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Abstract: Exponential-family random graph models (ERGMs) provide a
principled and flexible way to model and simulate features common in social
networks, such as propensities for homophily, mutuality, and friend-of-a-
friend triad closure, through choice of model terms (sufficient statistics).
However, those ERGMs modeling the more complex features have, to date,
been limited to binary data: presence or absence of ties. Thus, analysis
of valued networks, such as those where counts, measurements, or ranks
are observed, has necessitated dichotomizing them, losing information and
introducing biases.

In this work, we generalize ERGMs to valued networks. Focusing on
modeling counts, we formulate an ERGM for networks whose ties are counts
and discuss issues that arise when moving beyond the binary case. We
introduce model terms that generalize and model common social network
features for such data and apply these methods to a network dataset whose
values are counts of interactions.
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1. Introduction

Networks are used to represent and analyze phenomena ranging from sexual
partnerships (Morris and Kretzschmar, 1997), to advice giving in an office
(Lazega and Pattison, 1999), to friendship relations (Goodreau, Kitts and Mor-
ris, 2008; Newcomb, 1961), to international relations (Ward and Hoff, 2007),
to scientific collaboration, and many other domains (Goldenberg et al., 2009).
More often than not, the relations of interest are not strictly dichotomous in the
sense that all present relations are effectively equal to each other. For example,
in sexual partnership networks, some ties are short-term while others are long-
term or marital; friendships and acquaintance have degrees of strength, as do
international relations; and while a particular individual seeking advice might
seek it from some coworkers but not others, he or she will likely do it in some
specific order and weight advice of some more than others.

Network data with valued relations come in many forms. Observing mes-
sages (Freeman and Freeman, 1980; Diesner and Carley, 2005), instances of
personal interaction (Bernard, Killworth and Sailer, 1979–1980), or counting
co-occurrences or common features of social actors (Zachary, 1977; Batagelj
and Mrvar, 2006) produce relations in the form of counts. Measurements, such
as duration of interaction (Wyatt, Choudhury and Bilmes, 2009) or volume of
trade (Westveld and Hoff, 2011) produce relations in the form of (effectively)
continuous values. Observations of states of alliance and war (Read, 1954) pro-
duce signed relationships. Sociometric surveys often produce ranks in addition
to binary measures of affection (Sampson, 1968; Newcomb, 1961; Bernard, Kill-
worth and Sailer, 1979–1980; Harris et al., 2003).

Exponential-family random graph models (ERGMs) are generative models
for networks which postulate an exponential family over the space of networks
of interest (Holland and Leinhardt, 1981; Frank and Strauss, 1986), specified
by their sufficient statistics (Morris, Handcock and Hunter, 2008), or, as with
Frank and Strauss (1986), by their conditional independence structure leading to
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sufficient statistics (Besag, 1974). These sufficient statistics typically embody the
features of the network of interest that are believed to be significant to the social
process which had produced it, such as degree distribution (e.g., propensity
towards monogamy in sexual partnership networks), homophily (i.e., “birds of
a feather flock together”), and triad-closure bias (i.e., “a friend of a friend is a
friend”) . (Morris, Handcock and Hunter, 2008)

A major limitation of ERGMs to date has been that they have been applied
almost exclusively to binary relations: a relationship between a given actor i and
a given actor j is either present or absent. This is a serious limitation: valued
network data have to be dichotomized for ERGM analysis, an approach which
loses information and may introduce biases. (Thomas and Blitzstein, 2011)

Some extensions of ERGMs to specific forms of valued ties have been for-
mulated: to networks with polytomous tie values, represented as a constrained
three-way binary array by Robins, Pattison and Wasserman (1999) and more
directly by Wyatt, Choudhury and Bilmes (2009; 2010); to multiple binary net-
works by Pattison and Wasserman (1999); and the authors are also aware of
some preliminary work by Handcock (2006) on ERGMs for signed network data.
Rinaldo, Fienberg and Zhou (2009) discussed binary ERGMs as a special case
and a motivating application of their developments in geometry of discrete ex-
ponential families.

A broad exception to this limitation has been a subfamily of ERGMs that
have the property that the ties and their values are stochastically independent
given the model parameters. Unlike the dependent case, the likelihoods for these
models can often be expressed as generalized linear or nonlinear models, and
they tend to have tractable normalizing constants, which allows them to more
easily be embedded in a hierarchical framework. Thus, to represent common
properties of social networks, such as actor heterogeneity, triad-closure bias,
and clustering, latent class and position models have been used and extended
to valued networks. (Hoff, 2005; Krivitsky et al., 2009; Mariadassou, Robin and
Vacher, 2010)

In this work, we generalize the ERGM framework to directly model valued
networks, particularly networks with count dyad values, while retaining much
of the flexibility and interpretability of binary ERGMs, including the above-
described property in the case when tie values are independent under the model.
In Section 2, we review conventional ERGMs and describe their traits that val-
ued ERGMs should inherit. In Section 3, we describe the framework that extends
the model class to networks with counts as dyad values and discuss additional
considerations that emerge when each dyad’s sample space is no longer binary.
In Section 4, we give some details and caveats of our implementation of these
models and briefly address the issue of ERGM degeneracy as it pertains to count
data. Applying ERGMs requires one to specify and interpret sufficient statis-
tics that embody network features of interest, all the while avoiding undesirable
phenomena such as ERGM degeneracy. Thus, in Section 5, we introduce and
discuss statistics to represent a variety of features commonly found in social
networks, as well as features specific to networks of counts. In Section 6 we use
these statistics to model social forces that affect the structure of a network of
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counts of conversations among members of a fraternity. Finally, in Section 7, we
discuss generalizing ERGMs to other types of valued data.

2. ERGMs for binary data

In this section, we define notation, review the (potentially curved) exponential-
family random graph model and identify those of its properties that we wish to
retain when generalizing.

2.1. Notation and binary ERGM definition

Let N be the set of actors in the network of interest, assumed known and
fixed for the purposes of this paper, and let n ≡ |N | be its cardinality, or the
number of actors in the network. For the purposes of this paper, let a dyad be
defined as a (usually distinct) pair of actors, ordered if the network of interest
is directed, unordered if not, between whom a relation of interest may exist,
and let Y be the set of all dyads. More concretely, if the network of interest is
directed, Y ⊆ N × N , and if it is not, Y ⊆ {{i, j} : (i, j) ∈ N × N}. In many
problems, a relation of interest cannot exist between an actor and itself (e.g.,
a friendship network), or actors are partitioned into classes with relations only
existing between classes (e.g., bipartite networks of actors attending events), in
which case Y is a proper subset of N ×N , excluding those pairs (i, j) between
which there can be no relation of interest.

Further, let the set of possible networks of interest (the sample space of the
model) Y ⊆ 2Y, the power set of the dyads in the network. Then a network
y ∈ Y, can be considered a set of ties (i, j). Again, in some problems, there
may be additional constraints on Y. A common example of such constraints are
degree constraints induced by the survey format (Harris et al., 2003; Goodreau,
Kitts and Morris, 2008).

Using notation similar to that of Hunter and Handcock (2006) and Krivitsky,
Handcock and Morris (2011), an exponential-family random graph model has
the form

Prθ;η,g(Y = y|x) = exp (η(θ) · g(y;x))
κη,g(θ;x)

, y ∈ Y, (1)

for random network variable Y and its realization y; model parameter vector
θ ∈ Θ (for parameter space Θ ⊆ Rq) and its mapping to canonical parameters
η : Θ → Rp; a vector of sufficient statistics g : Y → Rp, which may also
depend on data x, assumed fixed and known; and a normalizing constant (in y)
κη,g : Rq → R which ensures that (1) sum to 1 and thus has the value

κη,g(θ;x) =
∑

y′∈Y
exp (η(θ) · g(y′;x)) .

