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Abstract

Excessive weight gain is a major metabolic side effect of second-generation antipsychotics (SGAs) in the treat-
ment of schizophrenia. Ghrelin is an orexigenic hormone secreted mainly from the stomach, which can induce
weight gain and hyperphagia through regulating neuropeptides at the hypothalamus. Accumulating evidence
implicates a relationship between ghrelin signalling and SGA-induced hyperphagia and weight gain. We report
that olanzapine (a SGA with high weight gain liability) potently and time-dependently up-regulate ghrelin
and ghrelin signalling, leading to hyperphagia and weight gain in female Sprague-Dawley rats, an action
reversed by i.c.v. injection of a ghrelin receptor (GHS-R1a) antagonist. These findings indicate a crucial role of
ghrelin signalling in hyperphagia induced by olanzapine, supporting the notion that GHS-R1a antagonist
may be useful for pharmacological treatment of SGA-induced weight gain resulted from hyperphagia.
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Introduction

Schizophrenia affects up to one-and-a-half per cent of the
general population worldwide (American Psychiatric
Association, 2000). Olanzapine is a second-generation
antipsychotic (SGA) widely used for treating schizo-
phrenia (Leucht et al., 2009; Komossa et al., 2010).
However, the metabolic side effects including weight
gain and hyperphagia have led to drug withdrawals,
symptom relapse and reduced drug compliance for
some patients (Lieberman et al., 2005; Correll et al., 2011).

Ghrelin, an orexigenic hormone secreted primarily
from the stomach, is an endogenous ligand for the
growth hormone secretagogue receptor (GHS-R1a;
also called ‘ghrelin receptor’) (Kojima et al., 1999).
Ghrelin stimulates food intake and body weight gain
in both humans and rodents (Wren et al., 2001; Druce
et al., 2005; Adachi et al., 2010), by up-regulating neuro-
peptide Y (NPY) and agouti-related peptide (AgRP)
expressions (Nakazato et al., 2001), activating NPY/
AgRP neurons (Cowley et al., 2003), and inhibiting
proopiomelanocortin (POMC) neurons (Cowley et al.,

2003) in the arcuate nucleus (Arc) of the hypothalamus,
where GHS-R1a is highly expressed (Guan et al., 1997;
Zigman et al., 2006; Harrold et al., 2008).

Clinical studies have demonstrated that circulating
levels of ghrelin is altered by olanzapine, possibly in a
time-dependent manner (Togo et al., 2004; Murashita
et al., 2005, 2007; Palik et al., 2005; Hosojima et al., 2006;
Esen-Danaci et al., 2008; Kim et al., 2008; Perez-Iglesias
et al., 2008; Roerig et al., 2008; Tanaka et al., 2008;
Basoglu et al., 2010; Vidarsdottir et al., 2010; Chen et al.,
2011; see Review by Zhang et al., 2013). Further, mRNA
expressions of the GHS-R1a receptor at the hypothalamus
have been reported to be up-regulated by olanzapine in
rats (Davey et al., 2012). Additionally, the up-regulating
effect on Arc NPY and AgRP, and the down-regulating ef-
fect on POMC mRNA of olanzapine have also been
reported (Fernø et al., 2011; Weston-Green et al., 2012a).
These studies suggest that ghrelin signalling could play
an important role in olanzapine-induced hyperphagia
and weight gain. In the current study, we used a
GHS-R1a antagonist, D-Lys3-GHRP-6, injected i.c.v. into
the brain of an olanzapine-induced hyperphagic rat
model, to determine the acute effect of olanzapine on
rats with intact or blocked ghrelin signalling pathway.
In addition, according to a recent review of clinical and
animal studies, the effects of SGAs (including olanzapine)
on circulating ghrelin levels are tri-phasic (Zhang et al.,
2013). Therefore, we tested the time-dependent effect
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of olanzapine on circulating ghrelin and ghrelin signalling
in three cohorts of rats treated with olanzapine or
control for different durations. Furthermore, we conduc-
ted a pair-feeding experiment to determine whether the
effects on ghrelin and ghrelin signalling were due to a
direct effect of olanzapine treatment or a secondary
effect of hyperphagia/weight gain induced by olanzapine.
Finally, the transcriptional factors forkhead box O1
(FOXO1), phosphorylated cyclic AMP response element
binding protein (pCREB) and brain specific homeobox
(BSX) have been reported as important mediators for the
expressions of hypothalamic NPY, AgRP and POMC in
the central ghrelin-signalling pathway (Kim et al., 2006;
Kitamura et al., 2006; Sakkou et al., 2007; Nogueiras
et al., 2008; Lage et al., 2010). In the current studies,
hypothalamic expressions of these upstream ghrelin-
signalling markers were also measured.

