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Abstract 

In order to better understand animal models of Alzheimer‟s disease, novel phenotyping 

strategies have been established for transgenic mouse models. In line with this, the current 

study characterised male APPxPS1 transgenic mice on mixed C57BL/6JxC3H/HeJ 

background for the first time for social recognition memory, sensorimotor gating, and spatial 

memory using the cheeseboard test as an alternative to the Morris water maze. Furthermore, 

locomotion, anxiety, and fear conditioning were evaluated in transgenic and wild type-like 

animals. APPxPS1 males displayed task-dependent hyperlocomotion and anxiety behaviours 

and exhibited social recognition memory impairments compared to wild type-like littermates. 

Spatial learning and memory, fear conditioning, and sensorimotor gating were unaffected in 

APPxPS1 transgenic mice. In conclusion, this study describes for the first time social 

recognition memory deficits in male APPxPS1 mice and suggests that spatial learning and 

memory deficits reported in earlier studies are dependent on the sex and genetic background 

of the APPxPS1 mouse line used. Furthermore, particular test conditions of anxiety and 

spatial memory paradigms appear to impact on the behavioural response of this transgenic 

mouse model for Alzheimer‟s disease. 

 

Keywords: Alzheimer‟s disease; transgenic APPSwe/PS1∆E9 mice; behaviour; social 

recognition memory; sensorimotor gating; cheeseboard; 

  



 
1. Introduction 

Alzheimer‟s disease (AD) is the most common form of dementia, predicted to affect 1 in 85 

people globally in 2050. Disease progression from mild to severe stages encompasses 

impaired learning and communication, spatial disorientation, and memory loss. Two major 

post-mortem histological diagnostic features describe AD: 1) cleavage of the amyloid 

precursor protein (APP) produces amyloid beta (Aβ) depositions, which form senile plaques, 

and 2) hyper-phosphorylation of tau protein causes intracellular neurofibrillary tangles [1-2]. 

Importantly, elevated levels of Aβ in post-mortem brain tissue correlated with AD-typical 

memory decline in patients diagnosed with dementia [3]. Familial AD (FAD) is the 

hereditary form of AD (early onset, autosomal dominant) and accounts for <10% of AD cases 

(the remaining are classified as sporadic forms of AD) [1]. A number of mutations in genes 

encoding the amyloid precursor protein (APP), and presenilins, a family of enzymes 

responsible for the processing of APP, have been identified for FAD. Presenilin 1 and 2 

(PSEN1, PSEN2) are responsible for the activity of γ-secretase, one of the enzymes 

responsible for the cleavage of APP into Aβ isoforms [1-2]. 

Murine models are most commonly used to investigate the pathology of AD. The mice used 

in this study were generated by the co-injection of a chimeric human/murine APP construct 

bearing the Swedish double mutation (APPSwe) and the exon-9-deleted PSEN1 mutation 

(PSEN1/∆E9) [4-5]. APPSwe/PS1∆E9 (APPxPS1) double transgenic mice exhibit increased 

levels of Aβ at 4 months of age and develop accelerated plaque pathology, which is 

correlated with age [4-6]. Furthermore, impairments in cholinergic and muscarinic 

transmission develop alongside Aβ accumulation in the brain of APPxPS1 mice at 5-7 

months of age, reminiscent of AD pathology [7-8]. 

Various behavioural and cognitive deficits have been documented for this transgenic AD 

mouse model. Most notable are spatial memory impairments in the Barnes maze and Morris 



 
water maze (MWM), with the earliest deficits appearing at 7 and 8 months respectively [9-

10]. These cognitive deficits were more pronounced with age and correlated with increasing 

plaque deposition [11-13], which is sex-specific [6]. Other behavioural characteristics 

reported for APPxPS1 mice include decreased anxiety and increased locomotor activity [14]. 

However, some of the reported behavioural characteristics were inconsistent across 

laboratories. For example, Reiserer and colleagues could not replicate the anxiolytic 

phenotype reported earlier [10, 14]. More importantly, spatial memory deficits in the reversal 

task of the MWM were detected in 9-10-month-old mice [15] whereas another study reported 

no deficits in the reversal task in 12-month-old mice [16]. Furthermore, some studies 

combined both male and female mice within one test cohort [10, 14, 17], even though other 

studies revealed sex-specific differences in APPxPS1 mice [6, 18].  

In order to better understand animal models of AD, recent phenotyping studies in transgenic 

mouse models of AD have considered alternative spatial memory paradigms (i.e. 

cheeseboard; [19]) and also evaluated transgenic mice in novel behavioural domains such as 

social recognition memory [20] and sensorimotor gating [21].  In the present study we tested 

the APPxPS1 transgenic mouse model in these novel paradigms to determine the behavioural 

phenotype of this mouse model in more detail.  