Here, we have given the most general case defined by Hunter and Handcock
(2006). Usually, q = p and η(θ) ≡ θ, so the exponential family is linear. For
notational simplicity, we will omit x for the remainder of this paper, as g incor-
porates it implicitly.
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2.2. Properties of binary ERGM

2.2.1. Conditional distributions and change statistics

Snijders et al. (2006), Hunter et al. (2008), Krivitsky, Handcock and Morris
(2011), and others define change statistics or change scores, which emerge when
considering the probability of a single dyad having a tie given the rest of the
network and provide a convenient local interpretation of ERGMs. To summarize,
define the p-vector of change statistics

∆i,jg(y) ≡ g(y + (i, j))− g(y − (i, j)),

where y + (i, j) is the network y with edge or arc (i, j) added if absent (and
unchanged if present) and y − (i, j) is the network y with edge or arc (i, j)
removed if present (and unchanged if absent). Then, through cancellations,

Prθ;η,g(Y i,j = 1|Y − (i, j) = y − (i, j)) = logit-1 (η(θ) ·∆i,jg(y)) .

It is often the case that the form of ∆i,jg(y) is simpler than that of g(y) both
algebraically and computationally. For example, the change statistic for edge
count |y| is simply 1, indicating that a unit increase in η|y|(θ) will increase the
conditional log-odds of a tie by 1, while the change statistic for the number
of triangles in a network is |yi ∩ yj |, the number of neighbors i and j have in
common, suggesting that a positive coefficient on this statistic will increase the
odds of a tie between i and j exponentially in the number of common neighbors.
Hunter et al. (2008) and Krivitsky, Handcock and Morris (2011) offer a further
discussion of change statistics and their uses, and Snijders et al. (2006) and
Schweinberger (2011) use them to diagnose degeneracy in ERGMs. It would be
desirable for a generalization of ERGM to valued networks to facilitate similar
local interpretations.

Furthermore, the conditional distribution serves as the basis for maximum
pseudo-likelihood estimation (MPLE) for these models. (Strauss and Ikeda,
1990)

2.2.2. Relationship to logistic regression

If the model has the property of dyadic independence discussed in the Introduc-
tion, or, equivalently, the change statistic ∆i,jg(y) is constant in y (but may
vary for different (i, j)), the model trivially reduces to logistic regression. In
that case, the MLE and the MPLE are equivalent. (Strauss and Ikeda, 1990)
Similarly, it may be a desirable trait for valued generalizations of ERGMs to
also reduce to GLM for dyad-independent choices of sufficient statistics.

3. ERGM for counts

We now define ERGMs for count data and discuss the issues that arise in the
transition.
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3.1. Model definition

Define N , n, and Y as above. Let N0 be the set of natural numbers and 0. Here,
we focus on counts with no a priori upper bound — or counts best modeled
thus. Instead of defining the sample space Y as a subset of a power set, define
it as Y ⊆ NY

0 , a set of mappings that assign to each dyad (i, j) ∈ Y a count. Let
yi,j = y(i, j) ∈ N0 be the value associated with dyad (i, j).

A (potentially curved) ERGM for a random network of counts Y ∈ Y then
has the pmf

Prθ;h,η,g(Y = y) =
h(y) exp (η(θ) · g(y))

κh,η,g(θ)
, (2)

where the normalizing constant

κh,η,g(θ) =
∑

y∈Y
h(y) exp (η(θ) · g(y)) ,

with η, g, and θ defined as above, and

Θ ⊆ ΘN = {θ′ ∈ R
q : κh,η,g(θ

′) < ∞} (3)

(Barndorff-Nielsen, 1978, pp. 115–116; Brown, 1986, pp. 1–2), with ΘN being
the natural parameter space if the ERGM is linear. Notably, while (3) is trivial
for binary networks because their sample space is finite, for counts it can be a
fairly complex constraint.

For the remainder of this paper, we will focus on linear ERGMs, so unless
otherwise noted, p = q and η(θ) ≡ θ.

3.2. Reference measure

In addition to the specification of the sufficient statistics g and, for curved fam-
ilies, mapping η of model parameters to canonical parameters, an ERGM for
counts depends on the specification of the function h : Y → [0,∞). Formally,
along with the sample space, it specifies the reference measure: the distribution
relative to which the exponential form is specified. For binary ERGMs, h is usu-
ally not specified explicitly, though in some ERGM applications, such as models
with offsets (Krivitsky, Handcock and Morris, 2011, for example) and profile
likelihood calculations of Hunter et al. (2008), the terms with fixed parameters
are implicitly absorbed into h.

For valued network data in general, and for count data in particular, speci-
fication of h gains a great deal of importance, setting the baseline shape of the
dyad distribution and constraining the parameter space. Consider a very simple
p = 1 model with g(y) = (

∑

(i,j)∈Y
yi,j), the sum of all dyad values. If h(y) = 1

(i.e., discrete uniform), the resulting family has the pmf

Prθ;h,η,g(Y = y) =
exp
(

θ
∑

(i,j)∈Y
yi,j

)

κh,η,g(θ)
=

∏

(i,j)∈Y

exp (θyi,j)

1− exp (θ)
,
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Fig 1. Effect of h on the shape of the distribution. (The mean is fixed at 2.)

giving the dyadwise distribution Yi,j
i.i.d.∼ Geometric(p = 1−exp (θ)), with θ < 0

by (3). On the other hand, suppose that, instead, h(y) =
∏

(i,j)∈Y
(yi,j !)

−1.
Then,

Prθ;h,η,g(Y = y) =
exp
(

θ
∑

(i,j)∈Y
yi,j

)

κh,η,g(θ)
∏

(i,j)∈Y
yi,j !

=
∏

(i,j)∈Y

exp (θyi,j)

yi,j ! exp (θ)
,

giving Yi,j
i.i.d.∼ Poisson(µ = exp (θ)), with ΘN = R. The shape of the resulting

distributions for a fixed mean is given in Figure 1.
The reference measure h thus determines the support and the basic shape of

the ERGM distribution. For this reason, we define a geometric-reference ERGM
to have the form (2) with h(y) = 1 and a Poisson-reference ERGM to have
h(y) =

∏

(i,j)∈Y
(yi,j !)

−1.
Note that this does not mean that any Poisson-reference ERGM will, even

under dyadic independence, be dyadwise Poisson. We discuss the sufficient con-
ditions for this in Section 5.2.1.

4. Inference and implementation

As exponential families, valued ERGMs, and ERGMs for counts in particu-
lar, inherit the inferential properties of discrete exponential families in general
and binary ERGMs in particular, including calculation of standard errors and
analysis of deviance. They also inherit the caveats. For example, the Wald test
results based on standard errors depend on asymptotics which are questionable
for ERGMs with complex dependence structure (Hunter and Handcock, 2006),
so, in Section 6 we confirm the most important of the results using a simple
Monte Carlo test: we fit a nested model without the statistic of interest and
simulate its distribution under such a model. The quantile of the observed value
of the statistic of interest can then be used as a more robust P -value.