Method

Animals

Female Sprague-Dawley rats (201–225 g) were obtained
from the Animal Resource Centre (Australia). Rats were
individually housed at 22 °C, 12-h light-dark cycle with
lights on at 07:00 h. All animals had ad libitum access to
water and a standard laboratory chow diet (3.9 kcal/g;
10% fat, 74% carbohydrate and 16% protein). After one
week of acclimatization, animals were trained to self-
administer the placebo sweet cookie-dough. All exper-
imental procedures were approved by the Animal
Ethics Committee, University of Wollongong, Australia,
and complied with the Australian Code of Practice for
the Care and Use of Animals for Scientific Purposes
(Australian Government National Health and |Medical
Research Council, 2004).

Oral drug treatment

A cookie-dough (62% carbohydrate, 22% protein, 6%
fibre, 10% vitamins and minerals) method was employed
as previously reported (Han et al., 2008; Weston-Green
et al., 2011; Deng et al., 2012). Briefly, a mixture of corn
starch (30.9%), sucrose (30.9%), gelatine (6.3%), casein
(15.5%), fibre (6.4%), minerals (8.4%) and vitamins
(1.6%) was produced. Three times per day (at 7.00 h,
15.00 h and 23.00 h), cookie-dough mixed with either
olanzapine (1mg/kg BW) (Eli Lilly, USA) or placebo
was served to the corresponding animals. The dosage of
oral olanzapine administration (1mg/kg, t.i.d.) was cho-
sen based on our previous dose-dependent experiments
(Weston-Green et al., 2011), which have been confirmed
to be able to consistently induce hyperphagia and weight
gain in our animal model (Deng et al., 2012; Weston-
Green et al., 2012a,b; Lian et al., 2013). This dosage is
clinically relevant based on D2 receptor occupancy
(Kapur and Mamo, 2003), and is equivalent to a human
dosage of approximately 10mg/day (for a 60 kg person),

according to dosage translation between species based
on body surface area, following an FDA guideline for
clinical trials (Centre for Drug Evaluation and Research
FDA, 2005; Reagan-Shaw et al., 2008). Animals were
observed during the administration period to ensure
complete consumption of the pellets.

Time-dependent experiment (Experiment 1)

Rats were randomized into either olanzapine (O) or con-
trol (C) treatment groups, with three treatment duration
cohorts: short-term (8 days), mid-term (16 days) and long-
term (36 days) (6 groups; n=12/group). Food intake and
body weight were measured every second day. The
time frames chosen in the current study were based
on evidence observed from both clinical and animal
studies, which suggested that along the time course of
olanzapine-induced weight gain, there are three typical
stages: the initial stage with rapid increase of body weight
accompanied with elevated food intake, the middle stage
with slow body weight gain and no elevation of food in-
take, and the late stage with maintenance of the heavy
body weight without elevated food intake (Huang et al.,
2006; Pai et al., 2012; Deng, 2013).

Short-term pair-feeding experiment (Experiment 2)

Rats were randomised into two groups: pair-fed olanza-
pine (PO) and pair-fed control (PC) (n=12/group). Rats
then received eight days of treatments similar to the
short-term cohort in Experiment 1, except that the lab-
chow provided was not ad libitum, but with restricted
food intake for both control and olanzapine groups
to 80% of the control group’s food intake based on the
measurements at the previous time point.

I.C.V. injection experiment (Experiment 3)

After acclimatisation, a 24-guage cannula was surgically
implanted under anaesthesia into the lateral ventricle of
each rat (1.0 mm posterior to the bregma, 1.5 mm lateral
to the midline, and 3.5 mm below the top of skull)
(Paxions and Watson, 2007). All rats were allowed to re-
cover for one week with close monitoring of post-surgery
symptoms. Rats were orally administered with either
olanzapine (1mg/kg BW) (O) or control (C) cookie-dough
three times daily for four consecutive days. On the fifth
day, 30min before oral cookie-dough administration,
rats were injected with 5 μl of saline (V), low dose
(3 nmol) GHS-R1a blockade (D-Lys3-GHRP-6; Tocris
Bioscience, USA) (GL), high dose (30 nmol) GHS-R1a
blockade (GH), or high dose GHS-R1a blockade followed
by rat ghrelin (200 pmol; Tocris Bioscience, USA) (GH/g),
via the cannula during 15.00–16.30 h (during the light
phase when the normal oral drug administration
was delivered). The i.c.v. injection dosages were chosen
based on previous studies (Nakazato et al., 2001;
Shintani et al., 2001; Asakawa et al., 2003; Kola et al.,
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2005). Food was removed from the cages before the
injection and reintroduced after cookie-dough admini-
stration. Food intake was measured 1, 2, 4, 18 and 24 h
post injection. After four days of washout, rats were
re-introduced to the original oral treatment regime of
olanzapine or control for another four days. On the fifth
day, rats were injected with the same drugs as in the
first i.c.v. injection, and euthanized 1.5 h post-injection.