  



 
2. Materials and methods 

2.1 Animals 

Double transgenic mice expressing chimeric mouse/human APP (Mo/HuAPP695swe / 

Swedish mutations K595N/M596L) and mutant human PSEN1 (PS1/∆E9) mice were 

obtained from Jackson Laboratory [Bar Harbor, USA; strain name: B6C3-

Tg(APPswe,PSEN1dE9)85Dbo/Mmjax; stock no. 004462] and maintained as hemizygotes on 

the congenic C57BL/6JxC3H/HeJ background as described previously [4-5, 22-23]. Male 

double transgenic mice (APPxPS1: n = 12) and their non-transgenic littermates (WT: n = 17) 

were bred and group-housed in independently ventilated cages (Airlaw, Smithfield, Australia) 

at Animal BioResources (Moss Vale, Australia). Test mice were transported to Neuroscience 

Research Australia (NeuRA) at around 10 weeks of age, where they were group-housed in 

Polysulfone cages (1144B: Techniplast, Rydalmere, Australia) equipped with some tissues 

for nesting. Mice were kept under a 12: 12 h light: dark schedule [light phase: white light 

(illumination: 124 lx) – dark phase: red light (illumination: < 2 lx)]. Food and water were 

provided ad libitum, except where specified. Adult, male A/J mice from Animal Resources 

Centre (Canning Vale, Australia) were placed in the animal enclosures of the social 

preference test. 

Research and animal care procedures were approved by the University of New South Wales 

Animal Care and Ethics Committee in accordance with the Australian Code of Practice for 

the Care and Use of Animals for Scientific Purposes.  

 

2.2 Behavioural Phenotyping 

Starting at 7 months of age, mice were tested in a battery of behavioural tests (for test order 

see Table 1; for test details see below) with an inter-test interval of at least 48h. All tests were 



 
conducted during the first 5 h of the light phase to minimise effects of the circadian rhythm 

on the performance of test mice.  

2.2.1 Light-dark test (LD): In the LD, the distance travelled and time spent in a brightly 

illuminated, aversive test arena compared to a dark area are indicators of anxiety in rodents 

[24-25]. The apparatus (for details see [26]) was an infrared photobeam-controlled open-field 

activity test chamber (MED Associates Inc., St Albans, USA) containing a dark box insert 

that covered half the chamber and was opaque to visible light. Mice were placed at the 

opening (faced towards the dark compartment) at the start of the experiment. The time spent 

as well as the distance travelled in the two chambers was recorded for 10 min. 

2.2.2 Elevated plus maze (EPM): The EPM assesses the natural conflict between the 

tendency of mice to explore a novel environment and avoidance of a brightly lit, elevated and 

open area [27-28]. The grey plus maze was “+” shaped (for details of apparatus see [29]). 

Mice were placed at the centre of the + (faced towards an enclosed arm) and were allowed to 

explore the maze for 5 min. The time spent and distance travelled in the open and enclosed 

arms were recorded using AnyMaze
TM

 (Stoelting, Wood Dale, USA) tracking software. 

2.2.3 Social preference test (SPT): The SPT was used to assess sociability and social novelty 

preference (i.e. social recognition memory) in test mice [30-31]. The apparatus consisted of 3 

chambers, a central chamber (length: 9 cm, width: 18 cm, depth: 20 cm) and two outer 

chambers (6 cm x 18 cm x 20 cm). The dividing walls were made of clear Plexiglas, with 

square passages, 4 cm high and 4 cm wide. One circular cage (i.e. mouse enclosure) was 

placed into each outer chamber. The mouse enclosures were 15 cm in height with a diameter 

of 7 cm and bars spaced 0.5 cm apart to allow nose contact between mice (i.e. test mouse and 

A/J mouse) but prevent fighting. The chambers and enclosures were cleaned with 30% 

ethanol in-between trials (inter-trial interval of 5 min) and and fresh corn cob bedding was 

added prior to each test trial. 



 
Test animals were isolated for an hour prior to the start of testing. During the habituation 

trial, WT and APPxPS1 mice were placed individually in the central chamber and allowed to 

freely explore the apparatus and the two empty enclosures for 5 min. For the sociability test 

an unfamiliar adult male A/J mouse was placed in one of the two enclosures (i.e. opponent 

chamber) in a quasi-randomised fashion. Then the test mouse was returned to the apparatus 

and allowed to explore all three chambers for 10 min. Finally, test animals were observed in a 

10 min social recognition test. For this, a second, unfamiliar A/J mouse was placed in the 

previously empty chamber so that the test mouse had the choice to explore either the familiar 

A/J mouse (from the previous trial) or the novel, unfamiliar mouse. AnyMaze
TM

 tracking 

software was used to determine the time spent in the different chambers, number of entries 

and distance travelled by the test mice in each trial. Time spent sniffing the opponent (i.e. A/J 

mouse) was recorded manually (i.e. snout of test mouse within the enclosure containing the 

opponent mouse or < 5 mm away from enclosure). 

