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Abstract 

Transgenic mice that express familial Alzheimer‟s disease mutant forms of the human amyloid 

precursor protein (hAPP) have proved to be invaluable in determining the impact that the 

neurotoxic amyloid-beta peptide has in vivo. In addition to the propensity to accumulate cerebral 

amyloid plaques, a crucial characteristic of hAPP mouse models is their demonstration of cognitive 

impairments that can be used as a measure of the impact that modulating numerous physiological 

pathways may have in the Alzheimer‟s disease setting. To date the most widely used test for 

analyzing cognitive impairment in hAPP mice is the Morris water maze (MWM) which, due to the 

fact that mice are not “natural” swimmers, may not always be the ideal paradigm as problems 

associated with floating behavior, hypothermia, physical fatigue and thigmotaxis have been 

reported in the past. In the current study, we characterized the cognitive abilities of the J20 

transgenic mouse line (expressing the Swedish 670/671KM->NL and Indiana 717V->F hAPP mutations) 

and non-transgenic mice using the cheeseboard task (i.e. a „dry version‟ of the MWM). All mice 

were also assessed in a variety of other cognitive paradigms to test fear conditioning, short-term 

object recognition and spatial working memory to broaden the understanding of the cognitive 

deficits in J20 mice. The transgenic mice performed normally in these latter cognitive paradigms. 

However, they were profoundly impaired in their spatial reference memory capabilities in the 

cheeseboard task. Thus, hAPP transgenic mice perform normally in tasks for fear conditioning, 

short-term object recognition and spatial working memory but exhibit robust spatial reference 

memory impairment. The cheeseboard task has potential to replace the MWM task in situations 

where it is not suitable for particular mouse models. 
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1. Introduction 

Alzheimer‟s disease (AD) is a neurodegenerative cognitive disorder affecting approximately 25-30 

million people worldwide. Genetic factors play a key role in the development of AD with twin 

studies suggesting that 70-80% of the risk to develop the disease is inherited although 

epidemiological studies have shown that only around 5% of AD patients have a clear autosomal 

dominant inheritance (familial form of AD). Importantly, familial and sporadic (accounting for > 

90% of AD cases) forms of AD have an indistinguishable brain histopathology [1] and are 

characterized by β-amyloid (Aβ) deposits, which form senile plaques in the gray matter, and hyper-

phosphorylation of tau protein, which causes intracellular neurofibrillary tangles. 

The amyloid plaques are predominantly composed of Aβ peptides of 40 and 42 amino acids (Aβ40 

and Aβ42), which are derived from proteolysis of the amyloid precursor protein (APP) [2-3]. 

Missense mutations in APP in familial AD suggest a primary pathogenic role for APP in the 

development of AD. A number of transgenic and knockout mouse models have been developed for 

human APP (hAPP). These models show AD-relevant pathology, as they produce amyloid plaques 

and exhibit varying levels of cognitive impairments [for review see [4]]. Importantly, the majority 

of mouse models for AD have been characterized by only one or two cognitive tests (mostly testing 

spatial memory). Furthermore, a significant number of research groups select the Morris water 

maze paradigm (MWM) as the method of choice. However, floating behavior, hypothermia, 

physical fatigue, and thigmotaxis as well as an aversion against swimming of particular inbred 

strains can be confounders when testing AD models with different genetic backgrounds [5-9]. More 

comprehensive research into the cognitive deficits of AD mouse models such as the PD-APP 

transgenic mouse [10] using a variety of tasks for spatial memory (working and reference memory), 

associated learning, object recognition and operant conditioning has revealed learning and memory 

impairments beyond spatial memory deficits (for review see [4]).  

