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Abstract 

Approximately one third of people with epilepsy receive insufficient benefit from currently 

available anticonvulsant medication, and some evidence suggests that this may be due to a 

lack of effective penetration into brain parenchyma. The current study investigated the ability 

of biodegradable polymer implants loaded with Levetiracetam to ameliorate seizures 

following implantation above the motor cortex in the tetanus toxin model of temporal lobe 

epilepsy in rats. The implants led to significantly shorter seizures and a trend towards fewer 

seizures for up to one week. The results of this study indicate that drug-eluting polymer 

implants represent a promising evolving treatment option for intractable epilepsy. Future 

research is warranted to investigate issues of device longevity and implantation site. 

Key words 

Polymer, levetiracetam, epilepsy, anticonvulsant, tetanus toxin, biodegradable, drug delivery, 

implantable devices. 
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1 Introduction 

Epilepsy is among the most common chronic neurological disorders, affecting nearly 1% of 

the population. Epilepsy is well recognised for being highly refractory to medical treatment, 

with up to one third of patients receiving no benefit from anticonvulsant medication.  

 

A range of treatment options are currently being investigated aimed at improving the 

availability of anticonvulsant drugs to the brain. One such treatment option is the intracranial 

implantation of polymer-based drug delivery systems. These implants are made of materials 

that slowly break down following implantation, gradually releasing their drug load into the 

implant site. Recent studies have demonstrated some success at using similar 

biodegradable implants to treat animal models of several neurological disorders with focal 

pathologies such as Parkinson’s disease, Huntington’s disease and Alzheimer’s disease[1]; 

however, their application to animal models of epilepsy have to date been less successful.  

 

The most intensely investigated biodegradable polymer in intracranial drug delivery for 

neurological disorders has been the copolymer poly-lactide-co-glycolide (PLGA). PLGA-

based implants have been shown to be very well tolerated by the brain in animal models of 

neurological disorders[2-7]. Given their biocompatibility and success in animal models of other 

focal neurological disorders, we sought to investigate the efficacy of PLGA sheets loaded 

with the novel anticonvulsant drug Levetiracetam (LEV) in an animal model of epilepsy. In 

this investigation, sheets of PLGA loaded with LEV were developed and their ability to 

ameliorate seizures was investigated in the hippocampal tetanus toxin model of mesial 

temporal lobe epilepsy (TLE) in rats. 

2 Methods 
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2.1 Animals 

Adult male Sprague-Dawley rats were obtained from FlindersUniversity (Adelaide, SA, 

Australia) and housed individually in 12 h light/dark cycles with ad libitum access to food and 

water. All experiments were approved by St Vincent’s Hospital (Melbourne) Animal Ethics 

Committee and conducted in accordance with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes (2004). 

2.2 Polymer production 

Polymer sheets were produced by pipetting 1 mL of a solution of PLGA 85:15 (2% w/v; 

SigmaAldrich, Australia) and LEV (4% w/v; gift from UCB Pharma, Belgium) in 

dichloromethane (SigmaAldrich, Australia) into a Teflon mold. The solvent was evaporated 

overnight, resulting in a 2 cm2 film with a theoretical LEV loading of 67% w/w. The sheets 

were cut to size (4mm x 2mm) immediately before implantation.  

2.3 In vitro drug release 

Discs of 2.5 mm diameter were cut from the LEV films, placed in vials of 350 µL of artificial 

cerebrospinal fluid (aCSF) and incubated in a water bath at 37C. At set time points, three 

vials were removed from the water bath and the concentration of LEV in the sample 

determined using high performance liquid chromatography (HPLC). 

Artificial cerebral spinal fluid contained sodium chloride (NaCl; 0.866% w/v), potassium 

chloride (KCl; 0.224% w/v), calcium dichloride (CaCl2.2H2O; 0.0206% w/v) and magnesium 

dichloride (MgCl2.6H2O; 0.0164% w/v) in 1 mM phosphate buffer (pH 7.4).  

2.4 Implantation surgery 

Two days prior to surgery, rats were administered oral antibiotics to assist in the prevention 

of infection following surgery (Baytril, 3.5mL/L in drinking water). Immediately prior to 

surgery, rats were anaesthetized with an i.p. injection of ketamine (70 mg/kg) and xylazine 

(10 mg/kg), and administered Carprofen (5 mg/kg, s.c.) for pain relief. Once anaesthetized, 
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rats were placed in a stereotaxic apparatus, and administered isoflurane (0.5% in oxygen, 2 