2.2.4 Fear Conditioning: Fear conditioning assesses associative learning whereby a 

previously neutral stimulus elicits a fear response after it has been paired with an aversive 

stimulus. On conditioning day, mice were placed into the test chamber (Model H10-11R-TC, 

Coulbourn Instruments, USA) for 2 min. Then an 80 dB conditioned stimulus (CS) was 

presented for 30 seconds with a co-terminating 0.4 mA 2 second foot shock (unconditioned 

stimulus; US) twice with an inter-pairing interval of 2 min). The test concluded 2 min later. 

The next day (context test), mice were returned to the apparatus for 7 min. On day 3 (cue 

test), animals were placed in an altered context for 9 min. After 2 min (pre-CS/baseline), the 

CS was presented continuously for 5 min. The test concluded after another 2 min with the 

absence of the CS. Time spent freezing was measured using Any-Maze
TM

 software [32-33]. 

To avoid any influence of foot shock exposure on further testing, a inter-test interval of 



 
several months was chosen and all following tests were carried out in other tests rooms than 

the fear conditioning test. 

2.2.5 Cheeseboard (CB): The CB was used as a less stressful dry-land alternative of the 

MWM [19]. Mice at 10-11 months of age were trained to find a food reward on a wooden 

board over a number of days (for specifics of test apparatus see [34]). A total of 32 bottle 

caps were evenly distributed across the CB and external cues were located around the board. 

One cap contained a food reward (100 μl sweetened condensed milk; diluted 1:4 with water) 

although all caps were brushed lightly with diluted sweetened condensed milk to eliminate 

the chance that mice use odour cues to find the target cap. For this, all mice were food-

deprived and kept at 85-90% of their pre-test body weight throughout testing (mice were fed 

for 1-2 h per day). A camera was mounted above the CB to measure latency to find the 

reward and time spent in the different CB zones (i.e. board was separated into 8 equal zones) 

using Any-Maze
TM 

software.  

During habituation, (3 days to the blank side on the inverted platform of the CB) three 2 min 

trials were conducted each day for three days with a 10 min intertrial interval (ITI). For 

spatial reference memory acquisition, mice were trained over 9 days (three trials per day with 

a 10 min ITI) to locate the food reward. The location of the target well was kept constant for 

each mouse between trials and across days but quasi-randomised and counterbalanced across 

genotypes. If the target well was not located within 2 min, mice were placed next to the target 

well and allowed to consume the food reward. To test for spatial reference memory, a probe 

trial was conducted on day 10, where no wells were baited and mice were given 2 min to 

explore the board freely. The time the mice spent in the different zones of the CB (i.e. % 

exploration time) was recorded (as previously described [32]). 



 
To test reversal learning (start of training 24h post probe trial), the location of the food 

reward was moved to the opposite side of the CB. Mice completed 4 days of reversal training 

(three trials per day with a 10 min ITI) before a reversal probe trial was carried out. 

2.2.6 Sensorimotor gating (i.e prepulse inhibition: PPI): PPI was used to test for 

sensorimotor gating deficits as it has been demonstrated by others that sensorimotor gating 

can be impaired in AD mouse models and  can be directly correlated with amyloid burden 

[21, 35]. Test mice were placed in Plexiglas mouse enclosures of the startle chambers (SR-

Lab, San Diego Instruments, San Diego, USA) and allowed to habituate to the enclosure and 

test apparatus for 5 min over 3 consecutive days prior to PPI testing with a consistent 

background noise of 70 dB. The 30 min PPI test session consisted of a 5 min acclimation 

period to 70 dB background noise, followed by 97 trials presented in a pseudorandom order: 

5 x 70 dB trials; 5 x 100 dB trials; 15 x 120 dB trials to measure the acoustic startle response 

(ASR) and 15 sets of 5 trials comprising of a prepulse of either 74, 82 or 86 dB presented 32, 

64, 128, or 256 ms (variable interstimulus interval; ISI) prior to a startle pulse of 120 dB to 

measure the PPI response. The intertrial interval (ITI) varied randomly from 10 – 20 seconds. 

Responses to each trial were calculated as the average mean amplitude detected by the 

accelerometer [36-37]. ASR was calculated as the mean amplitude to all startle trials and 

percentage PPI (%PPI) was calculated as [(mean startle response (120 dB) – PPI 

response)/mean startle response (120 dB)] x 100. %PPI was averaged across ISIs to produce 

a mean %PPI for each prepulse intensity. For ASR habituation, blocks of ASR to 120 dB 

were averaged at the beginning, middle and end of the PPI protocol (5 trials per block). 

