = 0, and hence
d(y); = d(x);. Now suppose that i ¢ J. Then either x(¢)A% = () or ¢; < d(x);. If
z(q)A% = () then d(y); = d(z);. So suppose that ¢; < d(z);. Since n A d(z) < gq, it
follows that n; < d(z); and n; < ¢; < d(y);, hence (n A d(x)); = n; = (n Ad(y));.
SonAd(z)=nAd(y). O

The following result allows us to identify A with a subgraph of A

Proposition 4.13. Suppose that A is a k-graph, and that A € A. Then s()\)
0. Ifz,y € s(\)OA, then Az, Ay € OA and (Az;(0,d(N))) ~ (Ay; (0,d(N))

)-
over, there is an injective k-graph morphism v : A — A such that for A e A
t(A) = [Az; (0,d(N))] for any x € s(A)OA.

Proof. By [6, Lemma 5.15], we have vOA # ) for all v € A°. In particular, we have
s(A)ON # (). Let z,y € s(A)OA. Then [0, Lemma 5.13(ii)] says that Az, \y € OA.
It follows from the definition of ~ that (Ax;(0,d(\))) ~ (Ay;(0,d()N))). Then
straightforward calculations show that that ¢ is an injective k-graph morphism. [J

More-

We want to extend ¢ to an injection of W, into W5. The next proposition shows
that any injective k-graph morphism defined on A can be extended to Wj.

Proposition 4.14. Let A,T" be k-graphs and ¢ : A — T" be a k-graph morphism.
Let x € Wy \ A, then ¢(x) : Qi a@) — Wr defined by ¢(x)(p, q) = ¢(x(p,q)) belongs
to WF.

Proof. Follows from ¢ being a k-graph morphism. U

In particular, we can extend ¢ to paths with non-finite degree. We need to know
that composition works as expected for non-finite paths.

Proposition 4.15. Let A,T" be k-graphs and ¢ : A — T" be a k-graph morphism.
Let A € A, x € s(\)Wy, and suppose that n € NF satisfies n < d(x). Then

(1) ¢(Mo(x) = ¢(Az); and
(2) 0™(d(x)) = p(o"(x)).
Proof. Follows from ¢ being a k-graph morphism. O

Remark 4.16. Tt follows that the extension of an injective k-graph morphism to

Wy is also injective. In particular, the map ¢ : A — A has an injective extension
L WA — WT\‘

We need to be able to ‘project’ paths from A onto the embedding t(A) of A. For
y € OA define

(4.2) m([y; (m,n)]) = [y; (m Ad(y),n Ad(y))].
Straightforward calculations show that 7 is a surjective functor, and is a projec-

tion in the sense that 7(7([y; (m,n)])) = 7([y; (m,n)]) for all [y; (m,n)] € A. In
particular, 7|,n) = id, ).
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Lemma 4.17. Let A be a k-graph. Suppose that \, i € A, and that \ € Z(pw). Then
w(A) € Z(m(pw)). If d(m(N)); > d(mw(p)); for some i <k, then d(u); = d(mw(p));.

Proof. Write A\ = [z; (m,m 4+ d()\))]. Then p = [z; (m,m + d(u))], so
T(A) = [z; (m Ad(z), (m + d(N\)) Ad(z))], and
m(p) = [z; (m Ad(z), (m+ d(p)) Ad(z))].

Since d(A) > d(u), it follows that 7(A) € Z(mw(u)).
If d(mw(N)); > d(m(p));, then d(z); > m; + d(u);, so

d(m(p)i = mi + d(p); — my = d(p);. [
Lemma 4.18. Let A be a k-graph and p,v € A. Then
m(MCE(u, v)) € MCE(7 (), w(v)).

Proof. Suppose that A € MCE(u, v). By Lemma .17 we have w(\) € Z(m(u)) N
Z(m(v)), hence d(m(A)) = d(m(u)) V d(7(v)).

It remains to prove that d(mw(\)) = d(n(p)) V d(mw(v)). Suppose for a contra-
diction that there is some ¢ < k such that d(7())); > max{d(7(n));, d(w(v));}.
By Lemma [A17 we then have d(m(p)); = d(p); and d(w(v)); = d(v);. Then
d(\); > d(m(N)); > max{d(u);, d(v);}, contradicting that A € MCE(u, v). O

Lemma 4.19. Let A be a k-graph, and let p, A € ((A°)A be such that d(\) = d(y)
and w(A) = w(u). Then A = p.

Proof. Since i, A € t(A°)A and d(\) = d(), we can write A = [z (0,n)] and p =
[y; (0,n)] for some z,y € OA and n € N¥. We will show that (z; (0,n)) ~ (y; (0,n)).
Conditions (P2)) and (P3)) are trivially satisfied. Since

[2;(0,n Ad(x))] = 7(A) = 7(p) = [y; (0,n Ad(y))],

we have (z; (0,nAd(z))) ~ (y; (0,nAd(y))). Hence x(0,nAd(z)) = y(0,nAd(y)),
and (P1l) is satisfied. O

Proof of Theorem[{.1. The existence of A follows from Proposition [£9] and the
embedding from Proposition [

To check that A is finitely ahgned fix g,v € A, and a € (A°)Ar(p). Then
| MCE(u, v)| = | MCE(ap, av)|. Since A is finitely ahgned | MCE(7(ap), m(av))|
is finite. We will show that | MCE(au, av)| = | MCE(7(au), m(av))|.