Euthanasia and tissue collection

Two hours after the last treatment in Experiment 1
and Experiment 2, and 1.5 h after the last injection in
Experiment 3 (between 12:00 h and 14:00 h), rats were
euthanized by fast CO2 infusion (Han et al., 2008;
Weston-Green et al., 2011; Deng et al., 2012). Blood sam-
ples were collected into EDTA tubes from the left ven-
tricle of the heart; plasma was separated and stored at
−80 °C. For ghrelin measurement, blood was treated
with 0.8mM Pefabloc SC (Sigma-Aldrich) and acidified
with HCl to a final concentration of 0.05 N. In Ex-
periment 1 and Experiment 2, brains were dissected on
an ice plate immediately after euthanasia, snap-frozen
in liquid nitrogen and stored in −80 °C. In Experiment
3, whole brains were snap-frozen, cut at 500 μM sections
ranging from Bregma −2.16 to −3.66mm based on a stan-
dard rat brain atlas (Paxions and Watson, 2007), using a
cryostat (Leica CM 1950; Leica Microsystems, Wetzlar,
Germany) with the temperature set at −18 °C. The Arc
was dissected using a Stoelting Brain Punch (#57401,
Wood Dale, Stoelting Co, USA) in an overlapping pattern
over the 3rd ventricle. The punched tissue principally
contained arcuate nucleus, but we cannot rule out the
inclusion of adjacent brain areas, so the punched tissue
was named as the mediobasal hypothalamus (MBH).
White adipose tissue (inguinal, mesenteric, peri-renal
and peri-ovary) and brown adipose tissue (inter-scapular)
were dissected and individually weighed.

Enzyme immunoassay (EIA)

Hypothalamic NPY levels were determined by the
NPY EIA kit (Phoenix Pharmaceuticals, USA) using the
hypothalamic homogenates collected for Western blot
in Experiment 1. Plasma ghrelin levels were detected
by the ghrelin (total) EIA kit (Phoenix Pharmaceuticals,
USA).

Western blot

The hypothalamus (or MBH) were homogenized in
10vol (v/w) homogenizing buffer (containing NP40,
Protease Inhibitor Cocktail, 1 mM PMSF and 0.5 mM

β-glycerophosphate). Total protein concentrations were
determined by DC-Assay (Bio-Rad, USA), detected by
SpectraMax Plus384 absorbance microplate reader
(Molecular Devices, USA). Samples were heat-treated in
Laemmli buffer at 95 °C, loaded to 8% SDS-PAGE gels

for fractionation, and then transferred onto Immun-
BlotTM PVDF membranes (Bio-Rad, USA). The block
consisted of 5% BSA in TBST. The membranes were
then incubated with POMC, GHS-R1a, pCREB (Santa
Cruz Biotechnologies; dilution factor 1:200), or FOXO1
(Cell Signalling Technology; dilution factor 1:1000) anti-
body in TBST containing 1% BSA overnight at 4 °C.
Secondary antibodies were anti-rabbit (for POMC,
FOXO1 and pCREB) or anti-goat (for GHS-R1a) IgG
conjugated with horseradish peroxidase (Santa Cruz
Biotechnologies, USA; dilution factor 1:5000). For visuali-
zation, ECL detection reagents were used and films
were exposed on the AGFA CP1000 Tabletop Processor
(COD Medical, USA). Films were then analysed using
the Quantity One software, connected to GS-690
Imaging Densitometer (Bio-Rad, USA).

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from the hypothalamus (in
Experiment 1 and 2) or MBH (in Experiment 3) with
PureLink RNA extraction kit (Life Technologies,
Australia) according to the manufacturer’s protocol.
First-strand cDNA was synthesized with VILO cDNA
synthesis kit (Life Technologies, Australia) with 20 μl reac-
tion volume. qRT-PCR was carried out in triplicates using
TaqMan Gene Expression Assays (Life Technologies,
Australia) on LightCycler480+ (Roche, Germany). The
results were normalized to β-actin (cat. no. 4252640E;
Life Technologies, Australia), and were expressed as
folds different from control. The assay identifications
of the target genes were: Npy (Rn01410145_m1), Pomc
(Rn00595020_m1), Agrp (Rn01431703_g1), Ghsr
(Rn00821417_m1), Foxo1 (Rn01494868_m1); and Bsx
(Rn04244809_m1) (Life Technologies, Australia).