At the same time, generalizing ERGMs to counts raises additional inferential
issues. In particular, the infinite sample space of counts means that the con-



ERGMs for valued networks 1107

straint (3) is not always trivially satisfied, which results in some valued ERGM
specifications not fulfilling regularity conditions. We give an example of this in
Section 5.2.3 and Appendix B. Additional computational issues also arise.

4.1. Computational issues

The greatest practical difficulty associated with likelihood inference on these
models is usually that the normalizing constant κh,η,g(θ) is intractable, its
exact evaluation requiring integration over the sample space Y. However, the
exponential-family nature of model also means that, provided a method exists
to simulate realizations of networks from the model of interest given a particular
θ, the methods of Geyer and Thompson (1992) for fitting exponential families
with intractable normalizing constants and, more specifically, their application
to ERGMs by Hunter and Handcock (2006), may be used. These methods rely
on network sufficient statistics rather than networks themselves and can thus
be used with little modification. More concretely, the ratio of two normalizing
constants evaluated at θ′ and θ can be expressed as

κh,η,g(θ
′)

κh,η,g(θ)
=

∑

y∈Y h(y) exp (η(θ′) · g(y))
κh,η,g(θ)

=

∑

y∈Y h(y) exp ((η(θ′)− η(θ)) · g(y)) exp (η(θ) · g(y))
κh,η,g(θ)

=
∑

y∈Y
exp ((η(θ′)− η(θ)) · g(y)) h(y) exp (η(θ) · g(y))

κh,η,g(θ)

= Eθ;h,η,g (exp ((η(θ
′)− η(θ)) · g(Y ))) ,

so given a sample Y (1), . . . ,Y (S) from an initial guess θ, it can be estimated

κh,η,g(θ
′)

κh,η,g(θ)
≈

S
∑

s=1

exp
(

(η(θ′)− η(θ)) · g(Y (s))
)

.

Another method for fitting ERGMs, taking advantage of the equivalence of
the method of moments to the maximum likelihood estimator for linear expo-
nential families, was implemented by Snijders (2002), using the algorithm by
Robbins and Monro (1951) for simulated statistics to fit the model. This ap-
proach also trivially extends to valued ERGMs.

Furthermore, because the normalizing constant (if it is finite) is thus accom-
modated by the fitting algorithm, we may focus on the unnormalized density
for the purposes of model specification and interpretation. Therefore, for the
remainder of this paper, we specify our models up to proportionality, as Geyer
(1999) suggests.

That (3) is not trivially satisfied for all θ ∈ Rq presents an additional com-
putational challenge: even for relatively simple network models, the natural
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parameter space ΘN may have a nontrivial shape. For example, even a simple
geometric-reference ERGM

Prθ;h,η,g(Y = y) ∝
∏

(i,j)∈Y

exp (θ · (xi,jyi,j)) ,

a geometric GLM with a covariate p-vector xi,j , has

ΘN = {θ′ ∈ R
p : ∀(i,j)∈Yθ · xi,j < 0},

an intersection of up to |Y| half-spaces (linear constraints). Models with complex
dependence structure may have less predictable parameter spaces, and, due to
the nature of the algorithm of Hunter and Handcock (2006), the only general
way to detect whether a guess for θ had strayed outside of ΘN may be by
diagnostics on the simulation. Bayesian inference with improper priors faces a
similar problem, and addressing it in the context of ERGMs is a subject for
future work. For this paper, we focus on models in which parameter spaces are
provably unconstrained or have very simple constraints.

We base our implementation on the R package ergm for fitting binary ERGMs.
(Handcock et al., 2012) The design of that package separates the specification
of model sufficient statistics from the specification of the sample space of net-
works (Hunter et al., 2008), so we implement our models by substituting in a
Metropolis-Hastings sampler that implements our Y and h of interest. (A simple
sampling algorithm for realizations from a Poisson-reference ERGM, optimized
for zero-inflated data, is described in Appendix A.) This implementation will
be incorporated into a future public release of ergm.

4.2. Model degeneracy

Application of ERGMs has long been associated with a complex of problems col-
lectively referred to as “degeneracy”. (Handcock, 2003; Rinaldo, Fienberg and
Zhou, 2009; Schweinberger, 2011) Rinaldo, Fienberg and Zhou, in particular,
list three specific, interrelated, phenomena: 1) when a parameter configuration
— even the MLE — induces a distribution for which only a small number of
possible networks have non-negligible probabilities, and these networks are of-
ten very different from each other (e.g., a sparser-than-observed graph and a
complete graph) for an effectively bimodal distribution; 2) when the MLE is
hard to find by the available MCMC methods; and 3) when the probability of
the observed network under the MLE is relatively low — the observed network
is, effectively, between the modes. This bimodality and concentration is often
a consequence of the model inducing overly strong positive dependence among
dyad values. For example, Snijders et al. (2006) use change statistics to show
that under models with positive coefficients on triangle and k-star (k ≥ 2) counts
— the classic “degenerate” ERGM terms — every tie added to the network in-
creases the conditional odds of several other ties and does not decrease the odds
of any, creating what Snijders et al. call an “avalanche” toward the complete
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graph, which emerges as by far the highest-probability realization. (More con-
cretely, under a model with a triangle count with coefficient θ△, adding a tie
(i, j) increases the conditional odds of as many ties as i and j have neighbors
by exp (θ△).) Adjusting other parameters, such as density, down to obtain the
expected level of sparsity close to that of the observed graph merely induces the
bimodal distribution of Phenomenon 1.

An infinite sample space makes Phenomenon 1, as such, unlikely, because the
“avalanche” does not have a maximal graph in which to concentrate. However, it
does not preclude excessive dependence inducing a bimodal distribution at the
MLE, even if neither mode is remotely degenerate in the probabilistic sense. The
observed network being between these modes, this may lead to Phenomenon 3,
and, due to the nature of the estimation algorithms, such a situation may,
indeed, lead to failing estimation — Phenomenon 2.

In this work, we seek to avoid this problem by constructing statistics that
prevent the “avalanche” by limiting dependence or employing counterweights to
reduce it. (An example of the former approach is the modeling of transitivity in
Section 5.2.6, and an example of the latter is the centering in the within-actor
covariance statistic developed in Section 5.2.5.) Formal diagnostics developed to
date, such as those of Schweinberger (2011) do not appear to be directly appli-
cable to models with infinite sample spaces, so we rely on MCMC diagnostics
(Goodreau et al., 2008) instead.

5. Statistics and interpretation for count data

In this section, we develop sufficient statistics for count data to represent net-
work features that may be of interest and discuss their interpretation. In partic-
ular, unless otherwise noted, we focus on the Poisson-reference ERGM without
complex constraints: Y = N

Y
0 and h(y) =

∏

(i,j)∈Y
(yi,j !)

−1.

5.1. Interpretation of model parameters

The sufficient statistics of the binary ERGMs and valued ERGMs alike embody
the structural properties of the network that are of interest. The tools available
for interpreting them are similar as well.

5.1.1. Expectations of sufficient statistics

In a linear ERGM, if ΘN is an open set, then, for every k ∈ 1..p, and holding θk′ ,
k′ 6= k, fixed, it is a general exponential family property that the expectation
Eθ;h,η,g(gk(Y )) is strictly increasing in θk. (Barndorff-Nielsen, 1978, pp. 120–
121) Thus, if the statistic gk is a measurement of some feature of interest of
the network (e.g., magnitude of counts, interactions between or within a group,
isolates, triadic structures), a greater value of θk results in a distribution of
networks with more of the feature measured by gk present.
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5.1.2. Discrete change statistic and conditional distribution

Binary ERGM statistics have a “local” interpretation in the form of change
statistics summarized in Section 2.2.1, and we describe similar tools for “local”
interpretation of ERGMs for counts here.