L/min) via a nose-cone. 50 ng of tetanus toxin in 0.5 µL of phosphate-buffered saline was 

injected into the right hippocampus (AP: -3.5 mm; ML: + 3.0 mm; DV: -3.5 mm from Bregma) 

via a microsyringe at a rate of 1 µL/min. The syringe was left in place for 5 min before being 

slowly retracted. A craniotomy was created over the left motor and somatosensory cortices 

(5 mm x 3 mm, centred over AP: 0 mm, ML: -4.0 mm from Bregma) and a 16 channel 

microwire array electrode was implanted within the motor cortex (Tucker-Davis Technologies 

(TDT), USA). A second craniotomy was created above the right motor cortex (5 mm x 5 mm, 

centered over AP: 0 mm, ML: +4.0 mm from Bregma), the central section of bone removed 

and a flap cut in the exposed dura. A sheet of polymer was placed on the exposed brain, 

and the dural flap and bone piece replaced. Control rats received a craniotomy without 

implantation of a polymer (n=10) while experimental rats received polymers containing LEV 

(n=11). The polymer craniotomy site was sealed with an alginate-based hydrogel and the 

entire surgical site covered with dental cement and sutured closed. The animal was placed 

on a heat pad for recovery. 

2.5 EEG monitoring 

Beginning three days after surgery, rats were monitored for at least two hours on at least 

three days per week for three weeks following surgery. Rats were anaesthetised with 

isoflurane (4% in oxygen, 2 L/min), and a shielded cable was used to connect the electrode 

to the electroencephalogram (EEG) acquisition system, which consisted of TDT processors 

and high impedance head stages driven by custom-designed software. The rat was allowed 

to recover fully from the anesthetic before recording began so that EEGs were obtained from 

freely moving rats. 

2.6 Data analysis 

ECoGs were visualized using a custom-designed MATLAB programme, and used to 

determine the duration of each seizure (seconds) and seizure frequency (seizures/hour). 
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Seizure severity was calculated by dividing number of convulsive seizures by the total 

number of seizures (convulsive proportion). 

The mean seizure duration was calculated for five recording blocks, each being four days of 

duration. Days included in each block were as follows: block one: days three to six; block 

two: days seven to ten; block three: days 11 to 14; block four: days 15 to 18; and block five: 

days 19 to 21. The mean seizure duration for each block was calculated by (a) first 

averaging the duration of all seizures that a rat had in a single recording session, (b) then 

averaging all that rat’s session means over the block, and (c) determining the mean ± the 

standard error of the mean (SEM) of the block averages from all rats. This was done to 

eliminate any bias from rats that had more frequent seizures or that were monitored more 

frequently.  

The mean seizure frequency was also calculated for each of the recording blocks. This was 

calculated by (a) first determining the seizure frequency of each recording session, (b) 

averaging all the seizure frequencies across the block for each rat, and (c) determining the 

mean ± SEM of the seizure frequency averages from all rats.  

Seizure severity was also determined for each recording block, using the observations 

recorded during ECoG monitoring. Seizure severity was calculated by (a) first dividing 

number of convulsive seizures by the total number of seizures to give the proportion of 

seizures that were convulsive (convulsive proportion) for each recording session, (b) 

averaging all the convulsive proportions across the block for each rat, and (c) determining 

the mean ± SEM of the convulsive proportions from all rats.  

The difference in the median seizure duration and frequency between implanted and 

unimplanted control rats was determined for each block using a Wilcoxon-Mann-Whitney 

two-sample rank-sum test, performed using SigmaStat (v11.0, Systat Software, San Jose, 

CL, USA). 
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3 Results 

3.1 In vitro drug release 

The total quantity of LEV released from the disk in each sample was determined using 

HPLC, and the mean and standard deviation calculated for each time point (Fig. 1). These 

results demonstrate that majority of drug release from the films is complete by day three, 

afterwhich point the drug release appeared to reach a plateau. Due to the large quantity of 

drug encapsulated, sensitive measurement techniques, small variations in disk size and 

potential evaporation of aCSF from the vials over time, there was a high degree in variation 

in the results. 

3.2 Electrocorticography 

Injection of tetanus toxin into the hippocampus resulted in a syndrome of spontaneous 

seizures resembling those seen in human temporal lobe epilepsy[8, 9]. Rats began to exhibit 

spontaneous seizures 2-13 days following tetanus toxin injection. Seizures consisted of 

either non-convulsive episodes of behavioral arrest, staring and chewing, or convulsive 

events that progressed through behavioral arrest, facial clonus, bilateral forelimb clonus, 

rearing and falling. These clinical events correlated with epileptiform discharges on the 

ECoG that consisted of an initial phase of high frequency polyspike activity of increasing 

amplitude followed by a period of lower amplitude rhythmic spike and wave activity (see Fig. 