Statistics

SPSS (version 15, SPSS, USA) was used. In Experiment 1
and Experiment 2, student’s t-tests were used on daily
food intake, cumulative weight gain, circulating ghrelin
and hypothalamic GHS-R1a, NPY, AgRP, POMC, BSX,
FOXO1 and pCREB level comparisons. Correlations
were identified by Pearson’s correlation. In Experiment
3, one-way ANOVAs were used to compare the hourly
food intakes, circulating ghrelin levels, and levels of
GHS-R1a, NPY, AgRP, POMC, BSX, FOXO1 and
pCREB at the MBH, with post-hoc Turkey’s test for mul-
tiple comparisons. Data were expressed as mean±S.E.M,
and p<0.05 was considered statistically significant.

Results

Olanzapine up-regulates circulating ghrelin in the
short-term only

To determine the time-dependent effects of olanzapine
on circulating ghrelin levels, we performed enzyme

Ghrelin and olanzapine-induced weight gain 809



immunoassay (EIA) on plasma samples collected from
rats of the three treatment cohorts. In line with the effects
on food intake (Fig. 1a–c), olanzapine treatment in-
creased plasma ghrelin levels in the short-term (+30%,
p<0.01), had a trend of increase in the mid-term (+7%,
p=0.0515), but not in the long-term (Fig. 1d). The associ-
ation between circulating ghrelin and food intake was
confirmed by Pearson correlation analysis, which reveals
that circulating ghrelin levels were positively correlated
with final-day daily food intake (r=0.702, p<0.001;
Supplementary Fig. S1a). However, olanzapine increased
cumulative body weight gain from day four of treatment,
and persisted throughout the whole treatment period
(Fig. 2).

In order to determine whether the changes in ghrelin
levels were secondary to the elevated food intake induced
by olanzapine, we measured the circulating ghrelin levels
in a pair-feeding experiment, where food intake of the
olanzapine-treated rats was kept the same as the control
rats. Our pair-feeding experiment showed that although
there was no significant difference in weight gain
(Fig. 3a), pair-fed olanzapine rats still exhibited higher

plasma ghrelin level compared to controls (Fig. 3b).
These results suggest that the short-term elevation in cir-
culating ghrelin levels under olanzapine treatment is
likely to be the cause rather than the consequence of
increased food intake.

Olanzapine up-regulates hypothalamic GHS-R1a
receptor expressions throughout treatment periods

To determine the time-dependent effects of olanzapine
on hypothalamic GHS-R1a receptor expressions, we per-
formed Western blot and quantitative real-time PCR
(qRT-PCR) on hypothalamic samples collected from rats
of the three treatment cohorts. Olanzapine treated rats
showed a small but significant increase in hypothalamic
GHS-R1a protein expressions throughout the three
treatment cohorts (+23%, p<0.01; +18%, p<0.001; +28%,
p<0.01, respectively) (Fig. 4a), which was consistent
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with the effect on expressions of GHS-R1a mRNA
(+92%, p<0.01; +80%, p<0.05; +64%, p<0.05, respectively)
(Fig. 4b). This has indicated that the effects of olanzapine
on GHS-R1a are independent of those on circulating
ghrelin levels. Interestingly, pair-fed olanzapine rats
also exhibited elevated GHS-R1a protein expressions at
the hypothalamus (Fig. 4c), suggesting these alterations
were not secondary to the elevated food intake.

Olanzapine increased hypothalamic NPY and AgRP but
decreased POMC expressions in the short- to mid-term

Olanzapine has been reported to up-regulate hypothala-
mic NPY, AgRP, and down-regulate POMC mRNA
expressions (Fernø et al., 2011; Weston-Green et al.,
2012a). However, the time-dependent effects of olanza-
pine on these neuropeptides have not been investigated.
Therefore, we performed EIA on NPY protein, Western
blot on POMC protein, and qRT-PCR on NPY, AgRP,
and POMC mRNA levels with hypothalamic tissues
from rats of the three treatment cohorts. NPY mRNA
was up-regulated in the short-term only (+73%, p<0.01;
Fig. 5a). AgRP mRNA was up-regulated in the short-
and mid-term (+68%, p<0.01; +50%, p<0.05, respectively;
Fig. 5b), and POMC mRNA was down-regulated in the
short- and mid-term by olanzapine treatment compared
to control (−54%, p<0.01; −40%, p<0.05, respectively;
Fig. 5c). Similar results were also observed at the pro-
tein/peptide level, where NPY was up-regulated in the
short- and mid-term (+35%, p<0.001; +12%, p<0.05;
Fig. 5d), while POMC was decreased in short-, mid- and
long-term, but with different magnitudes of reduction
(−36%, p<0.01; −30%, p<0.05; −19%, p<0.01, respect-
ively; Fig. 5e). Since the role of hypothalamic NPY and