It follows from Lemma I8 that | MCE(au, av)| > | MCE(r(au), m(av))|. For
the opposite inequality, suppose A, 5 are distinct elements of MCE(au, av). Then
d(X\) = d(B). Since r(ap),r(av) € (A°), Lemma EI9 implies that 7(\) # 7(3).
So | MCE(au, av)| = | MCE(m(ap), m(av))|.

For the last part of the statement, we prove the contrapositive. Suppose that A
is not row-finite. Let [z;m] € A° and ¢ < k be such that |[x; m]A%| = co. Then
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for each [y; (n,n + )] € [z;m]A% we have [y;n] = [z;m], so [z; (m,m + ¢;)] #
[y; (n,n + e;)] only if (PI) fails. That is,
(4.3) z(mAd(z),(m+e)ANd(z)) ZynAd(y), (n+e) Ad(y)).

Since |[z; m]A%| = oo, there are infinitely many [y; (n, n—+e;)] € [z; m]A® satisfying
(@3). Hence |x(m A d(x))A%| = oco. O

Remark 4.20. Suppose that A is a finitely aligned k-graph, that x € 0A and
that £ C x(0)A. Since ¢ : A — «(A) is a bijective k-graph morphism, we have
E € x(0)FE(A) if and only if «(E) € [x; 0]FE(L(A)).

The following results show how sets of minimal common extensions and finite
exhaustive sets in a k-graph A relate to those in A.

Proposition 4.21 ([5, Lemma 2.25]). Suppose that A is a finitely aligned k-graph,
and that v € (A°). Then E € vFE(L(N)) implies that E € vFE(A).

Lemma 4.22. Let A be a finitely aligned k-graph and let p,v € «(A). Then
MCE,s)(p, v) = MCE3(u, v).

Proof. Since «(A) C A, we have MCE, () (11, v) C MCE5(,v). Suppose that A €
MCEjz(p, v). It suffices to show that A € ¢(A). Write u = [x; (0,n)], v = [y; (0, q)]
and A = [z;(0,n V ¢)]. Then X\ € Z(u) N Z(v) implies that d(z) > n V g, hence
A€ (A). O
Remark 4.23. Since there is a bijection from A™"(u, v) onto MCE(u, v), it follows
from Lemma A22 that A™® (1, v) = o(A)™® (1, v) for all j1, v € o(A).

5. TOPOLOGY OF PATH SPACES UNDER DESOURCIFICATION

We extend the projection 7 defined in (£2) to the set of infinite paths in K,
and prove that its restriction to ¢(A°)A* is a homeomorphism onto +(9A). For
z € o(AOYA®, let p, = V/{p € NF : 2(0,p) € ¢(A)}, and define 7(z) to be the
composition of z with the inclusion of Q,, in Qj 44). Then 7(x) is a k-graph
morphism. Our goal for this section is the following theorem.

Theorem 5.1. Let A be a row-finite k-graph. Then m : ((AY)A® — (D) is a
homeomorphism.

We first show that the range of 7 is a subset of ¢(OA).

Proposition 5.2. Let A be a finitely aligned k-graph. Let x € L(AO)K‘X’. Suppose
that {y, : n € N*} C OA satisfy [yn; (0,n)] = 2(0,n). Then
(i) lim L(yn) = m(x) in Wx; and
neN
(ii) there exists y € ON such that w(x) = «(y), and for m,n € N¥F withm <n <
P we have w(x)(m,n) = t(y(m,n)).
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Proof. For part (i), fix a basic open set Z(u \ G) C Wy containing 7(x). Fix

n > N =\, c.d(uv). We first show that t(y,) € Z(u . Since 7(z) € Z(u), we

have p € «(A). Since n > d(u), we have [y,; (0,d(u
Let a = .7 !(u) and z € s(a)OA. Then [y,; (0,d

(BI) gives ¢(yn(0, d(p) A d(yn))) = 1((az)(0, d(p))) :
We now show that t(y,) ¢ U,cq Z2(nv). Fix v € G. If d(y,) # d(uv), then

trivially we have «(y,) ¢ Z(uv). Suppose that d(y,) > ). Si

we have

~—

2(0,d(pv)) = lyn; (0,n)](0, d(pr)) = t(ya) (0, d(pv)) € 1(A).

S0 t(yn)(0, d(pr)) = (0, d(pv)) = 7(x)(0, d(pv)) # pv.
(ii), recall that ¢ is injective, then we can define y : €, — A by

rt
t(y(m,n)) = m(x)(m,n). So 1(y) = m(x). To see that y € IA, fix m € N* such that
m < d(y) and fix E € y(m)FE(N). We seek t € N¥ such that y(m,m +t) € E.
Let p:=m +V ,cpd(u). Then since m < d(y) = p,

[Yp; (0,m)] = (0, m) = m(x)(0,m) = (y(0,m)) = [y(0,m)y"; (0, m)]
for some y' € y(m)OA. So (yp; (0,m)) ~ (y(0,m)y’; (0,m)), hence

yp(0,m A d(yp)) = (y(0,m)y')(0,m A d(y(0,m)y’)) = y(0,m)

by (PI)). In particular, this implies that y,(m) = y(m). Since y, € OA, there exists
t € N¥ such that y,(m,m +t) € E. So m +t < p, and we have

Wyp(m,m+1)) = [yp; (0, p)](m, m +1) = (0, p)(m, m +1) = z(m, m +1t).
So z(m,m +t) € «(A), giving
yp(m,m+1)) =xz(m,m+1t)=n(z)(m,m+1t)=1ly(m,m+1)).
Finally, injectivity of ¢ gives y(m,m +t) = y,(m,m +t) € E. O

The next few lemmas ensure that our definition of 7 on A% is compatible with
(£2)) when we regard finite paths as k-graph morphisms. The following lemma is

also crucial in showing that 7 is injective on t(A)A%.