In the current study, we characterized the cognitive abilities of an established transgenic mouse 

model for AD, the J20 transgenic mouse line [11], in detail. This mouse model features high levels 



 
 
 
 

of Aβ42 overexpression, which result from the introduction of the Swedish (670/671KM->NL; [12]] 

and Indiana [717V->F; [13]) hAPP mutations (i.e. hAPPSwInd). The J20 transgenic mice develop 

plaques by the age of 5-7 months and exhibit more extensive amyloid depositions in the 

hippocampus than other hAPP lines (e.g. H6, H40 and J9) [11]. Importantly, J20 transgenic mice 

and non-transgenic control mice have been tested previously for learning and memory deficits in 

tasks such as the MWM, the novel object recognition task, and the Y-maze (i.e. for spontaneous 

alternation). Importantly, thigmotactic swimming and floating behaviour may confound the MWM 

performance of hAPPSwInd transgenic mice [14]. Some of the other cognitive impairments 

reported are inconsistent across studies [14-18]. Thus, our study aimed to clarify the nature of the 

cognitive deficits of J20 mice by testing transgenic and non-transgenic control animals in 

contextual and cued fear conditioning, the cheeseboard task [i.e. a „dry version‟ of the MWM, 

which avoids some of the confounding factors of MWM testing [7, 19]], the Y-maze (i.e. for spatial 

working memory), and for short-term novel object recognition. 

 

 

 

 



 
 
 
 

2. Materials and methods 

2.1 Animals: 

The generation of the J20 line [JAX Stock No. 006293: B6.Cg-Tg(PDGFB-

APPSwInd)20Lms/2Mmjax] has been described elsewhere [11]. Prof. Mucke (Gladstone Institute 

of Neurological Disease and Department of Neurology, University of California) provided the 

transgenic J20 breeders for this study. Genotypes were determined after weaning by tail biopsy and 

polymerase chain reaction as described previously [11]. All transgenic mice (hAPPSwInd) were 

heterozygous with respect to the transgene and backcrossed to C57BL/6J for >10 generations. 

C57BL/6JArc mice served as non-transgenic controls (NTG). Test animals were adult (J20: 61 ± 8 

weeks, n = 11; control: 52 ± 1 weeks, n = 12) male mice. Mice were bred and housed in 

independently ventilated cages (Airlaw, Smithfield, Australia) at Animal BioResources (Moss Vale, 

Australia). Following transport to the holding facility of Neuroscience Research Australia 

(NeuRA), mice were pair-housed in Polysulfone cages (1144B: Tecniplast, Rydalmere, Australia) 

with minimal environmental enrichment in the form of a red, transparent, polycarbonate igloo 

(certified polycarbonate mouse igloo: Bioserv, Frenchtown, USA), tissues for nesting material 

(Kimwipes
®
, Kimberley-Clark, Australia) and a metal ring (3 cm diameter) in the cage lid. Mice 

were kept under a 12: 12h light: dark schedule [light phase: white light (illumination: 124 lx) – dark 

phase: red light (illumination: <2 lx)]. Food and water were available ad libitum. Behavioural 

phenotyping commenced not earlier than two weeks after the arrival of the test animals at NeuRA. 

Research and animal care procedures were approved by the University of New South Wales Animal 

Care and Ethics Committee in accordance with the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes. 

2.2 Behavioural Phenotyping 

Animals were tested in a battery of cognitive tasks, which are well-established at NeuRA [19-20] 

using an inter-test interval of at least six days. All devices (and objects) were cleaned thoroughly 

with 70% ethanol in between trials and sessions. 



 
 
 
 

2.2.1 Y-maze (YM) 

The version of Y-maze used for this study assesses spatial working memory [21]. The apparatus 

consisted of three grey acrylic arms (10 cm x 30 cm x 17 cm) placed at 120° with respect to each 

other. Arms were equipped with different internal visual cues (horizontal stripes, spotted, and cross-

shaped patterns), which covered both sides and the end panel of each arm. Corn-cob bedding 

covered the apparatus floor and was changed in between sessions. The Y-maze test consisted of two 

trials (training and test), with a 1 h inter-trial interval (ITI). The trial duration for training and test 

was 10 and 5 min respectively [22]. During training, one arm was blocked off (novel arm); mice 

were placed facing the end of one of the other two accessible arms (start arm). In the test trial, all 

arms were accessible, and mice were placed facing the end of the start arm then allowed to explore 

the apparatus freely. The apparatus was cleaned thoroughly with 70% ethanol in between each trial. 