AgRP is to stimulate food intake, while that of POMC
is to inhibit food intake, the alterations on these hypotha-
lamic neuropeptides induced by olanzapine were in line
with the time-dependent effects of olanzapine on food
intake and circulating ghrelin levels. In fact, circulating
ghrelin levels were positively correlated with hypo-
thalamic mRNA levels of NPY and AgRP, while nega-
tively correlated with POMC (r=0.785, p<0.001; r=0.740,
p<0.001; r=−0.766, p<0.001, respectively; Supple-
mentary Fig. S1b–d). Finally, pair-fed olanzapine treated
rats also showed similar results in terms of hypothalamic
NPY, AgRP and POMC expressions (Fig. 5f, g), indicating
these alterations are not secondary to increase of food
intake.

Olanzapine increased hypothalamic expressions of
FOXO1, BSX, and pCREB, the transcriptional factors
for NPY and AgRP, in the short- to mid-term

To investigate the time-dependent effects of olanzapine
on the hypothalamic transcriptional factors FOXO1, BSX
and pCREB, we performed Western blotting on FOXO1
and pCREB protein, and qRT-PCR on FOXO1 and BSX
mRNA with hypothalamic tissues from rats of the three
treatment cohorts. In line with the time-dependent
changes in hypothalamic NPY, AgRP and POMC levels,
olanzapine treatment increased hypothalamic FOXO1
protein expressions in the short-term only (+32%, p<0.05;
Fig. 6a), while pCREB levels were increased in the
short- and mid-term (+31%, p<0.001; +14%, p<0.05, re-
spectively; Fig. 6a). Similarly, FOXO1 mRNA levels in
the hypothalamus were up-regulated by olanzapine treat-
ment in the short-term (+66%, p<0.01) and had a trend of
increase in the mid-term (+19%, p=0.0503; Fig. 6b); while
BSX mRNA levels were elevated in the short-term only
(+266%, p<0.001; Fig. 6c). These results suggest that olan-
zapine up-regulates hypothalamic FOXO1, BSX, and
pCREB expressions, at least in the early stages of treat-
ments. Pearson’s correlation test revealed that there
were positive correlations between BSX and NPY
(r=0.700, p<0.001), BSX and AgRP (r=0.661, p<0.001),
pCREB and NPY (r=0.893, p<0.001), FOXO1 and AgRP
(r=0.835, p<0.001), as well as negative correlations
between FOXO1 and POMC (r=−0.865, p<0.001)
(Supplementary Fig. S2a–e), indicating that FOXO1, BSX
and pCREB are involved in olanzapine-induced altera-
tions in these hypothalamic neuropeptides. Finally, pair-
fed olanzapine treated rats also exhibited elevated
hypothalamic BSX mRNA levels, as well as pCREB and
FOXO1 protein levels (Fig. 6d, e), indicating that these
up-regulations are not secondary to increase of food
intake.

Olanzapine-induced increase in food intake is blocked
by GHS-R1a antagonist D-Lys3-GHRP-6

To investigate the cause – effect relationship between the
alterations in ghrelin signalling and the increase of food
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intake under olanzapine treatment, we administered a
ghrelin receptor blockade (D-Lys3-GHRP-6) via i.c.v. in-
jection after the establishment of elevated food intake
induced by olanzapine treatment. Our i.c.v. injection ex-
periment showed for the first time that the increase of
food intake induced by olanzapine was alleviated by
D-Lys3-GHRP-6 (Fig. 7a) in the first 4 h post-i.c.v. injec-
tion, indicating that the ghrelin-signalling pathway is
critical in mediating the acute effect of olanzapine on
increasing food intake. In the first four hours post-i.c.v.
injection, a high dose of D-Lys3-GHRP-6 completely
blocked the elevated food intake induced by olanzapine,
while a low dose of D-Lys3-GHRP-6 produced a signifi-
cant but smaller alleviation effect (Fig. 7a), suggesting a
dose-dependent effect of D-Lys3-GHRP-6 on reversing
the effect of olanzapine on food intake. Interestingly,
there was no significant difference between acute food
intakes of control treated rats injected with vehicle and
those injected with D-Lys3-GHRP-6 (Fig. 7a), indicating
that the blockage effect of D-Lys3-GHRP-6 on food intake
was specific to the olanzapine treated animals, but not an
effect on the baseline food intake. Finally, the subsequent
ghrelin i.c.v. injection following the high dosage
D-Lys3-GHRP-6 injection produced a moderate effect on
food intake only in the first hour post-i.c.v. injection

(Fig. 7a), suggesting that the ghrelin-signalling pathway
was completely blocked by high dose D-Lys3-GHRP-6
after one hour post-injection, confirming the crucial role
of ghrelin-signalling in olanzapine-induced elevation of
food intake.