Lemma 5.3. Let A be a finitely aligned k-graph. Let x € L(AO)KC’O. Suppose that
w € OA satisfies m(z) = t(w). Then z(0,n) = [w; (0,n)] for all n € N

Proof. Fix n € N¥. Let 2 € A be such that x(0,n) = [2;(0,n)]. We aim to show
that (z;(0,n)) ~ (w;(0,n)). That (P2) and (P3]) hold follows immediately from
their definitions. It remains to verify condition (PII):

(5.1) 2(0,n A d(z)) = w(0,n A dw)).
Since 7(z) = ¢(w) we have d(w) = p,. Thus
[w; (0,n A pe)] = L(w(0,n A py)) = 2(0,n A ps) = [2 (0,7 A p)].
So (w; (0,n A ps)) ~ (2;(0,n A py)). It then follows from (PI]) that
(5.2) w(0,n Apg) =2(0,nAps).
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Hence n A d(z) > n A p,. Furthermore,
z(0,n Ad(2)) = [z (0,n Ad(2))] = t(2(0,n Ad(2))) € t(A)

implies that n Ap, > n Ad(z). Son Ad(z) =n A p,, and (5.2) becomes (5.1), as
required. Il

Remark 5.4. Suppose that A be a finitely aligned k-graph, and that y € JA and
m,n € N¥ satisfy m < n < d(y). Then

y; (m,n)] = [0 (); (0,n —m)] = (6™ (y)(0,n — m)) = 1(y(m, n)),
So [y; (m,n)] = «(y(m, n)).
The next proposition shows that our definitions of 7 for finite and infinite paths

are compatible:

Proposition 5.5. Let A be a finitely aligned k-graph. Suppose that x € K“, and
m <n € NF. Then (x(m,n)) = m(z) (M A pe,n A ps).

Proof. Fix y € OA such that w(z) = ¢(y). Then
m(z(m,n)) = m([y; (m,n)] by Lemma
= [y (m Ape,nApe)]  since d(y) = ps

= (y(m A pz,n A pz)) by Remark [5.4]
= m(x)(m A pg,n A pg) by Proposition [5.2((ii) . O

We can now show that 7 restricts to a homeomorphism of L(AO)KC’O onto t(OA).
We first show that it is a bijection, then show it is continuous. Openness is the
trickiest part, and the proof of it completes this section.

Proposition 5.6. Let A be a finitely aligned k-graph. Then the map 7 : L(AO)KC’O —
t(OA) is a bijection.

Proof. That 7 is injective follows from Lemma b5.3. To see that 7 is onto ¢(OA),
let w € A and define x : Q, — A by z(p,q) = [w;(p,q)]. Then p, = d(w), and

r(x) € t(A). To see that 7(x) = t(w), fix m,n € N¥ with m <n < d(w). Then
m(x)(m,n) = z(m,n) by Proposition
= [w; (m,n)] by Lemma
= 1(w(m,n)) by Remark [5.4]
= 1(w)(m,n) by Proposition [L.14 O

Proposition 5.7. Let A be a finitely aligned k-graph. Then  : L(AO)K‘X’ — 1(ON)
1S CONINUOUS.
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, then

Proof. Fix a basic open set Z(u \ G) € Wiz. If Z(p\ G) N(OA) =
A) # 0, and fix

7 Z(u\ G)Nu(dA)) = 0 is open. Suppose that Z(u\ G) N (0
ye€ Z(u\G)Nu(OA). Let FF=GnNu(A). We will show that

(5.3) 7 HNy) e Z(u\ F)N (KC’O Nr ' (((A))) C 7 H(Z(p\ G) N L(ON)).
Since y € Z(u), it follows that 7' (y) € Z(u). To see that 77! (y) & Uzep Z2(1B),
¢
<

t(A). Since

fix § € F. First suppose that d(uf3) £ d(y). Then 7 (y)(0,d(up)) ¢ «(
d(y), then

uB € t(A), we have 7= (y)(0,d(uB)) # pB. Now suppose that d(uf) <
7 (y)(0,d(1B)) = y(0,d(B)) # up.

We now show that Z(p \ F) N (ADA® C 7 1(Z(n \ G) N (OA)). Let

Z(p\F)Nu(A%)A>. Tt suffices to show that 7(z) € Z(p\G). Firstly, 7(2)(0, d())

2(0,d(p)) = p € o(A). To see that 7(2) ¢ U, Z(nv), fix v € G. If d(,ul/)

d(m(2)), then trivially m(z) ¢ Z(uv). Suppose that d(uv) < d(n(z)). If v
t(A), then 7m(2)(0,d(pv)) # pv. Otherwise, v € ¢(A), then v € F and we hav

m(2)(0,d(uv)) = 2(0, d(pv)) # pv.

Proposition 5.8. Let A be a row-finite k-graph. Then m : ((A°)A> — (OA) is
open.

Proof. Fix m(y) € m(Z(u\ G) N u(A°)A®). Let w € A be such that m(y) = t(w).
Define A := y(0,V .o d(pv)), and

F = {s(m(N)e(A%) = d(N); > d(m(y))i}-

N

Dmﬂﬂ?\ll Mm

We claim that
w(y) € Z(r(AN)\ F)Nu(OA) C n(Z(n\ G) N L(AO)/N\OO).