Time, entries and distance travelled in arms was recorded using Any-Maze™ video tracking 

software (Stoelting Co., Wood Dale, USA). An arm entry was scored whenever an animal entered 

an arm with more than half of its body length. The percentage of novel arm time was calculated 

using [(novel arm time / total arm time)*100]. The corresponding calculations were performed for 

novel arm distance travelled and novel arm entries.  

2.2.2 Novel object recognition task (NORT) 

The distinction between familiar and unfamiliar objects is an index of recognition memory, and its 

measurement is aided by the innate preference of rodents for novel over familiar objects [23]. The 

NORT was conducted over 3 days; two trials were conducted per day with a 1 h ITI. On day 1, 

mice were placed in an empty grey Perspex square arena (35 x 35 x 30 cm) and allowed to explore 

the arena freely for 10 min in both trials. On day 2, mice were placed in the empty arena for 10 min 

in trial 1. In the second trial, two identical objects were placed 5 cm from each wall in the centre of 

the apparatus and mice were allowed to explore freely for 10 min. On day 3, mice were exposed to 

two identical objects for 10 min in trial 1 (sample trial), and then one familiar and one novel object 

for 5 min in trial 2 (test trial). Objects (plastic hose nozzles: 31 x 31 x 42 mm; plastic pig: 80 x 30 x 



 
 
 
 

45 mm; mini metal grater: 45 x 28 x 81 mm) and their location were counterbalanced across 

genotypes. Using an ITI of 1 h to test the mice for short-term memory. The frequency and duration 

of nosing and rearing the objects were recorded offline using Any-Maze™ tracking software. The 

percentage of time spent nosing and rearing on the object (i.e. exploration) was calculated using 

[(novel object time / time for both objects) x 100].  

2.2.3 Fear conditioning (FC) 

Fear conditioning (FC) is a form of associative learning that occurs when a previously neutral 

stimulus (e.g. context or tone) elicits a fear response after it has been paired with an aversive 

stimulus (e.g. foot shock). Contextual and cued fear conditioning is mediated by hippocampal and 

amygdalar brain processes and involves emotional memory [24-26]. The present fear conditioning 

task was conducted over three days (24 h ITI). On day 1 (conditioning), animals were placed in the 

test chamber (Model H10-11R-TC: Coulbourn Instruments, Whitehall, USA) for 120 s. A 80 dB 

conditioned stimulus (CS) was then presented for 30 s with a co-terminating 0.4mA 2 s foot shock 

(unconditioned stimulus; US) twice with an inter-pairing interval of 120 s. The test concluded 120 s 

later. On day 2 (context test), the animals were returned to the apparatus for 7 min. On day 3 (cue 

test), animals were placed in an altered context (i.e. grid floor replaced by a flat plastic floor, clear 

Perspex walls replaced with pink acrylic panels) for 9 min. After 120 s (pre-CS / baseline), the CS 

was presented continuously for 5 min. The test concluded after another 120 s without the CS. There 

was a 68 dB white noise background for all tests. Baseline freezing behaviour is recorded to rule out 

that motor activity differences between transgenic and non-transgenic mice are a confounding 

factor in this paradigm. Time spent freezing and distance travelled were measured using Any-

Maze™ software (Any-Maze™ freezing parameters: freezing on: 3, freezing off: 13), where 

freezing was defined as complete behavioural immobility except for natural respiratory motions 

[27].  

2.2.4 Cheeseboard (CB) 

The cheeseboard paradigm was employed as a less stressful dry-land equivalent of the MWM [7]. 