2). The duration of each seizure was measured using the ECoG and was defined as the time 

(in seconds) from the beginning of polyspike activity to the termination of spike and wave 

activity prior to the post-ictal depression. 

3.3 Seizure duration 

Rats implanted with LEV-loaded sheets had significantly shorter seizures compared to 

control rats during block one (p = 0.024). Control rats had long seizures at the onset of the 

seizure syndrome and progressed to shorter seizures from day 7 onwards, whereas rats 
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implanted with LEV sheets did not manifest longer seizures at the start of the seizure 

syndrome (Figure 3A).  

3.4 Seizure frequency 

Implanted rats did not have significantly fewer seizures than control rats at any time point. 

There was a trend towards fewer seizures in LEV-implanted rats during block one, however 

this difference was not significant (p = 0.078) (Figure 3B).  

3.5 Seizure severity 

All rats exhibited mostly non-convulsive seizures during the first days after tetanus toxin 

injection. One week after tetanus toxin injection, control rats rapidly progressed to exhibiting 

almost exclusively convulsive seizures whilst, in contrast, rats implanted with LEV-loaded 

sheets continued to have predominantly non-convulsive events, however this difference did 

not reach significance (proportion of seizures that were convulsive: control = 0.966 ± 0.0218; 

implanted = 0.470 ± 0.145; p = 0.086, Fig. 3C). By the third monitoring block, seizures 

exhibited by control rats had settled and about half of the events were non-convulsive, 

similar to those exhibited by implanted rats during this block. This pattern continued until the 

end of monitoring at three weeks post-injection. 

4 Discussion 

Biodegradable polymer sheets containing a large amount of LEV were implanted above the 

motor and somatosensory cortices of epileptic rats with a hippocampal seizure focus. 

Implantation of the sheets led to shorter seizures and a trend towards fewer and less severe 

seizures in the first week after implantation compared to rats that did not receive the implant.  

 

An important limitation of the current study is that a single group of control animals were 

investigated. These animals received an injection of tetanus toxin and a sham craniotomy, 

without the implantation of a polymer sheet. It is possible that the presence of the polymer 



Halliday   9 

 

sheet, irrespective of drug release, may have altered the function of the underlying brain or 

otherwise affected the intracranial environment such that seizures were ameliorated. An 

additional control group implanted with blank polymers, created in the same manner but with 

the drug load excluded or replaced with an inert sham substance, would assist in answering 

this question.  

 

There are several possible explanations for the limited efficacy of the implants in this study. 

Firstly, the implants used in this investigation had a very high theoretical LEV load of 67% 

w/w.Our in vitro study demonstrated that such high drug loadings limited the ability of the 

polymer to regulate the release of LEV into the surrounding environment, producing large 

quantities of drug release for a short time period after implantation. This may explain why the 

implants produced a brief effect immediately after implantation. 

 

Secondly, the sheets were implanted above the motor/somatosensory cortex whilst the 

seizure focus was within the hippocampus. In rats this distance is 4-5 mm. Previous 

investigations have shown that substances released from intraparenchymally implanted 

polymers are able to penetrate around 3 mm[10-14], suggesting that LEV released from the 

implants in our study would not have reached the seizure focus in the hippocampus in high 

concentrations. High concentrations of LEV in the motor and somatosensory cortices may 

have been able to slow or interrupt seizure propagation, leading to the observed reduction in 

seizure duration; however, the inadequate concentration in the hippocampus would have 

had no effect on seizure initiation and therefore on seizure frequency. 
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This study demonstrates the ability of polymer-based brain implants to reduce the impact of 

seizures in the tetanus toxin model of mesial TLE. Whilst the results are modest, their 

limitations can be explained by the construction and location of the polymer. Indeed, the 

evidence of a trend towards a reduction in seizure frequency is promising given the distance 

of the implant from the seizure focus. The results indicate that further investigations into the 

use of biodegradable polymer-based implants for epilepsy are warranted. The incorporation 

of more potent anticonvulsants will permit the production of an implant with longer-term drug 

release without sacrificing efficacy, and should extend the success seen in the period 

immediately post-implantation. Additionally, implantation of the polymer at the seizure focus 

may reduce seizure frequency, including injectable polymer formulationssuch as 

microspheres.  
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Captions 

Figure 1. In vitro LEV release from biodegradable PLGA films. 

 

Figure 2. Typical electrocorticograms recorded from tetanus-toxin injected rats during 

spontaneous seizures. 

 

Figure 3.Efficacy of LEV-loaded polymer sheets in tetanus toxin rats. The figures illustrate 

the mean (± SEM) of the seizure duration, frequency and severity in tetanus toxin injected 

rats with and without LEV-loaded implants. 
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