First we show that m(y) € Z(w(\)). It follows from Lemma that m(\) =
[w; (0,d(A) A d(w))]. Since d(w) = d(7(y)), Proposition 5.5 implies that
0
S

m(y)(0,d(w(A))) = 7(y)(0, d(A) A d(w)) = 7(y(0,d(A))) = m(A).
Now we show that 7(y) &€ U;cp Z(m(N\)f). Fix f € F; say d(f) = e;. Then by
definition of F', d(\); > d(7(y)); = d(w);, and thus

d(W(A)) = min{d(A);, d(w)i} = d(w); = d(7(y)):-
So d(n(y)) # d(m , and hence 7(y) ¢ Z(n(\)f) as required.

Now we show that Z( (AW \ F) N u(0A) € m(Z(u\ G) N 1(A°)A®). Let 7(j3)
Z(m(A) \ F) Ne(0A). We aim to show that g € Z(u\ G). Since Z(\) C Z(pu\ G
it suffices to show that § € Z(\). Clearly g € Z(m(A\) \ F). If d(\) = d(x ()\))
then m(A\) = X and we are done. Suppose that d(\) > d(m()\)), and let 7 =
B(d(m(X)),d(N)). We know that § € Z(m(\)). We aim to use Lemma .19 to show
that 7 = A(d(w(A)),d(N)). Fix ¢ < k such that d()\); > d(w()));. Then since
d(m(N)) = d(A) A d(w), we have d(\); > d(w); = d(7(y));. Now € Z(w(A\) \ F)
implies that 7(0,¢;) ¢ F. In particular, 7(0,¢;) ¢ ¢(A). We claim that d(7 (7)) = 0.

€
),
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Suppose, for a contradiction, that d(m(7)); > 0 for some j < k. Then 7(7)(0,¢;) =
7(0,¢e;) ¢ t(A). But 7(7) € t(A) by definition of 7. So we must have d(7 (7)) = 0,
which implies that

(1) = r(7) = s(r(A)) = 7(A(d(7(A)), d(N)))-
Now Lemma, implies that 7 = A(d(mw())), d(N)). Then
B0, A) = B(0,d(7(A))7 = m(MA(d(7(A)), d(A)) = A. [

Example 5.9. We can see that 7 is not open for non-row-finite graphs by con-
sidering the 1-graph E from Example .10 with ‘desourcification” E. Observe that
Z(py) N o(E°)YA® = {pype---} is open in F, and 7(Z(u1) N (E°)E>) = {v}.
Since 0F = FE, any basic open set in JF containing v is of the form Z(v \ G)
for some finite G C E'. Since E' is infinite, there is no finite G C E' such that
Z(v\ G) C {v}. Hence {v} is not open in E, and 7 is not an open map.

Proof of Theorem[5.1. Propositions [5.6] £.7 and 5.8 say precisely that 7 is a bijec-
tion, is continuous, and is open. L]

Remark 5.10. Although 7T|L( A0)Roe is open for all row-finite k-graphs, it behaves
particularly well with respect to cylinder sets for locally convex k-graphs. The
following discussion and example arose in preliminary work on a proof that = is
open when A is row-finite and locally convex. We have retained this example since
it helps illustrate some of the issues surrounding the map .

Denote our standard topology for a finitely k-graph by 71. The collection {Z(u) :
@ € A} of cylinder sets also form a base for a topology: they cover Wy, and if
r € Z(A) N Z(v), then z € Z(x(0,d(\) Vd(v))) C Z(\) N Z(v). This topology,
denoted 7y, is not necessarily Hausdorff: we cannot separate any edge from its
range: if r(f) € Z(u) then p = r(f), and thus f € Z(u).

It may seem reasonable to expect that {Z(u) NOA : p € A} is a base for the
restriction of 7, to JA. However, this is not so. To see why, consider the 2-graph
of Example 2.T1l Let y be the boundary path beginning with f,. So x,y € OA.
Let p be such that z € Z(u). Then p = xq...x, for some n € N, so y € Z(u)
also. So the topology 71 is not Hausdorff even when restricted to dA. Endowed
with 79, it is easy to see how to separate these two points: y € Z(fy) N OA and
x € Z(r(x) \ {fo}) NOA, and these two sets are disjoint.

If we restrict ourselves to locally convex k-graphs, 7 and 75 do restrict to the
same topology on OA: certainly, for each p € A, we can realise a cylinder set Z(u)
as a set of the form Z(p\ G) by taking G = ). Now suppose that z € Z(u\ G)NIA.

We claim that with
e = a0, (\/ () A d(a))
acG
we have © € Z(v,) NIA C Z(u \ G) N OA. Clearly we have x € Z(v,) N OA.
The containment requires a little more work. Clearly y € Z(u). Fix a € G. We
will show that y ¢ Z(u«a). If d(y) # d(pa), then trivially y ¢ Z(u«). Suppose
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that d(y ) > d(,ua) We claim that d(z) > d(pa): suppose, for a contradiction,
that d(z) # d(pa). Then there exists ¢ < k such that d(z); < d(pw);. Then
d(x); = d(vg);. Since z € 9A, we must have z(d(v,))A* ¢ x(d(v,))FE(A). Since
A is locally convex, Lemma implies that y(d(v,))A% = x(d(v,))A% = 0. So
d(y); = d(v); = d(z); < d(pa);, a contradiction. Hence d(x) > d(pa). This
implies that d(v,) > d(ua). So

y(0,d(pa)) = v5(0, d(pua)) = (0, d(par)) # pa.