 
 
 
 

Mice were trained to find a food reward over a number of days; spatial reference memory was 

indexed by a decreased latency to find the reward over days. The cheeseboard (CB) was a grey 

painted circular wooden board 1.1 m in diameter, elevated 60 cm from the floor. The illumination 

on the board was 60 lx during habituation, but was dropped to 20 lx during reference acquisition. 

There were 32 bottle caps  (3.1 cm diameter, 1.3 cm deep) evenly distributed across the CB (spaced 

in a radial pattern with 8 lines of 4 wells each radiating from the centre area; each well was 5 cm 

from the next well and the last well was 10 cm from the edge of the board). One of the caps 

contained the food reward (100 µl sweetened condensed milk; diluted 1:4 with water). All caps 

were brushed lightly with diluted sweetened condensed milk at the beginning of each test day to 

exclude the use of odour cues to find the target. External cues were located around the CB. A 

camera was mounted above the CB to measure distance travelled and velocity as well as time spent 

in CB zones using Any-Maze™ software. Latency to find the target was measured using a 

stopwatch.  

During habituation (four days to the blank side of the CB) two 2 min trials were conducted each day 

with a 20 min ITI. Mice were food-restricted for 4 days prior to habituation and kept at 85–90% of 

their pre-test body weight throughout testing (mice were fed for 1-2 h per day). 

Spatial Reference Memory Acquisition: Mice were trained over 18 days (two trials per day with a 

20 min ITI) to locate the food reward. The location of the target well was kept constant for each 

mouse between trials and across days; the target well location was different for each mouse and was 

counterbalanced across genotypes. If the target well was not located within 2 min, mice were placed 

next to the target well and allowed to consume the food reward. A probe trial was conducted on 

days 13 and 19, where no wells were baited and mice were given 2 min to explore the board freely 

(only results of probe trial 19 are shown as no clear target preference was detected on day 13). On 

the probe trial, the board was divided into 8 zones corresponding to each line of 4 caps (the line of 

wells was in the centre of the zone), as well as a centre zone (40 cm diameter); the time spent in 

each zone (%time) was measured using Any-Maze™. Data presented for „zone time‟ excludes the 



 
 
 
 

time spent in the centre zone.  

2.3 Statistical Analysis  

Results were analysed using one-way analysis of variance (ANOVA: between factor: „genotype‟). 

Repeated measures (RM) ANOVA was used for specific tasks to control for successful learning 

(YM: „arm type‟, NORT: „object‟, FC: „baseline freezing‟) and for effects across trials (CB: 

„latency‟) or over time (FC „1 min block‟). For the cheeseboard probe trials, single sample t-tests 

were used to assess if % time in the target zone was greater than chance (100% / 8 = 12.5%). 

Analyses were conducted using SPSS for Windows 19.0. Differences were regarded as significant 

if p < .05. All data are presented as means ± standard error of the mean (SEM). Significant 

„genotype‟ effects of J20 transgenic (hAPPSwInd) versus non-transgenic control mice are indicated 

by „*‟ (*p < .05, **p < .01 and ***p < .001), whereas repeated measures effects are indicated by „#‟ 

(
#
p < .05, 

##
p < .01 and 

###
p < .001). 



 
 
 
 

3. Results 

3.1 Y-maze 

Test mice showed intact spatial working memory abilities. All animals distinguished between the 

two familiar and the novel arm of the Y maze and both genotypes exhibited a similar preference for 

the novel arm. This was confirmed statistically with a RM ANOVA for „arm‟ [arm distance: 

F(2,42) = 10.3, p < .001 - arm time: F(2,42) = 11.2, p < .001; Table 1] and one-way ANOVA for 

„genotype‟ [% novel arm time: F(1,21) = .08, p = .8 - % novel arm distance: F(1,21) = .2, p = .6] 

(Table1). 