Define the set of networks

Yi,j(y) ≡ {y′ ∈ Y : ∀(i′,j′)∈Y\{(i,j)}y
′
i′,j′ = yi′,j′}.

That is, Yi,j(y) is the set of networks such that all dyads but the focus dyad
(i, j) are fixed to their values in y while (i, j) itself may vary over its possible
values; and define y(i,j)=k ≡ (y′ ∈ Yi,j(y) : y′

i,j = k) to be the network with
non-focus dyads fixed and focus dyad set to k. Then, let the discrete change
statistic

∆k1→k2

i,j g(y) ≡ g(y(i,j)=k2
)− g(y(i,j)=k1

).

This statistic emerges when taking the ratio of probabilities of two networks
that are identical except for a single dyad value:

Prθ;h,η,g(Y i,j = y(i,j)=k2
|Y ∈ Yi,j(y))

Prθ;h,η,g(Y i,j = y(i,j)=k1
|Y ∈ Yi,j(y))

=
hi,j(k2)

hi,j(k1)
exp

(

θ ·∆k1→k2

i,j (y)
)

,

where hi,j : N0 → R is the component of h associated with dyad (i, j), such that
h(y) ≡

∏

(i,j)∈Y
hi,j(yi,j), if it can be thus factored. For a Poisson-reference

ERGM, hi,j(k) = (k!)−1. This may be used to assess the effect of a particular
ERGM term on the decay rate of the ratios of probabilities of successive values
of dyads (Shmueli et al., 2005) and on the shape of the dyadwise conditional
distribution: the conditional distribution of a dyad (i, j) ∈ Y, given all other
dyads (i′, j′) ∈ Y\{(i, j)},

Prθ;h,η,g(Y i,j = yi,j |Y ∈ Yi,j(y)) =
hi,j(yi,j) exp (θ · g(y))

∑

y′∈Yi,j(y)
h(y′

i,j)i,j exp (θ · g(y′))

=
hi,j(yi,j) exp

(

θ ·∆k0→yi,j

i,j g(y)
)

∑

k∈N0
hi,j(k) exp

(

θ ·∆k0→k
i,j g(y)

) ,

for an arbitrary baseline k0.

5.2. Model specification statistics

We now propose some specific model statistics to represent common network
structural properties and distributions of counts.

5.2.1. Poisson modeling

We begin with statistics that produce Poisson-distributed dyads and model net-
work phenomena that can be represented in a dyad-independent manner. As a
binary ERGM reduces to a logistic regression model under dyadic independence,
a Poisson-reference ERGM may reduce to a Poisson regression model.
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In a Poisson-reference ERGM, the normalizing constant has a simple closed
form if g(y′) is linear in y′

i,j and does not depend on any other dyads y′
i′,j′ ,

(i′, j′) 6= (i, j):

∀y∈Y∀y′

i,j
∈N0

∆
0→y′

i,j

i,j g(y) = y′
i,jxi,j . (4)

for xi,j ≡ ∆k→k+1
i,j g(y) for any k ∈ N0. Then,

Y i,j
ind.∼ Poisson

(

µ = exp
(

θ ·∆0→1
i,j g(y)

))

,

giving a Poisson log-linear model, and ∆0→1
i,j g effectively becomes the covariate

vector for Y i,j . (If g(y
′) is linear in y′

i,j but does depend on other dyads —
xi,j in (4) depends on y′

i′,j′ but not on y′
i,j itself — the dyad distribution

is conditionally Poisson but not marginally so. An example of this arises in
Section 5.2.4.)

Morris, Handcock and Hunter (2008) describe many dyad-independent suffi-
cient statistics for binary ERGMs. All of them have the general form

gk(y) ≡
∑

(i,j)∈Y

yi,jxi,j,k,

where xi,j,k ≡ ∆i,jgk and xi,j,k may be viewed as exogenous (to the model)
covariates in a logistic regression for each tie. They could then be used to model
a variety of patterns for degree heterogeneity and mixing among actors over
(assumed) exogenous attributes. For example, for a uniform homophily model,
xi,j,k may be an indicator of whether i and j belong to the same group. If yi,j are
counts, these statistics induce a Poisson regression type model (for a Poisson-
reference ERGM), where the effect of a unit increase in some θk on dyad (i, j) is
to increase its expectation by a factor of exp (xi,j,k). Krivitsky et al. (2009) use
this type of model to model Slovenian periodical “co-readerships” (Batagelj and
Mrvar, 2006) — numbers of readers who report reading each pair of periodicals
of interest — using as exogenous covariates the class of periodical (daily, weekly,
regional, etc.) and the overall readership levels of each periodical.

Curved (i.e., η(θ) 6= θ, p > q, and η not a linear mapping) ERGMs, in
which the g satisfy (4) and dyadic independence, may induce nonlinear Poisson
regression. An example of this is the likelihood component of some latent space
network models, with latent space positions being treated as free parameters:
the likelihoods of the hierarchical models of Hoff (2005) and Krivitsky et al.
(2009) are special cases of such an ERGM, with η(θ) = (ηi,j(θ))(i,j)∈Y

and

g(y) = (yi,j)(i,j)∈Y
(i.e., the sufficient statistic is the network), and ηi,j(θ)

mapping latent space positions and other parameters contained in θ to the
logarithms of dyad means (i.e., the dyadwise canonical parameters).

5.2.2. Zero modification

We now turn to model terms that may reshape the distribution of the counts
away from Poisson. Social networks tend to be sparse, and larger networks of
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similar nature tend to be more sparse (Krivitsky, Handcock and Morris, 2011).
If the interactions among the actors are counted, it is often the case that if
two actors interact at all, they interact multiple times. This leads to dyadwise
distributions that are zero-inflated relative to Poisson.

These features of sparsity can be modeled using statistics developed for binary
ERGMs, applied to a network produced by thresholding the counts (at 1, for
zero-modification). For example, a Poisson-reference ERGM with p = 2 and

g(y) =





∑

(i,j)∈Y

yi,j ,
∑

(i,j)∈Y

1yi,j>0





T

has dyadwise distribution

Prθ;h,η,g(Y = y) ∝
∏

(i,j)∈Y

exp
(

θ1yi,j + θ21yi,j>0

)

/yi,j!.

This is a parametrization of a zero-modified Poisson distribution (Lambert,
1992), though not a commonly used one, with the probability of 0 being (1 +
exp (θ2) (exp (exp (θ1)) − 1))−1 and nonzero values being distributed (condi-
tionally on not being 0) Poisson(µ = exp (θ1)), both reducing to Poisson’s when
θ2 = 0. Notably, the probability of 0 decreases as θ1 increases, rather than being
solely controlled by θ2.

5.2.3. Dispersion modeling

Consider the social network of face-to-face conversations among people living in
a region. A typical individual will likely not interact at all with vast majority
of others, have one-time or infrequent interaction with a large number of others
(e.g., with clerks or tellers), and a lot of interaction with a relatively small num-
ber of others (e.g., family, coworkers). Some of this may be accounted for by
information about social roles and preexisting relationships, but if such informa-
tion is not available, this leads to a highly overdispersed distribution relative to
Poisson, or even zero-inflated Poisson. Overdispersed counts are often modeled
using the negative binomial distribution. (McCullagh and Nelder, 1989, p. 199)
However, the negative binomial distribution with an unknown dispersion param-
eter is not an exponential family, making it difficult to fit using our inference
techniques. We thus discuss two purely exponential-family approaches for deal-
ing with non-Poisson-dispersed interaction counts in general and overdispersed
counts in particular.