Proposition 5.11. Suppose that A is a row-finite, locally convex k-graph, and let
p € L(ADA. Then w(Z(p) Nu(AY)A>®) = Z(7(n)) Ne(OA). In particular, 7 is open.

Proof. We first show that m(Z(u) N o(AY)A®) C Z((u)) N (OA). Suppose that
m(y) € m(Z(p\ G) N L(A°)A>). Trivially 7(y) € 1(dA). We will show that m(y) €
Z(m(p) \ 7(G)). Since y(0,d(u)) = p, we have

m(p) = m(y(0,d(p))) = w(y)(0, d(p) A d(m(y)))-
) .

So 7(y) € Z(m(u)). Furthermore, d(m(u)
Fix v € G. We will show that 7r( ) & Z(m(uv)).
o

Lemma !Il!] implies that

() # 7 (y(0, d(pv)) y)(0, d(pv) Ad(x(y)))-

) =
So 7(Z(1\ G) Nu(A")A*) C Z(w(p) \ 7(G)) N L(AA).

Now suppose that t(w) € Z(m(u)) N (OA), and let y = 7 1(1(w)). We show
that y € Z(p). Write p = [2;(0,d(u))]. Then 7(u) = [2;(0,d(un) A d(z))] and
y(0,d(p)) = [w: (0, d())). We claim that (;(0,d())) ~ (w; (0, d())). That (B2)
and (P3)) hold follows immediately from their definition. To show that (PII) is
satisfied, we must show that z(0,d(u) A d(z)) = w(0,d(n) A d(w)). Since 7 (y) €
Z(m(p)), we have y € Z(mw(p)). Then

[w; (0, d(m(1))] = y(0, d(m(p))) = 7(u) = [2 (0, d(p) A d(2))].
So (w; (0,d(m(w)))) ~ (2;(0,d(p) Ad(2))). Then (PI)) implies that
w(0,d(m(p))) = w(0, d(m(p)) A d(w)) = (0, d(p) A d(2)),

and d(m(p)) = d(p) A d(z). We will show d(p) A d(w) = d(m(p)). Fixi < k. We
argue the following cases separately:

(1) If d(m(p)); = d(p);, we have d(w) > d(w(un)) = d(p);. Hence (d(p) A

d(w)); = d(p); = d(m(p)):-

(2) If d(m(p))i < d(p)i, it requires a little more work:
Since d(p); > d(m(p)); = min{d(n);,d(2);}, we have d(m(p)); = d(z);. Then
z € ON implies that z(d(m(n)))A% ¢ z(d(m(p)))FE(A). By Lemma T3] we have
z(d(m(p)))A% = 0, and hence w(d(m(p)))A = 0. So d(w); = d(7(p)): < d(u):,
giving (d(p) A d(w)); = d(w)i = d(m(p))s- m
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6. HiGH-RANK GRAPH C*-ALGEBRAS

Definition 6.1. Let A be a finitely aligned k-graph. A Cuntz-Krieger A-family in
a C*-algebra B is a collection {t, : A € A} of partial isometries satisfying

(CK1) {s,:v € A"} is a set of mutually orthogonal projections;
(CK2) Susy = S whenever s(u) = r(v);

(CK3) spsu = > (ap) )eAminu) a5y for all p,v € A; and

(CK4) HHGE(SU susy,) = 0 for every v € A and E € vFE(A).

The C*-algebra C*(A) of a k-graph A is the universal C*-algebra generated by
a Cuntz-Krieger A-family {s) : A\ € A}.

Remark 6.2. The following Theorem appears as [5, Theorem 2.28]. Farthing alerted
us to an issue in the proof of the theorem. It contains a claim which is proved in
cases, and in the proof of Case 1 of the claim (on page 189), there is an error when
ip is such that m;, = d(z);, + 1. Then a;, = d(x);,, and [5, Equation (2.13)] gives
tiy < d(2); not t;, > d(z )20 as stated.

Theorem 6.3. Let A be a row-finite k-graph. Let C*(A) and C*(A) be generated by
the Cuntz-Krieger families {sy : A € A} and {t) : A\ € A}. Then the sum > vei(n0)t
converges strictly to a full projectionp € M(C*(A)) such that pC*(A)p = C*({t.n
A € A}), and sy — t,n) determines an isomorphism ¢ : C*(A) = pC*(A)p.

Before proving Theorem [6.3] we need the following results.

Proposition 6.4 ([5, Theorem 2.26]). Let A be a finitely aligned k-graph. If
{tr: X € A} is a Cuntz-Krieger A-family, then {ty : X\ € t(A)} is a CuntzKrieger
t(A)-family.

Remark 6.5. Let A be a finitely aligned k-graph. It follows from the universal
properties of C*(A) and C*(t(A)) that C*(A) = C*(L(A)).

Proposition 6.6 ([5, Theorem 2.27]). Let A be a finitely aligned k-graph, and let
{tx : A € A} be the universal Cuntz-Krieger A-family which generates C*(A). Then
C*(A) is isomorphic to the subalgebra of C*(A) generated by {t\ : X € t(A)}.