3.2 Novel object recognition 

Object recognition was not disturbed in J20 mice. hAPPSwInd transgenic and non-transgenic mice 

had a preference to explore the novel object, as confirmed by a RM ANOVA for „object‟ [% 

exploration time: F(1,17) = 5.6, p = .03; WT: 54.6 + 3.7 – J20: 55.7 + 2.1], and displayed equal 

levels of investigating the novel object [% novel exploration time: F(1,17) = .8, p = .8)]. 

3.3 Fear conditioning 

All animals responded to the unconditioned stimulus (i.e. electric foot shock) delivered during the 

conditioning. We first confirmed that there were no baseline differences in freezing between the 

genotypes. The time spent freezing in the first 2 min across conditioning, context test and cue test 

was similar between genotypes [no interaction of „baseline freezing‟ with „genotype‟: F(2,42) = .6, 

p = .5 - no „genotype‟ effect for conditioning: F(1,21) = 2.2, p = .2] (Table 2).  

As expected, baseline freezing in the context test was significantly higher than during conditioning 

and in the cue test [RM ANOVA for „baseline freezing‟: F(2,42) = 24.8, p < 0.001] confirming that 

all animals had learned to associate the context with the unconditioned stimulus (Table 2). Both 

genotypes displayed equal levels of total freezing in the context test [F(1,21) = .2, p = .7; Fig. 1A]. 

In the cue test, all animals associated the cue with the US and showed an increase in freezing after 

CS onset [RM ANOVA for „1 min block‟ comparing the last minute before and the first minute 

post CS onset: F(1,21) = 45.7, p < 0.001]. Similarly to the observations in the context test, there 



 
 
 
 

were no differences in freezing between transgenic and non-transgenic mice in the cue test 

[F(1,21)= .6, p = .5; Fig. 1B)]. 

3.4 Cheeseboard 

The acquisition of the cheeseboard task developed similarly across training trials in all mice. 

During the training period, RM ANOVA revealed a significant effect of „day‟ for the latency to find 

the food reward [F(16,272) = 3.7, p < .001] for all mice regardless of genotype [F(1,17) = .01, p = 

.9], demonstrating that both genotypes learned the location of the food reward (see Fig. 2A for 

mean latency over days). Reference memory was tested in the probe trial. Non-transgenic control 

mice showed intact reference memory, as they had a clear preference for the target zone (> 12.5%) 

whereas J20 transgenic mice failed to display an increased exploration of the target zone. This was 

evidenced by a significantly greater time spent in the target zone than chance for control but not 

hAPPSwInd transgenic mice [paired t-test: WT: p = .03 - J20: p = .7] and a significant effect of 

„genotype‟ for time spent in the target zone [F(1/16) = 4.6, p < .05] (Fig. 2B). 

 



 
 
 
 

4. Discussion 

hAPPSwInd transgenic and non-transgenic control mice of the J20 line showed similar cognitive 

abilities in spatial working memory, short-term object recognition and hippocampal and amygdalar 

associative learning. However, transgenic mice showed a significant impairment in spatial reference 

memory in the cheeseboard task.  

One of the first studies characterizing the behavioural phenotype of the J20 line reported that 

hAPPSwInd transgenic mice performed normally in the cued version of the MWM but exhibited 

impairments in task acquisition (i.e. training) and memory retention (i.e. probe trial) of the hidden 

platform MWM. The learning deficits correlated strongly with decreased levels of the calcium-

binding protein calbindin-D28K and the calcium-dependent immediate early gene product c-Fos in 

the dentate gyrus [16].  Since this initial study, others have shown that reducing endogenous tau 

levels prevents the cognitive deficits of transgenic J20 mice in the MWM without affecting Aβ 

levels [17]. Furthermore, hippocampal levels of arachidonic acid and its metabolites are higher in 

APP transgenic mice suggesting increased activity of the group IV isoform of phospholipase A2 

(GIVA-PLA2). Indeed, MWM deficits could be rescued by removal of GIVA-PLA2 [18]. 