GHS-R1a antagonist D-Lys3-GHRP-6 attenuates
alterations in hypothalamic NPY, AgRP, POMC,
FOXO1, BSX and pCREB expressions induced
by olanzapine

To examine the effect of D-Lys3-GHRP-6 on the down-
stream ghrelin-signalling parameters in the hypothala-
mus, we performed Western blotting of POMC, FOXO1
and pCREB, and real-time PCR on the mRNA levels of
NPY, AgRP BSX and FOXO1, at the MBH of the hypo-
thalamus. Our results revealed that at the MBH, the
down-regulation of POMC and up-regulation of FOXO1
and pCREB was blocked by high dose D-Lys3-GHRP-6
injection (Fig. 7b). Similarly, the up-regulation of mRNA
levels on NPY, AgRP, FOXO1 and BSX by olanzapine
was also reversed by high dose D-Lys3-GHRP-6
(Fig. 7c). These results suggest that the effects of olanza-
pine on downstream ghrelin-signalling parameters were
attenuated by i.c.v. injection of the ghrelin receptor
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blockade D-Lys3-GHRP-6. However, EIA analysis
revealed that i.c.v/ injection of D-Lys3-GHRP-6 has no ef-
fect on circulating ghrelin levels (Fig. 7d), suggesting the
effect of olanzapine on circulating ghrelin is upstream
or independent of the hypothalamic GHS-R1a receptor.

Discussion

A recent review by our group suggested that the effects of
second-generation antipsychotics, including olanzapine,
on circulating ghrelin levels were tri-phasic: the initial
elevation stage at the acute phase, the secondary decrease
stage of up to about eight weeks of treatment, and the
final re-increase stage thereafter (Zhang et al., 2013).
Interestingly, this tri-phasic effect on ghrelin levels has
also been substantiated by rodent studies (Zhang et al.,
2013). In the current study, we found that eight days of
olanzapine treatment increased plasma total ghrelin
levels, which is consistent with results in the clinical stu-
dies at the first stage of treatment. However, the 16- and
36-d treatment cohorts (representing the second stage of
treatment) showed no effect of olanzapine on plasma
ghrelin levels, which appears to be in conflict with the

reduction effect as shown by the clinical data. In fact,
the results from this period of treatment have been incon-
sistent in both human and rodent studies (Zhang et al.,
2013), possibly due to a secondary negative-feedback
effect from weight gain induced by antipsychotic treat-
ments. Therefore, the nil effect in plasma ghrelin levels
observed in the mid- and long-term cohorts in the current
study may be owing to a combined effect of the initial el-
evation triggered by olanzapine treatment and the sec-
ondary reduction by olanzapine-induced weight gain.
In addition, consistent with the effect of olanzapine on
circulating ghrelin levels, elevation of food intake dis-
appeared from around day 12 of olanzapine treatment
in the current study, yet increase of body weight gain per-
sists throughout the long-term treatment period, indicat-
ing a non-hyperphagic effect of olanzapine on body
weight during the mid- to long-term periods of treatment.
In fact, energy expenditure, in particular physical activity
and thermogenesis, have been suggested to contribute to
the olanzapine’s effect on body weight gain (Stefanidis
et al., 2009). In light of the non-effect of olanzapine on
ghrelin during the mid- to long-term, the role of ghrelin
signalling on this long-term effect seems not supported.
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Additionally, ghrelin has been suggested to play an im-
portant role in substrate utilisation (Wortley et al.,
2004). Further studies on the long-term effect of olanza-
pine on energy expenditure parameters are warranted.

The expressions of hypothalamic GHS-R1a receptor
were elevated by olanzapine through the three treatment
cohorts, suggesting that the effects of olanzapine on
hypothalamic GHS-R1a levels were independent of
those on circulating ghrelin levels. Dimerization between
the GHS-R1a receptor and the dopamine D2 receptor at
the Arc has been recently reported (Kern et al., 2012), sug-
gesting functional interactions between the D2 receptor
and GHS-R1a receptor. However, a recent report has
suggested the blockage of D2 receptor may attenuate
the effect of ghrelin on food intake (Romero-Pico et al.,
2013). Further research is required to elucidate the

relationship between D2 receptor and ghrelinergic signal-
ling in the context of olanzapine-induced hyperphagia
and weight gain. Similarly, the serotoninergic 5-HT2c
receptor has also been showed to form heterodimers
and interact with GHS-R1a receptor (Schellekens et al.,
2013).