2.2.7 Olfactory test (i.e. cookie test): Olfactory abilities play a crucial role in social 

interaction between mice [38]. A simple test [24, 30] was performed to assess the gross 

olfactory abilities of male WT and APPxPS1 transgenic mice. Test mice were familiarised 

with a high carbohydrate food (Froot Loops: Kellogg Pty. Ltd., Strawberry Hills, Australia) 



 
in their home cages, 24 h prior to the test. Consumption was observed by the experimenter to 

ensure the novel food was palatable for the mice. On the test day, test mice were habituated 

for 5 min to a large opaque cage (47 x 18 x 13 cm) containing 2 cm deep bedding. The 

animal was removed from the cage thereafter, and one Froot Loop was buried randomly in 

the cage bedding. The animal was then returned to the cage and given 10 min to locate the 

buried food. The latency to find the Froot Loop was recorded as a measure of olfactory 

abilities. 

 

2.3 Statistical Analysis 

Analysis of the behavioural parameters was performed using one-way analysis of variance 

(ANOVA) to investigate main effects of „genotype‟ or repeated measures (RM) ANOVAs for 

effects of „chamber‟ (SPT), „time‟ (CB) „1 min block‟ (FC), „startle block‟ and „prepulse 

intensity‟ (both PPI) as published previously [34]. Performance in the CB probe trials and 

social preference test were also assessed using one sample t-tests to investigate whether the 

percentage of time spent in the target zone or novel chamber were greater than chance (12.5% 

and 50% respectively). Differences were regarded as significant if p < .05. F-values and 

degrees of freedom are presented for ANOVAs and significant genotype effects (ANOVA) 

are shown in figures and tables as „*‟ (
*
p < .05, 

**
p < .01, and 

***
p < .001). RM ANOVA 

effects for chamber are presented by „#‟ (
#
p < .05, (

#
p < .01 and  

###
p < .001). Data are shown 

as means ± standard error of means (SEM). Analyses were conducted using SPSS 20.0 for 

Windows. 

  



 
3. Results 

3.1 Anxiety 

One-way ANOVA for total distance travelled in the LD revealed an effect of „genotype‟ 

[F(1,29) = 11.7,  p < .01; Table 2], suggesting that APPxPS1 transgenic mice exhibit a 

hyperlocomotor phenotype. Importantly, no effects of APPxPS1 were detected on the 

anxiety-related parameters time in light chamber [F(1,29) = 0.001,  p = .9] and percentage 

distance travelled in the same zone [F(1,29) = 0.07,  p = .8] (Table 2). Nevertheless, 

APPxPS1 mice demonstrated increased levels of anxiety in the EPM. Both, the percentage of 

time spent in the open arms [F(1,28) = 4.6, p < .05] as well as the percentage open arm 

entries [F(1,28) = 4.5, p < .05] were significantly lower in transgenic mice when compared 

with their WT counterparts (Table 2). Furthermore, there was a strong trend for an increase in 

total time spent on the open arms [F(1,28) = 4.0, p = .05] (Table 2). No other significant 

differences were found for any of the parameters investigated [p > .05 for all parameters], 

including the total time spent in enclosed arms and the total distance travelled in enclosed 

arms (data not shown). 

 

3.2 Cognition 

3.2.1 Social Preference Test: All mice demonstrated sociability in the 3-chamber social 

preference test. RM ANOVA detected a significant effect of test chamber for all mice for 

total time spent in chamber [F(1,29) = 50.1, p < .001; „genotype‟ x „chamber‟ interaction: 

F(1,29) = 4.4, p < .05] (Fig. 1A). One-way ANOVA for total time spent in opponent chamber 

revealed that transgenic mice spent a less time in the mouse chamber than WT control mice 

[F(1,29) = 4.7, p < .05]. However, one sample t-test confirmed that both WT and transgenic 

mice developed a preference for the opponent chamber (containing a stranger/unfamiliar 

mouse) [WT: t(11) = 10.8, p < .001; APPxPS1: t(18) = 3.4, p < .01].  