Conway–Maxwell–Poisson Distribution Conway–Maxwell–Poisson (CMP)
distribution (Shmueli et al., 2005) is an exponential family for counts, able to
represent both under- and overdispersion: adding a sufficient statistic of the
form

gCMP(y) =
∑

(i,j)∈Y

log(yi,j !), (5)
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to a Poisson-reference ERGM otherwise fulfilling conditions for Poisson regres-
sion described in Section 5.2.1 turns a Poisson regression model for dyads into
a CMP regression model.

Its coefficient, θCMP, constrained by (3) to θCMP ≤ 1, controls the degree
of dispersion: θCMP = 0 retains the Poisson distribution; θCMP < 0 induces
underdispersion relative to Poisson, approaching the Bernoulli distribution as
θCMP → −∞; and θCMP > 0 induces overdispersion, attaining the geometric
distribution at θCMP = 1, its most overdispersed point.

Normally, the greatest hurdle associated with using CMP is that its normaliz-
ing constant does not, in general, have a known closed form. In our case, because
intractable normalizing constants are already accommodated by the methods of
Section 4, using CMP requires no additional effort.

At the same time, CMP is neither regular nor steep (per Appendix B), so the
properties of its estimators are not guaranteed, particularly for highly overdis-
persed data. We have found experimentally that counts as dispersed as geometric
distribution or more so often cause the fitting methods of Section 4 to fail.

Variance-like parameters Some control over the variance can be attained
by adding a statistic of the form g·a(y) =

∑

(i,j)∈Y
ya
i,j , a 6= 1. Statistics with

a > 1, such as g·2(y) =
∑

(i,j)∈Y
y2
i,j , suffer the same problem as a Strauss point

process (Kelly and Ripley, 1976): for any θ, ǫ > 0, limy→∞ exp(θy1+ǫ)/y! = ∞,
leading to (3) constraining θ ≤ 0, able to represent only underdispersion.

Thus, we propose to model dispersion by adding a statistic of the form

g√·(y) =
∑

(i,j)∈Y

y
1/2
i,j =

∑

(i,j)∈Y

√
yi,j . (6)

To the extent that the counts are Poisson-like, the square root is a variance-
stabilizing transformation (McCullagh and Nelder, 1989, p. 196). Then, a model
with p = 2 and dyadwise sufficient statistic

g(y) =

(

∑

(i,j)∈Y

√
yi,j ,

∑

(i,j)∈Y

yi,j

)T

(7)

may be viewed as a modeling the first and second moments of
√
yi,j . That the

highest-order term is still on the order of yi,j guarantees that ΘN = Rp — a
practical advantage over CMP.

As with CMP, the normalizing constant is intractable. To explore the shape of
this distribution, we fixed θ1 at each of a range of values and found θ2s such that
the induced distribution had the expected value of 1. We then simulated from
the fit. The estimated pmf for each configuration and the comparison with the
geometric distribution with the same expectation is given in Figure 2. Smaller
coefficients on (6) (θ1) correspond to greater dispersion, with coefficients on dyad
sum (θ2) increasing to compensate, and vice versa, with θ1 = 0 corresponding
to a Poisson distribution. As the dispersion increases, the mean is preserved
in part by increasing Pr(Y i,j = 0) and, for sufficiently high values of yi,j , the
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Fig 2. Dyadwise distributions attainable by the model (7). Because Pr(Y = 0) varies greatly
for different θ1 yet can be adjusted separately by an appropriate model term, we plot the
probabilities conditional on Y > 0.

geometric distribution still dominates. Thus, there is a trade-off between the
convenience of a model without complex constraints on the parameter space and
the ability to model greater dispersion. In practice, if the substantive reasons for
overdispersion are due to unaccounted-for heterogeneity, the latter might not
be a serious disadvantage, and excess zeros can be compensated for by a term
from Section 5.2.2.

5.2.4. Mutuality

Many directed networks, such as friendship nominations, exhibit mutuality —
that, other things being equal, if a tie (i, j) exists, a tie (j, i) is more likely
to exist as well — and binary ERGMs can model this phenomenon using a
sufficient statistic g↔(y) =

∑

(i,j)∈Y,i<j yi,jyj,i =
∑

(i,j)∈Y,i<j min(yi,j ,yj,i),

counting the number of reciprocated ties. (Holland and Leinhardt, 1981) Other
sufficient statistics that can model it include g↔(y) =

∑

(i,j)∈Y,i<j 1yi,j 6=yj,i
and

g↔(y) =
∑

(i,j)∈Y,i<j 1yi,j=yj,i
, the counts of asymmetric and symmetric dyads,

respectively. (Morris, Handcock and Hunter, 2008)
In the presence of an edge count term, these three are simply different

parametrizations of the same distribution family:

yi,jyj,i =
(yi,j + yj,i)− 1yi,j 6=yj,i

2
=

(yi,j + yj,i)− 1 + 1yi,j=yj,i

2
.
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Nevertheless, these three different statistics suggest two major ways to generalize
the terms to count data: by evaluating a product or a minimum of the values,
or by evaluating their similarity or difference. We discuss them in turn.

Product It is tempting to model mutuality for count data in the same manner
as for binary data, with yi,j and yj,i being values rather than indicators. For
example, a simple model with overall dyad mean and reciprocity terms, with
p = 2 and

g(y) =





∑

(i,j)∈Y

yi,j ,
∑

(i,j)∈Y,i<j

yi,jyj,i





T

would have a conditional Poisson distribution:

Yi,j = yi,j |Y ∈ Yi,j(y) ∼ Poisson (µ = exp (θ1 + θ2yj,i)) ,

a desirable property. However, because for any c > 0, limy→∞ exp(cy2)/(y!)2 =
∞, for θ2 > 0, representing positive mutuality, (3) is not fulfilled. (Note that the
expected value of Y i,j is exponential in the value of Yj,i and vice versa. Again,
a Strauss point process exhibits a similar problem. (Kelly and Ripley, 1976))

Geometric mean As with dispersion, the problem can be alleviated by using
the geometric mean of yi,j and yj,i instead of their product. As in Section 5.2.3,
this choice may be justified as an analog of covariance on variance-stabilized
counts. This changes the shape of the distribution in ways that are difficult to
interpret: if

g(y) =





∑

(i,j)∈Y

yi,j ,
∑

(i,j)∈Y,i<j

√
yi,jyj,i





T

,

then

Prθ;h,η,g(Y i,j = yi,j |Y ∈ Yi,j(y)) ∝ exp
(

θ1yi,j + (θ2
√
yj,i)

√
yi,j

)

/yi,j!,

and, with nonzero yj,i, the probabilities of greater values of Y i,j are inflated by
more. The analogy to covariance further suggests centering the statistic:

g↔(y) =
∑

(i,j)∈Y,i<j

(
√
yi,j −

√
y)(

√
yj,i −

√
y),

for √
y ≡ 1

|Y|
∑

(i′,j′)∈Y

√
yi′,j′ . (8)

Minimum An alternative generalization is to take the minimum of the two
values. For example, if

g(y) =





∑

(i,j)∈Y

yi,j ,
∑

(i,j)∈Y,i<j

min(yi,j ,yj,i)





T

,
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then

Prθ;h,η,g(Y i,j = yi,j |Y ∈ Yi,j(y)) ∝ exp (θ1yi,j + θ2min(yi,j − yj,i, 0)) /yi,j !.
(9)

Thus, a possible interpretation for this term is that the conditional probability
for a particular value of Y i,j , yi,j is deflated by exp (θ2) for every unit by which
yi,j is less than yj,i. In a sense, yj,i “pulls up” yi,j to its level and vice versa.