Lemma 6.7. Suppose that A is a finitely aligned k-graph. Let \ € K, and let N =
Ad(mw(N)),d(N)). Suppose that x € ON satisfies 1(r(z)) = r(N') and d(z)Ad(N') = 0.
Then X = [z;(0,d(\))].

Proof. Write A = [y; (0,d(\))], then X = [y; (d(A\) Ad(y), d(X))]. We must show that
(y; (d(N) Ad(y),d(N)) ~ (z;(0,d(XN)). That conditions (P2)) and (P3]) hold follows
immediately from their definitions. It remains to show that (PIJ) is satisfied. Since
d(xz) ANd(XN) =0, it suffices to show that y(d(\) A d(y)) = z(0). We have

(x(0)) = u(r(x)) = r(X) = [y d(N) A d(y)] = u(y(d() A d(y)))-
Injectivity of ¢ then gives y(d(\) A d(y)) = x(0). O
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Lemma 6.8. Let A € A. Let X = A(d(w()\)),d(\)) and define
k
G, = U{a € s(m(\)e(A)% : MCE(a, X') = 0.

Then Gy U{X} € s(m(\)FE(A).

Proof. Fix u € s(mw(X))A, and suppose that MCE(u, o) = 0 for all « € G. We
will show that MCE (g, X') # 0. Fix v € s(pu)AMVdA)=dw) - Then d(uv) > d(N).
It suffices to show that MCE(uwv, ') # 0. Write uv = [z; (0, d(,uu))]

We first show that d(\) A d(m(uv)) = 0. Suppose for a contradiction that
d(N)Ad(m(ur)) > 0. So we have d(N') Ad(uv) Ad(z) > 0, hence there exists ¢ < k
such that d(X\');,d(uv);, and d(z); are all greater than zero. Then (uv)(0,¢;) =
[2:(0, ;)] = ¢(2)(0,€;) € ¢(A). Since 7|,(a) = id,a) and 7(N) = s(7(N)) # X, we
have X ¢ «(A). This implies that (uv)(0,e;) # N (0,¢e;). So MCE((uv)(0,¢;),\) =
(0, and thus (ur)(0,¢;) € G,. But MCE(uv(0,¢;), uv) # (), which implies that
MCE(u, pv (0, €;)) # (. This contradicts our supposition that MCE(u, «) = ) for
all « € Gy. So d(N) Ad(m(uv)) = 0.

Since d(uv) > d(X'), we have

d(z) Nd(N) =d(z) Nd(pv) Ad(N) = d(m(pv)) Ad(N) =0

Since r(XN') = r(uv) = u(r(2)), it follows from Lemma [6.7 that X' = [z; (0, \)].
Thus pv = [2; (0, pv)] € MCE(uv, X). O

Proof of Theorem[6.3 Let A := C*({tx: A € «(A)}). Then A = C*(A) by Propo-
sition We will show that A is a full corner of C*(A).
Following the argument of [10, Lemma 2.10], the sum }_ . o)ty converges

strictly in M(C*(A)) to a projection p satisfying

taty, i T(A), 7(w) € u(A%);
6.1 tht'p = ®
(6.1) Piatub {0 otherwise.

The standard argument shows that p is a full projection in M(C*(A)). It follows
from (1) that A C pC*(A)p. Now suppose that A, u € t(A°)A. We will show that
ptatyp € A. If 5(\) # 5(p), then (CKI) implies that ptyt;p = 0 € A. Suppose that
s()\) = 5(p). We first show that

(6.2) Ald(m(A)), d(X)) = p(d(m(p)), d(p)).

Let z,y € OA such that A\ = [x;(0,d(\))] and u = [y; (0,d(p))]. Let
N = Md(m(A)), d(N)) = [z; (d(A) Ad(x),d(N)]  and
p' = pl(d(m(n)), d(p) = ly; (d(p) A d(y), d(p))].
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We claim that X = p/. Condition (P2)) is trivially satisfied, and (PI) and (P3])
follow from the vertex equivalence [z;d(\)] = S(A\) = s(u) = [y;d(p)]. Hence
N=u.

Claim 6.3.1. Let Gy := " {a € s(m(\))u(A)% : MCE(a, N') = 0}. Then

t)\/til = H (ts(w(A)) - tatZ)

a€eG)y

Proof. Lemma [6.8implies that G, U{\'} is finite exhaustive, so (CK4]) implies that

Il (o —tst) =o0.

BEG\U{N}
Furthermore,
[T (o = t5t5) = ( TT (brny = tati) ) oimey — tati)
ﬁGG)\U{)\’} aEG)y
= (T (tstmon = tate)) = (3t TT Ctmry = tat2)).
aeG)y aeG)y
Fix a € G. By [13| Lemma 2.7(i)],
vty (tamony = tath) = tuth — > totl =tut}.
~YEMCE(X o)
So
0= JI (twon —tstp) = I] (tswoy —tats) — tats. Octaim
ﬁGG)\U{)\’} aEG )

Now we put the pieces together:
ptat,p =it
= tryiniitzgy by 62)
=tz H (tsrin) — tali)ts by Claim [6.3.]