 
In the social recognition test, RM ANOVA revealed a significant effect of „chamber‟ for all 

mice for total time spent in test chambers [F(1,29) = 4.4, p < .05] (Fig. 1B) and time spent 

sniffing [F(1,29) = 7.8, p < .01] (Fig. 1C). Importantly, only WT mice demonstrated a 

preference for the chamber containing the novel mouse [time spent in chamber: F(1,11) = 5.9, 

p < .05 – time spent sniffing: F(1,11) = 8.9, p = .01] while transgenic mice spent an equal 

amount of time with the familiar and the novel mouse [time spent in chamber: F(1,18) = 0.1, 

p = .7 – time spent sniffing: F(1,18) = 0.9, p = .4]. T-tests for percentage time spent with 

novel mouse and percentage time sniffing the novel mouse confirmed that WT [t(11) = 2.2, p 

< .05 – t(11) = 3.6, p < .01] but not APPxPS1 transgenic mice [t(18) = .3, p = .7 – t(18) = 1.0, 

p = .3] developed a clear preference for the chamber containing the novel mouse (data not 

shown). One-way ANOVA revealed no significant genotype differences for percentage of 

time spent in the novel chamber [F(1,29) = 2.3, p = .1] and percentage of time sniffing the 

novel opponent [F(1,29) = 2.2, p = .2]. Locomotion of WT and APPxPS1 mice was identical 

in both the familiar [F(1,29) = 1.3, p = 0.3] and the novel chamber [F(1,29) = 0, p = 1.0] 

(Table 2). 

3.2.3 Fear Conditioning: All mice responded to the electric foot shocks delivered during the 

conditioning phase (i.e. vocalisation). Furthermore, the baseline freezing prior to conditioning 

was similar across genotypes [F(1,29) = .3, p = .5; Table 3]. Contextual fear conditioning (i.e. 

total time spent freezing during context test) of APPxPS1 mice was WT-like [F(1,29) = 2.9, p 

= .1]. In the cue test, all mice demonstrated the ability to associate the CS with the US as 

evidenced by a significant increase in freezing behaviour in response to the presentation of 

the cue [RM ANOVA for „1 min block‟: F(1,29) = 9.3, p < .01 - no „1 min block‟ by 

„genotype‟ interactions; Table 3]. 

3.2.4 Cheeseboard: Mice of both genotypes showed normal task acquisition as indicated by 

RM ANOVA for „time‟ [F(8,208) = 38.8, p < .001 – no interaction with „genotype‟; Fig. 2A], 



 
demonstrating a significant decrease in latency to find and consume the reward across days. 

In the probe trial, all mice demonstrated a preference for the target zone [WT: t(11) = 3.1, p < 

.01; APPxPS1: t(15) = 3.7, p < .01], as they spent significantly more time than chance (i.e. 

12.5%) in the target zone, indicating successful recall of the reward location (Fig. 2B). 

Furthermore, one-way ANOVA for percentage time in target zone revealed the performance 

of transgenic mice did not differ significantly from that of WT mice [F(1,26) = .3, p = .6]. 

During reversal learning, all test animals adapted to the change in reward location and 

exhibited decreased latencies to find the food reward over days [RM ANOVA for „time‟: 

F(3,78) = 4.7, p < .001 – no interaction with „genotype‟; Fig. 2C]. Finally, all mice developed 

a preference for the new target zone in the reversal probe trial as they spent significantly 

more time than chance in the designated zone [WT: t(11) = 3.0, p < .05; APPxPS1: t(15) = 

2.9, p < .05; Fig. 2D]. Transgenic mice did not differ significantly in their preference to 

explore the target zone [F(1,26) = .2, p = .6]. 

 

3.3 Sensorimotor gating 

3.3.1 Acoustic startle response (ASR) and ASR habituation: RM ANOVA revealed a 

significant effect of „pulse intensity‟ [F(2,50) = 25.3, p < .001] on the ASR of all mice with 

120 dB pulses generating the highest startle responses (Fig 3A). A trend was found for the 

effect of „genotype‟ [F(1,25) = 3.9, p = .06], suggesting that ASR was generally higher in 

transgenic APPxPS1 mice compared to WT mice. However, one-way ANOVAs for the 

different startle pulses revealed no significant differences between WT and APPxPS1 mice [p 

> .05 for all startle pulses]. 

Statistical analysis suggested that mice did not habituate significantly to the 120 dB pulse 

[RM ANOVA for „startle block‟: F(2,50) = 2.6, p = .08], although this appeared to be due to 

a failure of APPxPS1 rather than WT mice to habituate to a 120 dB startle stimulus [trend for 



 
„startle block‟ x „genotype‟ interaction: F(2,50) = 2.7, p = .08] (Fig. 3B). Indeed, when data 

were split by „genotype‟, it was found that WT mice demonstrated significant habituation 

towards the 120 dB pulse [WT: F(2,20) = 6.8, p < .01], while transgenic mice exhibited no 

reduction in ASR across trials [APPxPS1: F(2,30) = .002, p = 1.0] (Fig. 3B]. 