Importantly, these and other studies on the cognitive abilities of J20 mice reported consistently 

deficits of hAPPSwInd mutant mice in the hidden version of the MWM [15-18, 28]. One study also 

reported reduced spontaneous alternation in the Y maze [15]. However, these studies also produced 

some conflicting data: learning and memory impairments in the cued version of the MWM [15-18] 

and in the novel object recognition [15, 28] were inconsistent across studies. In addition to 

cognitive deficits, hAPPSwInd mice have been described as hyper-locomotive in the open field, 

elevated plus maze and the Y maze [17, 28] and less anxious in the elevated plus maze [28]. 

Our finding that hAPPSwInd had no impact on the short-term object recognition of laboratory mice 

is in opposition to studies published in 2010 and 2011, in which transgenic mice exhibited a novel 

object recognition impairment [28-30]. Importantly, methodological variations in the NORT design 

can be accounted for this effect, as the test animals of the Harris study had been tested after an ITI 



 
 
 
 

of 4 h (in 2-3 month old mice) or 15 min (in 5-7 month old mice, which had been exposed to 

familiar objects in three trials each 15 min apart) [28] and an ITI of 3 h in the studies of 2011. Cisse 

and co-workers also detected a deficit of hAPPSwInd mice in novel location recognition [29]. 

Test animals of the current study showed no impairments in the working memory version of the Y 

maze task. It is important to mention that the Y maze version used in our study tests for spatial 

working memory, whereas the Y maze test employed in an earlier study characterized the 

spontaneous alternation behaviour of the J20 line. 

For the first time, fear conditioning was tested in hAPPSwInd mice. The experiment revealed that 

associative learning and emotional memory is unaffected in transgenic mice. Importantly, the 

hyperactive phenotype of hAPPSwInd animals described elsewhere [17, 28] did not affect the 

performance of transgenic mice, as confirmed by similar baseline freezing behaviour during 

conditioning, context test and cued test. Also, a recent study investigated passive avoidance 

behaviour of the J20 line and found no differences in escape latencies on training day indicating 

that the hyper-locomotive phenotype of hAPPSwInd animals had no consequences for their 

performance in this paradigm. However, transgenic mice exhibited an impaired ability to associate 

the dark chamber with the aversive stimulus received 24 h earlier [29]. Importantly, differences in 

cognitive performance between fear conditioning and passive avoidance have been described in the 

past [31]. Fear conditioning evaluates memory retrieval by freezing behaviour, which is considered 

to reflect fear memory. Furthermore, freezing is a passive coping strategy to the repeated exposure 

to foot shocks. In the passive avoidance paradigm, fear memory is evaluated by the attempt of mice 

to flee a brightly illuminated environment. Based on those differences, the latter paradigm can be 

more sensitive than the fear conditioning test to detect fear memory under certain conditions. 

As mentioned earlier, the value of the MWM test for mouse models has been discussed 

controversially in the recent past [5-9]. Nevertheless, it is one of the most commonly used tests to 

characterize AD mouse models. Importantly, transgenic mice of the J20 line have been reported to 

show a higher tendency to float (i.e. swimming at speeds lower than 0.025m/s) and to thigmotactic 



 
 
 
 

swimming (i.e. swim paths restricted to 10 cm from the wall) compared to non-transgenic mice, 

which are both confounding factors for MWM testing [14]. Thus, we decided to test J20 mice in a 