()
a€eG)y,

which is an element of A since w(\),m(u),a € «(A) for all @ € Gy. So A =

pC*(A)p. O

7. THE DIAGONAL AND THE SPECTRUM

For k-graph A, we call C*{s,s; : p € A} C C*(A) the diagonal C*-algebra of A
and denote it Dy, dropping the subscript when confusion is unlikely. For a commu-
tative C*-algebra A, denote by A(A) the spectrum of A. Given a homomorphism
7m: A — B of commutative C*-algebras, define by 7* the induced map from A(B)
to A(A) such that 7*(f)(y) = f(n(y)) for all f € A(B) and y € A.
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Theorem 7.1. Let A be a row-finite higher-rank graph. Let p € M(C*(A)) and

¢ : C*(A) = pC*(A)p be from Theorem[6.3. Then the restriction ¢|p, =: p is an
isomorphism of Dy onto pDzp. Let 7 : L(AO)K‘X’ — t(OA) be the homeomorphism
from Theorem [51], then there exist homeomorphisms hy : OA — A(Dy) and n :
L(AO)A>® — A(pDzp) such that the following diagram commutes.

LAY A T 4(OA)

n l l hpot !
A(pD;p) p A(Dy)

As in [I1], for a finite subset F' C A, define
VF = | JMCE@G) = | {}e (Y uA:dN) =\ d(w)}.
GCF GCF pneG neq

Lemma 7.2. Let A be a finitely aligned k-graph and let F be a finite subset of A.
Suppose that r(\) € F for each X € F. For u € F, define

VF | __ * * *
Q. = Susy, H (8483 = S Syuu)-
pi' EVE\{p}

Then the qLVLF are mutually orthogonal projections in span{s,s;, : p € VF'}, and for
each v € VF

(1) = > a4k

vV'eVEF
Proof. Since
* * * . * _ *
SuS), H (8483 = Suw'Syur) = SuS), H (Sr(u) = S Syt )
e €VF\{p} ' EVF,d(p')#0

[11l Proposition 8.6] says precisely that the qZF are mutually orthogonal projec-

tions. That
SS, = Z G
vv'eVE
is established in the proof of [I1], Proposition 8.6] on page 421. O

Remark 7.3. We have

q;\L/F = 5M< H (Ss(u) — Su’SZ’)> Sy

wes(u)A\{s(u)}
up' VE

This follows from a straightforward induction on |V F|.

The following lemma can be verified through routine calculation. The reader is
referred to the author’s PhD thesis for details.
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Lemma 7.4 ([19, Lemma A.0.7]). Let A be a C*-algebra, let p be a projection in
A, let QQ be a finite set of commuting subprojections of p and let qy be a nonzero
subprojection of p. Then [[,co(p — q) is a projection. If qo is orthogonal to each

q € Q, then qo[1oeo(p — @) = qo. so in particular, T cq(p —q) # 0.

Proposition 7.5. Let A be a finitely aligned k-graph. Then D = span{s,s;, : i €
A}, and for each x € OA there exists a unique h(x) € A(D) such that

’ 0 otherwise.

) (505;) = {1 o=

Moreover, x +— h(x) is a homeomorphism h : ON — A(D).
Proof. Let u,v € A. It follows from (CK3)) that

(susy,)(sus;) = Z SAS)s

AEMCE(p,v)

hence D = span{s,s;, : p € A}.
Fixz € ONand ) - bus,s;, € span{s,s), : p € A}. By setting extra coefficients
to zero we can assume that each path in F' has its range in F', and write

* *
E bususu— E bususu.

neF HEVE

Let n = \/{p € NF : 2(0,p) € VF}. Since VF is a finite set of finite paths, n
is finite. Since VF is closed under minimal common extensions, z(0,n) € VF.
Furthermore, since z € 0A, we have

F,={p € xz(n)A\ {z(n)} : z(0,n)p' € VF} & z(n)FE(A).
So there exists v € z(n)A such that for each p/ € F,, MCE(v,u') = 0. Then

susy Sy, = 0 for all p € F,. Applying Lemma [I.4]l with p = s;(n), g0 = s,5;, and
Q= {swsy 1 € Fy.}, we have [] ,cp (Su(n) — swsyy) # 0. So

@omy) = So0m) || (Se) = 5w55)s20m) # 0-

WeFy,
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We have

*
H E bus“su
veVF

IS (Sl e

VEZ (1)

= max b ‘
{vevF:qyF+£0} ‘ Z "

HEVEF
=Y

vEZ (1)
REVF

2(0m)EZ (1)

:’ Z bu‘ since b, = 0 for p € VF\ F.

peF
z(0,n)eZ(n)

since gy ) 7 0

Hence the formula

(7.2) P (D bususy) = 3 b

HEF HEF
T€Z (1)

determines a norm-decreasing linear map on span{s,s’, : u € A}.
To see that h(z) is a homomorphism, it suffices to show that

(73) B(2) (5u55055) = A(2)(35%) h(z)(5055)-
Calculating the right hand side of (.3) yields
{1 if 2 € Z(u) N Z()

h(@)(susy) () (sasy) = 0 otherwise

Calculating the left hand side of (7.3)) gives
h(x)(8u5,5054) = h(x)( Z s,\s§>.

AeMCE(p,a)

There exists at most one A € MCE(u, ) such that x € Z(\). Such a A exists if
and only if z € Z(u) N Z(a), so

h(x)(8.8,,5a5

‘) = 1 ifxe Z(a)nNZ(p)
“ 10 otherwise.

Thus we have established (7.3, hence h(x) is a homomorphism, and thus extends
uniquely to a nonzero homomorphism h(x) : D — C.