3.3.2 Prepulse inhibition: Prepulse intensities had a significant effect on %PPI as increasing 

prepulse intensities resulted in more pronounced prepulse inhibition [RM ANOVA: F(2,50) = 

28.4, p < .001] (Fig. 3C). Importantly, sensorimotor gating was not altered in transgenic mice 

as no effects of „genotype‟ were found at any prepulse intensity [p > .05 for all parameters 

investigated; Fig. 3C].  

 

3.4 Olfaction (Cookie test) 

All mice found and consumed the buried food reward within the allotted time as measured in 

seconds (WT: 300.6 ± 61.6 - APPxPS1: 227.8 ± 46.4). The performance of transgenic mice in 

the olfactory test was comparable to WT mice [latency to find buried food: F(1,27) = .9, p = 

.3], suggesting WT-like olfactory abilities of transgenic AD mice.   



 
4. Discussion 

This is the first report that APPxPS1 males develop social recognition memory impairments. 

Furthermore, transgenic males displayed task-dependent hyperlocomotion and anxiety 

behaviours. Spatial learning and memory in the CB paradigm as well as sensorimotor gating 

and fear conditioning were all unaffected in 10-month-old APPxPS1 mice. 

Agitation and increased motor activity (restlessness) is one characteristic of AD patients [39]. 

Measuring the locomotor activity of APPxPS1 mice revealed that transgenic animals 

developed a hyperlocomotive phenotype in the LD test at the age of 7 months. This finding is 

in line with a study testing 8-months old APPxPS1 male in the open field [11] although other 

studies reported wild type-like locomotion of APPxPS1 [10, 14, 40]. Importantly, a detailed 

comparison of all these studies suggests that the characteristics of the particular APPxPS1 

mouse model tested (i.e. number of backcrosses onto C57BL/6J background), the sex of test 

animals and the methodology used to analyse locomotion (e.g. test duration and the level of 

stress caused by test apparatus) may account for inconsistent behavioural responses across 

studies. Methodological differences might also explain why hyperlocomotion of APPxPS1 

males of the current study was detected in the LD test but not the EPM. 

Male APPxPS1 mice displayed wild type-like anxiety levels in the LD test, which is 

consistent with earlier reports [10]. However, transgenic males were more anxious in the 

EPM compared to control animals. This task-specific anxiety phenotype may be related to the 

human clinical setting as there are AD patients who experience symptoms of anxiety [41]. In 

contrast, Lalonde and co-workers detected decreased anxiety levels in APPxPS1 mice (males 

and females were tested together) and interpreted this phenotype as a loss of behavioural 

inhibition, akin to dis-inhibitory tendencies observed in AD patients [14].  

While control mice exhibited a clear preference for the novel opponent as expected [30], 

APPxPS1 males did not differentiate between the novel and familiar opponent mouse 



 
suggesting deficits in social recognition memory (as measured by time spent in chamber and 

time spent sniffing opponent). This effect was not confounded by the hyperactive phenotype 

of APPxPS1 mice observed in the light-dark test as locomotion was identical in both 

chambers across genotypes. All test mice were also characterised in the cookie test, as the test 

performance is dependent on olfactory abilities and as AD patients and some mouse models 

of AD exhibit impaired olfaction [42-43]. All test animals showed normal olfactory abilities 

in the cookie test. In addition, Rey and colleagues showed that the olfactory discrimination 

under baseline conditions (using a 5 min delay between first and second exposure to 

novel/familiar odours) was identical for control and APPxPS1 mice [44]. Interestingly, 

transgenic mice of that study exhibited impaired odour retention with a 15 min delay. 

However, as the inter-trial interval of the social preference test in our study was 5 min, it is 

unlikely that the social recognition memory deficit of APPxPS1 mice was influenced by a 

reduced ability of transgenic mice to recall odours they had encountered earlier. Furthermore, 

control and APPxPS1 males displayed normal sociability (i.e. preference to investigate a 

mouse over an empty chamber) although this preference was more pronounced in WT mice. 

Importantly, the task-dependent anxiety phenotype of transgenic mice in the elevated plus 

maze (but not the light-dark test) did not impact on the natural drive of mice to explore 

another mouse. Both WT and APPxPS1 mice exhibited a clear preference to investigate the 

social stimulus presented during the sociability test. However, the intact but compared to 

control mice reduced levels of social interaction/investigation of another mouse observed in 

APPxPS1 mice may be influenced by the anxiety phenotype detected in the elevated plus 

maze. 

In support of an impaired social recognition memory in AD mice is a recent study reporting 

impaired social recognition in the Thy1-hAPP(Lond/Swe+) transgenic mouse model [20]. In 

this context, it is interesting to note that AD patients have difficulties to recognise familiar 



 
faces [45]. Brain regions responsible for recognition memory are the perirhinal cortex and 

hippocampus [46], both regions are compromised in AD patients [47]. Furthermore, the 

amygdala, which is associated with social behaviours, undergoes atrophy in AD patients [48]. 