In the i.c.v. experiment, we showed for the first
time that the olanzapine-induced elevation of food intake
and alterations of ghrelin-signalling parameters (NPY,
AgRP and POMC) were eliminated by acute adminis-
tration of the GHS-R1a antagonist D-Lys3-GHRP-6
(30 nmol). These findings suggest that ghrelin signalling
plays a critical role in mediating the orexigenic effect of
olanzapine. Moreover, these findings also suggest a new
pharmacological target of body weight management for
schizophrenia patients on second-generation antipsychotics.

H
ou

rl
y 

fo
od

 in
ta

ke
 (g

) 3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

0–1h

m
R

N
A

 le
ve

ls

2.0

1.5

1.0

0.5

0.0

1–2h 2–4h 4–18h 18–24h

Pr
ot

ei
n 

le
ve

ls
 (%

 c
on

tr
ol

)

200

150

100

50

0

Npy Pomc Agrp Bsx

1000

800

600
Pl

as
m

a 
gh

re
lin

 (p
g/

m
l)

400

200

0

C-V
C-G

H
O-V

O-G
L
O-G

H

O-G
H/g

C-V
C-GH
O-V
O-GL
O-GH
O-GH/g

C-V C-GH O-V O-GL O-GH O-GH/g

C-V
C-GH
O-V
O-GL
O-GH
O-GH/g

C-V
C-GH
O-V
O-GL
O-GH
O-GH/g

POMC GHS-R1a FOXO1 pCREB

POMC

GHS-R1a

FOXO1

pCREB

Actin

##
#

##
#

#

#

# ##
#

##

## ## ##
#

##
#**

**

**
*

**
* *

*

*
*

** **
*

¥¥

* *

**

* **
*

*** *** *** ***

(a)

(c)

(d)

(b)

Fig. 7. Acute effects of olanzapine and the ghrelin receptor antagonist D-Lys3-GHRP-6 on food intake, plasma ghrelin levels,
protein expressions of POMC, GHS-R1a, FOXO1 and pCREB, and mRNA levels of NPY, POMC, AgRP and BSX at the MBH.
Olanzapine treatment produced a significant elevation effect on hourly food intake up to 4 h post-i.c.v. injection of vehicles, which
was reduced or eliminated by i.c.v. injection of D-Lys3-GHRP-6 (3 nmol) or D-Lys3-GHRP-6 (30 nmol), respectively (a). Olanzapine
decreased POMC, and increased FOXO1 and pCREB protein expressions at the MBH, which was eliminated by i.c.v. injection of
D-Lys3-GHRP-6 (30 nmol) (b). Olanzapine increased GHS-R1a protein expressions at the MBH, which could not be reversed by
D-Lys3-GHRP-6 (b). Olanzapine increased NPY, AgRP and BSX, but decreased POMC mRNA expressions at the MBH, which were
eliminated by i.c.v. injection of D-Lys3-GHRP-6 (30 nmol) (p<0.05; n=6) (c). Plasma ghrelin levels were increased by oral olanzapine
treatment (d). This effect was not affected by i.c.v. injection of D-Lys3-GHRP-6 (3 nmol) or D-Lys3-GHRP-6 (30 nmol) (d) #p<0.05
vs. C-V; ##p<0.01 vs. C-V; ###p<0.001 vs. C-V;*p<0.05 vs. O-V**p<0.01 vs. O-V; ***p<0.001 vs. O-V; ¥¥p<0.01 vs. O-GH; n=5–6 per
treatment group. C-V: the oral control and ICV vehicle group; C-GH: the oral control and i.c.v. high-dose GHS-R1a antagonist
group; O-V: the oral olanzapine and ICV vehicle group; O-GL: the oral olanzapine and i.c.v. low-dose GHS-R1a antagonist group;
O-GH: the oral olanzapine and high-dose GHS-R1a antagonist group; O-GH/g: the oral olanzapine and i.c.v. high-dose GHS-R1a
antagonist with ghrelin co-treatment group.

814 Q. Zhang et al.



In fact, D-Lys3-GHRP-6 has been reported to reduce
food intake and body weight gain in rodents (Asakawa
et al., 2003; Beck et al., 2004). Future studies are required
to investigate the chronic effects of co-administration
of D-Lys3-GHRP-6 and olanzapine on food intake and
the ghrelin-signalling system, as well as the effects of
D-Lys3-GHRP-6 administered via routes other than
the invasive i.c.v. injection. D-Lys3-GHRP-6 is widely
used in animal studies as a potent GHS-R1a blocker
(Asakawa et al., 2003; Beck et al., 2004; Zaniolo et al.,
2011; Ueno et al., 2012), with similar effects on food intake
and alcohol intake as JMV2959, another commonly used
GHS-R1a antagonist (Dickson et al., 2011; Moulin et al.,
2013). In the current study, as in other rodent i.c.v. injec-
tion studies (Asakawa et al., 2003; Beck et al., 2004),
D-Lys3-GHRP-6 is well tolerated at the current dosages
of i.c.v. injection, with no adverse effects observed.
However, future studies using GHS-R1a or ghrelin
knockout models are required to confirm the role of the
ghrelin-signalling system on SGA-induced hyperphagia
and weight gain.