We claim the map h : 0A — A(D) is a homeomorphism. The trickiest part is
to show h is onto:

Claim 7.5.1. The map h is surjective.
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Proof. Fix ¢ € A(D). We seek € OA such that h(x) = ¢. For each n € NF,
{sus;, : d(u) = n} are mutually orthogonal projections. It follows that for each
n € N there exists at most one v™ € A" such that ¢(s,ns%.) = 1. Let S denote
the set of n for which such v™ exist. If v = p/ and ¢(s,s) = 1, then

1=¢(sys,) = QS(SVS;;SMS;) = ¢(8u8§§)¢(8u8;) = ¢(SM3;)'

This implies that if n € S and m < n, then m € S and v™ = v"(0,m). Set
N := VS, and define = : Q y — A by x(p,q) = v4(p,q). Then since each 19 is a
k-graph morphism, so is x.

We now show that x € OA. Fix n € N* such that n < d(z), and E € x(n)FE(N).
We seek m € N¥ such that z(n,n +m) € E. Since F is finite exhaustive, (CK4)
implies that [],cp(s2m) — sasy) = 0. Multiplying on the left by s;(0,) and on the
right by 3;(0,71) yields

H(S:v(()vn)s;(o,n) - Sx(ov"))\S;(O,n))\> = 0.
\EE

Thus, since ¢ is a homomorphism, there exists A € E such that

0= ‘b(sm(om)s;(om)) - ¢(8x(0,n))\52(07n))\)
= P(synsyn) — ¢(Sw(0,n)>\5:c(0,n)>\)
=1- ¢(3x(0,n)>\52(0,n)>\>
S0 d(S2(0m2Ssmn) = 1. Thus 2(0,n)A = p" A = 2(0,n + d()\)), and hence

x € OA.
Now we must show that h(z) = ¢. For each u € A we have

P(susy) =1 <= d(p) € S and v =
— 2(0,d(n)) = p
< h(x)(sus,) = 1.
Since ¢(s,s},) and h(z)(s,s;,) take values in {0, 1}, we have h(z) = ¢. Octaim

To see that h is injective, suppose that h(x) = h(y). Then for each n € N*, we

have

h(y)(Sm(o,md(w))SZ(O,n/\d(x))) = h(x)(Sm(o,md(w))SZ(O,n/\d(x))) =1
Hence y(0,n A d(z)) = x(0,n A d(z)). By symmetry, we also have y(0,n A d(y)) =
z(0,n Ad(y)) for all n. In particular, d(z) = d(y) and y(0,n) = z(0,n) for all
n < d(z). Thus z = y.

Recall that A(D) carries the topology of pointwise convergence. For openness,
it suffices to check that 2! is continuous. Suppose that h(z™) — h(x). Fix a basic
open set Z(u) containing x, so h(x)(s,s;) = 1. Since h(2z")(s,s;) € {0,1} for all
n, for large enough n, we have h(z")(s,s;) = 1. So 2" € Z(u). For continuity,
a similarly straightforward argument shows that if 2" — z, then h(z")(s,s};) —
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h(x)(susy,). This convergence extends to span{s,s;, : p € A} by linearity, and to
D by an £/3 argument.
U

We can now prove our main result.

Proof of Theorem[7.1] Let A be a row-finite k-graph, and A be the desourcification
described in Proposition @9 Let {s) : A € A} and {¢t, : A € A} be universal
Cuntz-Krieger families in C*(A) and C*(A). Let A be the C*-subalgebra of C*(A)
generated by {ty : A € «(A)}, and define the diagonal subalgebra of A by D4 :=
span{tyty : A € «(A)}. Replacing tyt;, with ¢5t] in the proof Theorem yields
D = pDzp. Since A = C*(A), it follows that Dy = Dy. Thus Dy = pDzp as
required.

We now construct n and show that it is a homeomorphism. That p commutes
with D5 implies that pD5p is an ideal in D;. Then [14], Propositions A26(a) and
A27(b)] imply that map k : ¢ — <b|pD _p is a homeomorphism of {¢ € A(D ) :

¢lppip # 0} onto A(pDzp). Since A is row finite with no sources, A = A>®. Let
hx : A® = A(D53) be the homeomorphism obtained from Proposition [[.5l Then
hi(z) € dom(k) for all # € ((A)A>. Define 1 := k o hz|, 050 : L(A)A™ —

A(pDzp).
We now show that hy o™ om = p* on. Since p is an isomorphism, it suffices to
fix x € «(A”)A> and p € A and show that

1

(7.4) (ha o™ om)(z)(sus;) = (p* 0 m)(2)(5,5,)-

Let w € 0A be such that w(z) = t(w). Then the left-hand side of (7.4)) becomes

1 ifwe Z(u)
0 otherwise.

(ha 017 0 m)(x)(s,5}) = ha () (s,57) = {

Since r(z) € ¢(A%), the right-hand side of (7.4 simplifies to

1 ifxe Z((n)
0 otherwise.

(p" on)(@)(sps,) = (@) (p(susy,)) = hi (@) L ti,)) = {

We claim that x € Z(«(p)) if and only if w € Z(u). Suppose that z € Z(c(p)).
Since € A and 7w(z) = (w), we have w(z(0,d(n))) = w(e(pw)) = e(p). So
d(m(z(0,d(p)))) = d(p), and thus d(x) A d(w) > d(p). So d(w) > d(u). Then
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we have
r € Z((p) <= z(0,d(p)) = t(p) since ¢ preserves degree

= [w; (0,d(p))] = t(p) by Lemma [5.3]
<— 1(w(0,d(p))) = t(p) by Remark [5.4]
— w(0,d(p)=p since ¢ is a injective
— we Z(p)

So equation ((Z4]) holds, and we are done. O
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