Negative difference Generalizing the concept of similarity between yi,j and
yj,i leads to a statistic of difference between their values. We negate it so that
a positive coefficient value leads to greater mutuality. Then,

g(y) =





∑

(i,j)∈Y

yi,j ,
∑

(i,j)∈Y,i<j

− |yi,j − yj,i|





T

, (10)

and

Prθ;h,η,g(Y i,j = yi,j |Y ∈ Yi,j(y)) ∝ exp (θ1yi,j − θ2 |yi,j − yj,i|) /yi,j!,

so the conditional probability of a particular yi,j is deflated by exp (θ2) for every
unit difference from yj,i, in either direction. Thus, yj,i “pulls in” yi,j and vice
versa. Of course, other differences (e.g., squared difference) are also possible.

We use the discrete change statistic to visualize the differences among these
variants in Figure 3, plotting the θ↔∆

0→yi,j

i,j g↔(y) summand of

log
Prθ;h,η,g(Y i,j = yi,j |Y ∈ Yi,j(y))

Prθ;h,η,g(Y i,j = 0|Y ∈ Yi,j(y))
= θ ·∆0→yi,j

i,j g(y)

Fig 3. Effect of proposed mutuality statistics (g↔) with parameter θ↔ > 0 on the distribution
of Yi,j , given that Yj,i = yj,i. Whereas the min(yi,j ,yj,i) statistic deflates the probabilities
of those values of yi,j that are less than yj,i, thus inflating all of those of yi,j above or
equal to it, thus “pulling Yi,j up”, the − |yi,j − yj,i| statistic deflates the probabilities in both
directions away from yj,i, thus inflating those that are the closest, “pulling Yi,j in”.

√
yi,jyj,i

inflates greater values of yi,j in general, inflating by more for greater
√
yj,i.
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for each variant. Lastly, while the conditional distributions, and hence the pa-
rameter interpretations for the minimum and the negative difference statistic,
are different, models induced by (9) and (10) are also reparametrizations of each
other: min(yi,j ,yj,i) =

1
2 ((yi,j + yj,i)− |yi,j − yj,i|).

5.2.5. Actor heterogeneity

It is often the case that different actors in a network have different overall
propensities to have ties: they are heterogeneous in their gregariousness, pop-
ularity, and/or (undirected) sociality. Some of this heterogeneity may be ac-
counted for by exogenous covariates. For the unaccounted-for heterogeneity, two
major approaches have been used: conditional, in which actor-specific parame-
ters are added to the model to absorb its effects, andmarginal, in which statistics
are added that represent the effects of heterogeneity on the overall network fea-
tures. Examples of the conditional approach include the very first exponential-
family model for networks, the p1, which used a fixed effect for every actor (Hol-
land and Leinhardt, 1981); and the p2 model and latent space models, which
used random effects instead (van Duijn, Snijders and Zijlstra, 2004; Hoff, 2005;
Krivitsky et al., 2009; Mariadassou, Robin and Vacher, 2010). The marginal ap-
proach includes the count of k-stars for k ≥ 2 (Frank and Strauss, 1986), which,
for a fixed network density, become more prevalent as heterogeneity increases,
at the cost of often inducing ERGM degeneracy; alternating k-stars and geomet-
rically weighted degree statistics (Snijders et al., 2006; Hunter and Handcock,
2006), which attempt to remedy the degeneracy of k-stars; and statistics such as
the square root degree activity/popularity, which sum each actor’s degree taken
to 3/2 power, which also increases with greater heterogeneity, but not as rapidly
as 2-stars do (Snijders, van de Bunt and Steglich, 2010), avoiding degeneracy.
In the conditional approach, using fixed effects lacks parsimony and using ran-
dom effects creates a problem with a doubly-intractable normalizing constant,
beyond the scope of this paper, so we develop a marginal approach here.

Actor heterogeneity may be viewed marginally as positive within-actor corre-
lation among the dyad values. Following the discussion in the previous sections,
we propose a form of pooled within-actor covariance of variance-stabilized dyad
values, scaled to the same magnitude as the dyad sum:

gout cov.(y) =
∑

i∈N

1

n− 2

∑

j,k∈Yi→∧j<k

(
√
yi,j −

√
y)(

√
yi,k −

√
y), (11)

for Yi→ being the set of actors to who whom i may have ties (≡ {j′ : (i, j′) ∈
Y}) and

√
y defined in (8). This statistic would increase with greater out-tie

heterogeneity, an analogous statistic can be specified for in-tie heterogeneity,
and dropping the directionality produces an undirected version of this statistic.

We have considered other variants, including the uncentered version, in which
each summand in (11) is simply

√
yi,jyi,k. We found that in undirected networks

in particular, such a model term can induce a degeneracy-like bimodal distri-
bution of networks. (This is likely because in undirected networks, the positive
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dependence is not contained within each actor, so subtracting
√
y serves as a

counterweight to avert the “avalanche”.)

5.2.6. Triad-closure bias

We now turn to the question of how to represent triad-closure bias — friend-of-
a-friend effects — in count data. As with mutuality, merely multiplying values of
the dyads in a triad leads to a model that cannot have positive triad closure bias.
In addition, ERGM sufficient statistics that take counts over triads often exhibit
degeneracy. (Schweinberger, 2011) For these reasons, we describe a family of
statistics that sum over dyads instead. Wyatt, Choudhury and Blimes (2010) use
a generalization of the curved geometrically-weighted edgewise shared partners
(GWESP) statistic (Hunter and Handcock, 2006), though it is not clear whether
it is suitable for data with an infinite sample space. We thus describe a more
conservative family of statistics.

One term used to model triad closure in binary dynamic networks by Sni-
jders, van de Bunt and Steglich (2010) is the transitive ties effect, the most
conservative special case of the GWESP (Hunter and Handcock, 2006) statis-
tic. This statistic counts the number of ties (i, j) such that there exists at least
one path of length 2 (two-path) between them — a third actor k such that
yi,k = yk,j = 1. (Unlike the triangle count, each tie may contribute at most +1
to the statistic, no matter how many such ks exist.)

One generalization of this statistic to counts is

gtrans. ties(y) =
∑

(i,j)∈Y

min

(

yi,j ,max
k∈N

(min(yi,k,yk,j))

)

. (12)

Intuitively, define the strength of a two-path from i to j to be the minimum of
the values along the path. The statistic is then the sum over the dyads (i, j)
of the minimum of the value of (i, j) and the value of the strongest two-path
between them. The interpretation is thus somewhat analogous to that of the
minimum mutuality statistic, with yj,i replaced by maxk∈N (min(yi,k,yk,j)).
The motivation for using minimum, as opposed to negative absolute difference,
to combine the two-path value with the focus dyad value is that the intuitive
notion of friend-of-a-friend effect that this statistic embodies suggests that while
the presence of a mutual friend may increase the probability or expected value
of a particular friendship (i.e., “pull it up”), it should not limit it (i.e., “pull
it in”) as an absolute difference would. These interpretations are somewhat
oversimplified: it is just as true that a positive coefficient on this statistic results
in yi,j “pulling up” the potential two-paths between i and j.