Thus, impairments in social recognition memory may be caused by pathological changes in 

these brain regions in APPxPS1 mice. Further research will have to address potential 

histological differences in these regions between WT and APPxPS1 mice. 

The deficit in recognition memory was specific as fear conditioning (i.e. associative learning) 

was intact in 7-month-old transgenic mice, which is similar to what had been reported in 4-

month-old APPxPS1 females [49]. Furthermore, task acquisition and retention of spatial 

memory of APPxPS1 males were not impaired in the hidden version of the CB paradigm. 

APPxPS1 mice have been described to develop spatial learning and memory deficits, which 

are most often evaluated in the MWM. In females, deficits in spatial learning were evident in 

9-10-month-old APPxPS1 mice [15, 50] and retention deficits were detected in 12-month-old 

transgenic animals [51]. However, only one study has investigated male APPxPS1 mice on 

C57BL/6JxC3H/HeJ background to date. Cao and co-workers reported intact task acquisition 

but impaired spatial memory retention for 8-month-old transgenic males [9], whereas 

APPxPS1 males backcrossed to C57BL/6J developed spatial learning and memory deficits at 

the age of 9-15 months. This suggests an influence of the genetic background of APPxPS1 

males on the development of cognitive deficits [52-53]. Importantly, the CB paradigm used 

in current study is classified as the dry version of the MWM [54] and has been validated as an 

alternative spatial memory test to detect cognitive impairments in AD transgenic mice [19]. 

Nonetheless, comparing results between MWM and CB testing requires caution as the MWM 

can impact severely on the stress response of mice (for this and other issues relevant to 

MWM testing of mice see [54-58]). Thus, the anxiety phenotype of male APPxPS1 mice may 

explain the differences between the cognitive performance of transgenic animals in the 



 
MWM [9] and the CB of the current study. Two previous studies found deficits in spatial 

learning and memory of APPxPS1 males using the CB paradigm. However, one study used 

WT and transgenic mice at the age of 24 months [59] and both studies detected cognitive 

impairments in the cued (but not the hidden) version of the CB only [21, 59]. 

A meta-analysis has found social withdrawal is among the first symptoms displayed by AD 

patients, occurring up to 33 months on average prior to the diagnosis of AD [39]. In line with 

this, 10-month-old APPxPS1 males appear to demonstrate social recognition memory 

impairments in the absence of any other cognitive deficits. Thus, testing APPxPS1 males on a 

mixed background, which are significantly older than the cohort tested in the current study, 

might result in spatial memory deficits in the hidden versions of both CB and MWM. 

Studies have identified suppression of the P50 event-related potential of sensorimotor gating 

in AD patients [60]. The present study found that sensorimotor gating as measured by 

prepulse inhibition was unaltered in 10-month-old APPxPS1 males. This is supported by a 

previous study that found no PPI deficits in a mixed cohort of 12-month-old male and female 

mice of another APPxPS1 line [61]. However, a more recent study showed that female 

APPxPS1 of the same line developed sensorimotor gating deficits at the age of 7 months [35]. 

However, sex and PPI protocol-specific effects are likely [6, 37, 62-63]. 

In conclusion, this investigation describes for the first time social recognition memory 

deficits in male APPxPS1 mice. Furthermore, this deficit manifests at least 3 months prior to 

any evidence of other cognitive deficits such as spatial learning and memory impairments. 

The deficits in social recognition could be linked to possible impairments of the prefrontal 

cortex and hippocampus caused either by the deposition of Aβ or other underlying 

pathological symptoms. The observed anxiety phenotype and the absence of any spatial 

deficits in 10-month-old male APPxPS1 mice on a mixed background emphasize the 



 
necessity to consider sex and genetic background effects in AD mouse models and to pay 

attention to details of the cognitive paradigms undertaken. 

 

 

  



 
5. Figure Legends 

Fig. 1A-B: Sociability (A) and social recognition memory (B and C) in the social 

preference test: A) Total time spent in test chambers containing either an unfamiliar mouse 

(i.e. opponent) or an empty mouse enclosure (i.e. empty) [s]; B) Time spent in a test chamber 

containing either a familiar or an unfamiliar (i.e. novel) mouse [s]. C) Time spent sniffing a 

familiar or an unfamiliar (i.e. novel) opponent (i.e. A/J mouse) [s]. Data for non-transgenic 

control (WT) and double transgenic APPSwe/PS1∆E9 (APPxPS1) males are shown as means 

+ SEM. Significant genotype effects of ANOVA are indicated with „*‟ (
*
p < .05) whereas 