Neuropeptides in the hypothalamus, including NPY,
AgRP and POMC are important downstream parameters
in the ghrelin-signalling pathways regulating food intake
and energy homeostasis, and previous studies have
shown that olanzapine can alter their expressions (Fernø
et al., 2011; Weston-Green et al., 2012a). Consistent with
the effects on ghrelin and food intake, our results showed
that hypothalamic expressions of NPY, AgRP and POMC
were altered by olanzapine treatment in the short- to mid-
term only. We also found for the first time that the
hypothalamic expressions of transcription factors for
these neuropeptides, including BSX, pCREB and
FOXO1, were elevated by short-term olanzapine treat-
ment. BSX has been reported to mediate ghrelin’s stimu-
latory effect on AgRP and NPY gene expressions, while
interacting with two other transcription factors FOXO1
and pCREB (Lage et al., 2010). FOXO1 can up-regulate
NPY and AgRP and inhibit POMC mRNA expressions
at the Arc in rats (Kim et al., 2006). Furthermore,
FOXO1 knock-in mice with specific activation at the
hypothalamus and pancreas can develop obesity and
hyperphagia, with increased AgRP and NPY levels at
the hypothalamus (Kim et al., 2012). Finally, central ad-
ministration of ghrelin can increase BSX mRNA and
FOXO1/pCREB protein expressions at the hypothalamus
in rodents (Nogueiras et al., 2008). Therefore, the
up-regulation of BSX, pCREB and FOXO1 expressions
observed under short-term olanzapine treatment in this
study are in line with the changes of NPY, AgRP and
POMC induced by olanzapine.

Other hypothalamic markers, including p53, Sirtuin 1
(SIRT1), ceramide, mammalian target of rapamycin
(mTOR), AMP-activated protein kinase (AMPK), acetyl
CoA carboxylase (ACC), fatty acid synthase (FAS), carni-
tine palmitoyltransferase 1 (CPT1), and uncoupling pro-
tein 2 (UCP2), have also been indicated as potential

upstream targets in the ghrelin-signalling pathway, and
may also play a role in SGA-induced hyperphagia
(L|ópez et al., 2008; Velasquez et al., 2011; Martins
et al., 2012; Ramirez et al., 2013; Skrede et al., 2014),
which have been reviewed by our group (Zhang et al.,
2013). Further studies are required to access the effect of
olanzapine (or other SGAs) on these upstream ghrelin-
signalling targets. In fact, the seminal data from our
group suggested that the protein levels of pAMPK,
pACC, and CPT1c at the hypothalamus were also time-
dependently regulated by olanzapine (He et al., 2012) in
the same cohorts of rats as in Experiment 1 in the current
study, which further substantiates the role of hypothala-
mic ghrelin-signalling in olanzapine-induced hyper-
phagia and weight gain.

Finally, in light of the effect of olanzapine in triggering
preference to a high fat/high sugar diet over chow diet in
rats (Smith et al., 2011), it is possible that the non-effect of
olanzapine on food intake during the mid- to long-term
treatments was due to the restriction of available foods
to lab chows in the current study. However, the effect
of olanzapine on food preference is still controversial
(van der Zwaal et al., 2010), and remains an interesting
topic for future studies.

In summary, we found that the elevation of food intake
by olanzapine can be blocked by D-Lys3-GHRP-6, sug-
gesting that the ghrelin-signalling pathway is playing
an important role in olanzapine-induced hyperphagia.
Further, short-term olanzapine treatment can up-regulate
hypothalamic expressions of BSX, pCREB and FOXO1,
transcriptional factors for the orexigenic neuropeptides
NPY and AgRP, which contributes to olanzapine-induced
hyperphagia. Finally, our pair-feeding experiment sug-
gests that the up-regulation of circulating ghrelin and
hypothalamic ghrelin-signalling under olanzapine treat-
ment, particularly in the short-term, is not secondary to
olanzapine-induced weight gain or elevated food intake.
Future research is required to elucidate the detailed mol-
ecular pathways involved in olanzapine-induced ghrelin-
signalling dysregulations, as well as the interactions be-
tween the ghrelin-signalling system and other systems,
such as the dopaminergic D2 system and the serotoniner-
gic 5HT2c system, which have been implicated in
antipsychotic-induced weight gain.
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