In a directed network, (12) would model transitive (hierarchical) triads, while

gcycl. ties(y) =
∑

(i,j)∈Y

min

(

yi,j ,max
k∈N

(min(yj,k,yk,i))

)

would model cyclical (antihierarchical) triads.
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The statistic (12) is a fairly conservative one, less likely to induce excessive
dependence and bimodality, at the cost of sensitivity. More generally, one may
specify a triadic statistic using three functions: first, v2-path : N2

0 → R, how the
“value” of a two-path i → j → k is computed from its constituent segments;
second, vcombine : R

n−2 → R, how the values of the possible two-paths from i to
j are combined with each other to compute the strength of the pressure on i and
j to close the triad or increase their interaction; and third, vaffect : N0 ×R → R

how this pressure affects Y i,j . Given these,

gv(y) =
∑

(i,j)∈Y

vaffect
(

yi,j , vcombine

(

v2-path(yi,k,yk,j)k∈N\{i,j}
))

. (13)

Thus, for example, one could set vcombine to sum its arguments rather than
take their maximum, or one can replace taking the minimum with taking a
geometric mean. We illustrate the difference it makes in Section 6.

6. Application to interactions within a fraternity

In a series of studies in the 1970s, Bernard, Killworth and Sailer (1979–1980)
assessed accuracy of retrospective sociometric surveys in a number of settings,
including a college fraternity whose 58 occupants had all lived there for at least
three months. To record the true amounts of interaction, for several days, unob-
trusive observers were sent to periodically walk through the fraternity to note
students engaged in conversation. Obtaining these network data from Batagelj
and Mrvar (2006), we model these observed pairwise interaction counts.

The raw distribution of counts, given in Figure 4(a), appears to be strongly
overdispersed relative to Poisson, and, indeed, relative to the geometric distri-
bution: the mean of counts is 1.9, while their standard deviation (not variance)
is 3.4. At least some of this is due to actor heterogeneity: the square root of the
within-actor variance of the counts is 3.1. Excluding extreme observations (all
values over 20) does not make a qualitative difference. (The statistics become
1.8, 2.8, and 2.5, respectively.) Nor does there appear to be a natural place to
threshold the counts to produce a binary network. (See Figure 4(b).) We thus
model the baseline shape of the distribution of counts using the following terms:
baseline propensity to have ties: number of dyads with nonzero value;
baseline intensity of interactions: sum of dyad values; and
underdispersion: the statistic (6).
(We have also attempted to use CMP (via (5)) but found the process to be
unstable due to the greater-than-geometric level of dispersion.)

Little was recorded about the social roles of the fraternity members, so we
consider the effects of endogenous social forces:
actor heterogeneity: the undirected version of (11);
transitivity of intensities: the statistic (12).
Faust (2007), in particular, found that in many empirical networks, much of the
apparent triadic effects are accounted for by variations in degree distribution
and other lower-order effects. Thus, we consider four models: baseline shape only
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Fig 4. Conversation count summaries for Bernard, Killworth and Sailer fraternity network

Table 1

Results from fitting the models to Bernard, Killworth and Sailer fraternity network

Estimates (Std. Errors)
Term B BH BT BHT
Ties 5.60 (0.21) 4.96 (0.17) 6.24 (0.21) 4.98 (0.17)
Intensity 3.65 (0.05) 3.13 (0.06) 3.40 (0.07) 3.12 (0.06)
Underdispersion −9.71 (0.22) −8.23 (0.20) −10.52 (0.22) −8.26 (0.19)
Heterogeneity 1.48 (0.06) 1.46 (0.07)
Transitivity 0.46 (0.05) 0.03 (0.04)
Coefficients statistically significant at α = 0.05 are bolded.
Standard errors incorporate the uncertainty introduced by approximating the likelihood using
MCMC (Hunter and Handcock, 2006).

(B), baseline with heterogeneity (BH), baseline with transitivity (BT), and all
terms (BHT), to explore this concept in a valued setting.

We report the model fits in Table 1. MCMC diagnostics, described by Goodreau
et al. (2008), show adequate mixing and unimodal distributions of sufficient
statistics, and networks simulated from these fits have, on average, statistics
equal to the observed sufficient statistics. The baseline dyadwise distribution
terms are difficult to interpret, but the highly negative coefficient on under-
dispersion suggests a a strong degree of overdispersion, as expected. Some of
this overdispersion appears to be absorbed by modeling actor heterogeneity,
however. There are indications of a high degree of heterogeneity in individuals’
propensity to interact, over and above that expected for even the overdispersed
baseline distribution. (Monte Carlo P -val. < 0.001 based on 10,000 draws.)

Without accounting for actor heterogeneity (i.e., Model BT), there appears
to be a strong transitivity effect — a friend of a friend is a friend — and
the Monte Carlo test confirms this with a similar P -value. However, if actor
heterogeneity is accounted for, the transitivity effects vanish (simulated one-
sided P -val. = 0.43), suggesting that the underlying social process is better
explained by a relatively small number of highly social individuals whose ties to
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each other and to (less social) third parties create excess transitive ties for the
overall amount of interaction observed. At the same time, if, instead of using
(12) as the test statistic, we use a less conservative statistic of the form (13) with

v2-path(x1, x2) =
√
x1x2 (geometric mean), vcombine(x1, . . . , xn−2) =

∑n−2
k=1 xk,

and vaffect(x1, x2) =
√
x1x2, the effect’s significance seems to increase (one-sided

P -val. = 0.07). However, when we attempted to fit the model with this effect,
the process exhibited the degeneracy-like bimodality. This suggests that there
is a trade-off between stability and power to detect subtle effects.

7. Discussion

We have generalized the exponential-family random graph models to networks
whose relationships are unbounded counts, explored the issues that arise when
generalizing, and proposed ways to model several common network features for
count data. We demonstrated our development by a study of the interaction
of individual heterogeneity and friend-of-a-friend effects in a network with a
hard-to-model dyadwise count distribution.

This paper focused on modeling counts. More generally, one can define a
valued ERGM by replacing the set of possible dyad values N0 by a more general
set S and replacing h(y) with a more general σ-finite measure space (Y,Y, Ph)
with reference measure Ph, then postulating a probability measure Pθ;Ph,η,g

with Radon-Nikodym derivative of Pθ;Ph,η,g with respect to Ph,

dPθ;Ph,η,g

dPh
(y) =

exp (η(θ) · g(y))
κPh,η,g(θ)

,

(Barndorff-Nielsen, 1978, pp. 115–116; Brown, 1986, pp. 1–2) with the normal-
izing constant

κPh,η,g(θ) =

∫

Y
exp (η(θ) · g(y)) dPh(y).

For binary and count data, and discrete data in general, Ph could be specified as
a function relative to the counting measure, while for continuous data, it could
be defined with respect to the Lebesgue measure. Still, as with count data, the
shape of this function would need to be specified.