„dry version‟ of the MWM to circumvent the disadvantages of the MWM. Transgenic and non-

transgenic mice exhibited a similar ability to learn the location of the food reward over a number of 

days. Earlier studies described a deficit in MWM training for transgenic mice in the hidden version 

of the test paradigm [14-18, 28], whereas task acquisition in the cued version of the MWM was not 

always impaired [16]. Studies by Galvan and Harris confirmed that test age and pre-test experience 

play a significant role in the MWM performance of J20 mice [14, 28]. Importantly, similar to what 

has been described in studies using the hidden version of the MWM paradigm, hAPPSwInd 

transgenic mice of our study displayed a significant cognitive deficit in the probe trial, during which 

no significant preference for the target zone was detectable. Thus, the spatial reference memory 

deficit of transgenic mice of the J20 line is reliable and consistent across different spatial memory 

tasks. Interestingly, hAPPSwInd have been shown to use allocentric and egocentric navigational 

strategies to a similar extent whereas non-transgenic C57BL/6J mice prefer allocentric strategies in 

spatial memory tasks.  Importantly, the visual acuity is not affected in transgenic mice [32]. 

In line with this is an earlier study, which reported that the cheeseboard task could discriminate 

between non-transgenic mice and animals that express hAPP harboring the Swedish double 

mutation as well as mutant presenilin1 (i.e. APPswe/PS1De9 mice). Importantly, there were 

methodological differences between this and our cheeseboard experiment (e.g. the use of both a 

cued and a hidden version and the length of the training period). Further, an important distinction 

between the two transgenic animal models used is that the addition of the PS1 mutation in 

APPswe/PS1De9 can alter the processing of γ-secretase substrates (γ-secretase is one of the 

enzymes responsible for the endoproteolytic cleavage of APP) in addition to APP and also the 

substantially more severe pathology associated with the APPswe/PS1De9 mice as compared to the 

J20 line [33]. 

In conclusion, the current study has increased our understanding of the specificity of the cognitive 



 
 
 
 

impairments in hAPP transgenic mice of the J20 line. Transgenic mice perform normally in tasks 

for fear conditioning, short-term object recognition and spatial working memory but exhibit robust 

spatial reference memory impairment. The cheeseboard task has potential to replace the MWM task 

in situations where it is not suitable for particular mouse models. 

  



 
 
 
 

5. Figures and Legends 

Fig. 1A-B: Associative learning in the fear conditioning task: A) Total time spent freezing [s] 

during the context test and B) Time spent freezing [s] for 1 min before and 1 min post CS onset 

during the cue test. Data for non-transgenic control mice (NGT) and transgenic hAPPSwInd mice 

(hAPP) are presented as mean + SEM. Significant RM ANOVA effects of „1 min block‟ are 

indicated by „#‟ (
###

p < .001). 

 

Fig. 2A-B: Spatial reference memory in the cheeseboard: A) Mean latency (averaged across two 

trials per day) to find the food reward [s] and B) Percentage time [%] spent in the target zone during 

the probe trial. Time spent in the zone according to chance (= 12.5%) is marked with a dotted line. 

Data for non-transgenic control mice (NGT) and transgenic hAPPSwInd mice (hAPP) are presented 

as mean + SEM. 
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Figure 2



 NTG hAPP 

%Novel Arm Time 43.1 ± 2.5 44.3 ± 3.7 

%Novel Arm Distance 47.6 ± 5.7 44.1 ± 3.9 

Table 1: Spatial memory in the Y maze task. Time spent [%] and travelled distance [%] in the 

novel arm of the Y maze for non-transgenic control mice (NGT) and transgenic hAPPSwInd mice 

(hAPP). Data are presented as mean ± SEM. 

 

Table 1



 NTG hAPP 

Conditioning [s] 0.3 ± 0.3 1.6 ± 0.9 

Context test [s] 16.7 ± 2.8 21.4 ± 6.5 

Cue test [s] 14.8 ± 2.1 15.5 ± 4.7 

Table 2: Baseline freezing activity in the fear conditioning paradigm. Duration of baseline 

freezing (in the first 120s of the test session) for non-transgenic control mice (NGT) and transgenic 

hAPPSwInd mice (hAPP). Data are presented as mean ± SEM. 
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