RM ANOVA for chamber effects are presented by „#‟ (
#
p < .05, (

#
p < .01 and  

###
p < .001). 

Fig. 2A-D: Spatial learning and memory in the cheeseboard (CB): A) Latency [s] to find 

the food reward (averaged across 3 daily trails) during training; B) Percentage time [%] spent 

in the target zone of the CB (i.e. in close proximity to the reward well) during the 2 min 

probe trial; C) Latency [s] to find the food reward (averaged across 3 daily trials) during 

reversal training;  D) Percentage time [%] spent in the target zone of the CB during the 2 min 

reversal probe trial. Data for non-transgenic control (WT) and double transgenic 

APPSwe/PS1∆E9 (APPxPS1) males are shown as means + SEM. 

Fig. 3A-C: Sensorimotor gating: A) Acoustic startle response (ASR: startle amplitude in 

arbitrary units) to different startle pulses (i.e. 70 dB = background noise, 100 dB, 120 dB); B) 

Habituation of the ASR to a 120 dB startle pulse over blocks of trials; C) Percentage prepulse 

inhibition (%PPI) averaged over trials for different prepulse intensities (72/74/78 dB). Data 

for non-transgenic control (WT) and double transgenic APPSwe/PS1∆E9 (APPxPS1) males 

are shown as means + SEM. Significant genotype effects (ANOVA) are indicated by „*‟ (
*
p 

< .05).  
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Test age [d] Behavioural paradigm 

194 ± 12 Light-dark test (LD) 

196 ± 12 Elevated plus maze (EPM) 

207 ± 12 Social preference test (SPT) 

214 ± 12 Contextual and cued fear conditioning (FC) 

308 ± 6 Cheeseboard (CB) 

321 ± 6 Reversal cheeseboard (rCB) 

340 ± 12 Sensorimotor gating (Prepulse inhibition: PPI) 

379 ± 12 Olfaction (Cookie test) 

Table 1: Test age [d] and test biography of non-transgenic control (WT) and double 

transgenic APPSwe/PS1∆E9 (APPxPS1) male mice are shown. 

  



 
 WT APPxPS1 

LD   

Total distance travelled [cm] 1315.3 ± 114.5 2256.0 ± 204.8 ** 

Distance travelled in the light 

chamber [%] 

35.0 ± 4.4 33.8 ± 1.9 

Time spent in the light 

chamber [%] 

33.6 ± 4.3 33.7 ± 2.1 

Time spent in the light 

chamber [s] 

191.9 ± 24.3 194.6 ± 12.3 

EPM   

Time spent on open arms [%] 21.3 ± 5.6 16.2 ± 3.4 * 

Time spent on open arms [s] 29.9 ± 8.7 13.0 ± 3.8 
+ 

Entries into open arms [%] 28.0 ± 4.6 16.2 ± 3.4 * 

SPT   

Familiar mouse chamber 

Total distance travelled [cm] 

321.4 ± 29.5 397.9 ± 49.1 

Novel mouse chamber 

Total distance travelled [cm] 

416.7 ± 54.5 416.2 ± 43.1 

Table 2: Locomotion (total distance travelled) and anxiety behaviours (percentage 

locomotion and time spent in aversive zones) in the light-dark test (LD),  the elevated plus 

maze (EPM) and the social preference test (SPT: total distance travelled in social recognition 

test only) of non-transgenic control (WT) and double transgenic APPSwe/PS1∆E9 (APPxPS1) 

male mice are shown as mean ± SEM. Significant effects of „genotype‟ are indicated with „*‟ 

(
*
p < .05 and 

**
p < .01) whereas trends of „genotype‟ are shown with „+‟ (

+
p = .05).  



 
Fear conditioning WT APPxPS1 

Conditioning   

Baseline freezing [s] 9.4 ± 4.5 6.9 ± 2.3 

Context   

Total time spent freezing [s] 61.2 ± 13.3 100.4 ± 16.4 

Freezing - first 2 min [s] 17.2 ± 5.5 21.7 ± 5.7 

Cue   

Time spent freezing 1 min 

prior to cue onset [s] 

6.7 ± 2.8 9.9 ± 2.2 

Time spent freezing 1 min 

post cue onset [s] 

10.2 ± 2.0 16.3 ± 3.4 

Freezing – first 2 min [s] 10.2 ± 4.4 12.4 ± 3.0 

Table 3: Fear-associated memory: Time spent freezing [s] at baseline (first 2 min of 

conditioning trial), during the context test, and 1 min prior to and post tone presentation in the 

cue version of the fear conditioning paradigm is shown for non-transgenic control (WT) and 

double transgenic APPSwe/PS1∆E9 (APPxPS1) male mice. Data are presented as mean ± 

SEM. 
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