Other scenarios might call for more complex specifications of the reference
measure. Some network data, such as measurements of duration of conversa-
tion (Wyatt, Choudhury and Blimes, 2010) and international trade volumes
(Westveld and Hoff, 2011) are continuous measurements except for having a
positive probability of two actors not conversing at all or two countries having
no measured trade. Westveld and Hoff use a normal distribution to model the
log-transformed trade volume, imputing 0 = log(1) for 0 observed trade vol-
umes (all nonzero trade volumes being greater than 1 unit), and they note this
issue and address it by pointing out that in their (latent-variable) model, an
impact of such an outlier would be contained. Valued ERGMs may provide a
more principled approach by specifying a semicontinuous Ph, such as one that
puts a mass of 1/2 on 0 and 1/2 on Lebesgue measure on (0,∞).
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We have also focused on data that do not impose any constraints on the
sample space: Y ≡ SY. But, some types of network data, such as those where
each actor (ego) ranks the others (alters) (Newcomb, 1961, for example) can
be viewed in this framework as having a constrained sample space: setting S =
{1..n − 1} and constraining Y to ensure that each ego assigns a unique rank
to each alter gives a sample space of permutations that could, with a counting
measure, serve as the reference measure for an ERGM on rank data. These, and
other applications are a subject for ongoing and future work.

This paper focuses on models for cross-sectional networks, where a single
snapshot of relationship states or relationships aggregated over a time period
are observed. For longitudinal data, comprising multiple snapshots of networks
over the same actors over time, binary ERGMs have been used as a basis for
discrete-time models for network tie evolution by Robins and Pattison (2001),
Wyatt, Choudhury and Bilmes (2009; 2010), Hanneke, Fu and Xing (2010),
Krivitsky and Handcock (2010), and others. Valued ERGMs can be directly ap-
plied to the temporal ERGMs of Hanneke, Fu and Xing (2010) although their
adaptation to the work of Krivitsky and Handcock (2010) may be less straight-
forward, especially if the benefits to interpretability of the separable models are
to be retained.

In practice, networks are not always observed completely. Handcock and Gile
(2010) develop an approach to ERGM inference for partially observed or sam-
pled binary networks. It would be natural to extend this approach to valued
networks and valued ERGMs.

Some methods for assessing a network model’s fit, particularly MCMC di-
agnostics (Goodreau et al., 2008) can be used with little or no modification.
Others, like the goodness-of-fit methods of Hunter, Goodreau and Handcock
(2008) may require development of characteristics meaningful for valued net-
works. It may also be possible to extend the stability criteria of Schweinberger
(2011) to models with infinite sample spaces.
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Appendix A: A sampling algorithm for a Poisson-reference ERGM

We use a Metropolis-Hastings sampling algorithm (Algorithm 1) to sample from
a Poisson-reference ERGM, using a Poisson kernel with its mode at the present
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value of a dyad and, occasionally (with a specified probability π0), proposing a
jump directly to 0. Because, as we discuss in Section 5.2.2, counts of interactions
are often zero-inflated relative to Poisson, setting π0 > 0 can be used to speed-up
mixing. For highly overdispersed distributions, a Poisson kernel may be trivially
replaced by a geometric or even negative-binomial kernel.

This algorithm selects the dyad on which the jump is to be proposed at ran-
dom. A possible improvement to this algorithm would be to adapt to it the
tie-no-tie (TNT) proposal (Morris, Handcock and Hunter, 2008), which opti-
mizes sampling in sparse (zero-inflated) networks by focusing on dyads which
have nonzero values.

Algorithm 1 Sampling from a Poisson-reference ERGM with no constraints,
optimized for zero-inflated distributions
Let:

RandomChoose(A) return a random element of a set A

Uniform(a, b) return a random draw from the Uniform(a, b) distribution
Poisson6=y(λ) return a random draw from the Poisson(λ) distribution, conditional on

not drawing y

p(y∗; y) =
exp(−(y+ 1

2 ))(y+
1
2 )

y∗
/y∗!

1−exp(−(y+1
2 ))(y+

1
2 )

y
/y!

, the pmf of a Poisson6=y(y + 1
2
) draw

Input: y(0) ∈ Y , T sufficiently large, Y, g, η, π0 ∈ [0, 1)
Output: a draw from the specified Poisson-reference ERGM
1: for t← 1..T do

2: (i, j)← RandomChoose(Y) {Select a dyad at random.}
3: if yi,j 6= 0 ∧ Uniform(0, 1) < π0 then

4: y∗ ← 0 {Propose a jump to 0 with probability π0.}
5: else

6: y∗ ← Poisson
6=y

(t−1)
i,j

(

y
(t−1)
i,j

)

{Propose a jump to a new value.}

7: q ←



























π0+(1−π0)p(0;y
∗)

p(y∗;0)
y
(t−1)
i,j = 0

p(y
(t−1)
i,j

;0)

π0+(1−π0)p(0;y
(t−1)
i,j

)
y
(t−1)
i,j 6= 0 ∧ y∗ = 0

(1−π0)p(y
(t−1)
i,j

;y∗)

(1−π0)p(y∗;y
(t−1)
i,j

)
otherwise

8: r ← q ×
y
(t−1)
i,j

!

y∗!
× exp

(

η(θ) ·∆
y
(t−1)
i,j

→y∗

i,j

(

y(t−1)
)

)

9: if Uniform(0, 1) < r then

10: y(t) ← y
(t−1)
(i,j)=y∗

{Accept the proposal.}
11: else

12: y(t) ← y(t−1) {Reject the proposal.}
13: return y(T )

Appendix B: Non-steepness of the Conway–Maxwell–Poisson

family

Expressed in its exponential-family canonical form, a random variable X with
the Conway–Maxwell–Poisson distribution has the pmf

Prθ;η,g(X = x) =
exp (θ1x+ θ2 log(x!))

κη,g(θ)
, x ∈ N0
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with the normalizing constant

κη,g(θ) =

∞
∑

x′=0

exp (θ1x
′ + θ2 log(x

′!))

κη,g(θ)
.

Theorem B.1. The Conway–Maxwell–Poisson family is not regular.

Proof. The natural parameter space of CMP is

ΘN = {θ′ ∈ R
2 : θ2 < 0 ∨ (θ2 = 0 ∧ θ1 < 0)}

(Shmueli et al., 2005). Due to the boundary at θ2 = 0, ΘN is not an open set,
and hence the family is not regular (Brown, 1986, p. 2).

Theorem B.2. The Conway–Maxwell–Poisson family is not steep.

Proof. A necessary and sufficient condition for a non-regular exponential family
to be steep is that

∀θ∈ΘN\Θo
N
Eθ;η,g(‖g(X)‖) = ∞,

whereΘo
N is the open interior ofΘN, and their set difference is thus the non-open

boundary of the natural parameter space that is contained within it. (Brown,
1986, Proposition 3.3, p. 72) For CMP, this boundary

ΘN\Θo
N = {θ′ ∈ R

2 : θ2 = 0 ∧ θ1 < 0}.

There,X ∼ Geometric(p = 1−exp (θ1)). Noting that X ≥ 0 a.s., log(X !) ≥ 0
a.s., and log(x!) ≤ (x + 1) log

(

x+1
e

)

+ 1,

Eθ;η,g(‖g(X)‖) = EGeometric(p=1−exp(θ1))(‖[X, log(X !)]T‖)
≤ EGeometric(p=1−exp(θ1)) (X + log(X !))

≤ EGeometric(p=1−exp(θ1))

(

X + (X + 1) log

(

X + 1

e

)

+ 1

)

≤ EGeometric(p=1−exp(θ1))

(

X + (X + 1)2 + 1
)

< ∞,

since the first and second moments of the geometric distribution are finite.
Therefore, CMP is not steep.

Because the non-steep boundary corresponds to the most dispersed distribu-
tion that CMP can represent, maximum likelihood estimator properties for data
which are highly overdispersed are not guaranteed.
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