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Abstract 

A mathematical model was developed based on the irreversible thermodynamic principle and 

hydrodynamic calculation to predict the rejection of N-nitrosamines by spiral-wound reverse 

osmosis (RO) membrane systems. The developed model is able to accurately describe the 

rejection of N-nitrosamines under a range of permeate flux and system recovery conditions. 

The modelled N-nitrosamine rejections were in good agreement with values obtained 

experimentally using a pilot-scale RO filtration system. Simulation from the model revealed 

that an increase in permeate flux from 10 to 30 L/m2h led to an increase in the rejection of 

low molecular weight N-nitrosamines such as N-nitrosodimethylamine (NDMA) (from 31 to 

54%), which was validated by experimental results. The modelling results also revealed that 

an increase in recovery caused a decrease in the rejection of these N-nitrosamines, which is 

consistent with the experimental results. Further modelling investigations suggested that 

NDMA rejection by a spiral-wound system can drop from 49 to 35% when the overall 

recovery increased from 10 to 50%. The model developed from this study can be a useful tool 

for water utilities and regulators for system design and evaluating the removal of N-

nitrosamine by RO membranes.  

Keywords: Solute rejection modelling; NDMA; N-nitrosamines; reverse osmosis (RO); 

spiral-wound elements; water reuse. 



2 

 

1. Introduction 

Augmenting potable water sources using reclaimed water is an important part of the water 

management portfolio in many regions of the world [1]. The planned use of reclaimed water 

to augment water supply is stringently regulated for the protection of public health. Thus, 

reclaimed water is commonly treated by a series of advanced treatment processes before 

being added to aquifers or reservoirs as the source of potable water supply. In many cases, 

these include reverse osmosis (RO) filtration to ensure the removal of pathogenic organisms, 

total dissolved solids and trace organic chemicals [1-4]. N-nitrosodimethylamine (NDMA) is 

one of several trace organic chemicals that are of particular concern due to its highly variable 

rejection efficiency by RO membranes as reported in several recent pilot- and full-scale 

studies [5-7]. NDMA is a disinfection by-product formed during the chloramination of 

biologically treated effluent [8] and is often found in the RO feed at up to a few hundred parts 

per trillion [9]. In addition to NDMA, other N-nitrosamines that are often present in raw 

wastewater and secondary treated effluents including N-nitrosomethylethylamine (NMEA), 

N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), 

N-nitrosomorpholine (NMOR), N-nitrosodipropylamine (NDPA) and N-nitrosodi-n-

butylamine (NDBA) [10-12]. Several of these N-nitrosamines (including NDMA) have been 

classified as probable human carcinogens by the US EPA [13]. Thus, their concentrations in 

drinking water have been regulated by regulatory authorities around the world. For examples, 

the Australian Guidelines for Water Recycling have recommended their concentrations at 10 

ng/L (NDMA and NDEA) and at 1 ng/L (NMOR) for the augmentation of drinking water 

sources [14].  

Modelling the rejection of N-nitrosamines under various conditions is essential for the design 

of RO plants and compliance monitoring.  NDMA and several other N-nitrosamines have 

been frequently detected in the feed water to RO treatment at concentration higher than the 

regulatory levels [15]. In addition, N-nitrosamine rejection by RO membranes is sensitive to 

operating conditions and feed solution characteristics [16]. Difficulties associated with 

analytical determination of N-nitrosamines in the permeate at regulatory concentrations (i.e. 1 

to 10 ng/L) [5, 17, 18] also underscore the need for a model that can accurately describe the 

rejection of N-nitrosamines. N-nitrosamine concentrations in aqueous samples can be 

determined by chromatography (GC) or high pressure liquid chromatography (HPLC) with 
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tandem mass spectrometry (MS/MS) detector. However, the number of commercial 

laboratories capable of trace level N-nitrosamine analysis is still limited and regular 

monitoring of N-nitrosamines remains difficult and expensive. Thus, a capacity to describe 

and predict the rejection of N-nitrosamines by the RO process is particularly useful for the 

management of these trace organic chemicals in water recycling applications. 

The rejection of inorganic salts by multi-stage RO membrane systems can be simulated with 

a high level of accuracy using commercially available RO design software packages (e.g. 

IMSDesign, TorayDS/DS2, and ROSA provided by Hydranautics, Toray, and Dow/FilmTec, 

respectively). The development of mathematical models for simulating specific trace organic 

and inorganic chemicals by spiral wound RO membrane systems has been reported in several 

recent studies. Kim and co-workers have successfully developed a model for predicting boron 

rejection by applying the irreversible thermodynamic principle and sub-dividing a spiral 

wound element into a number of small sub-sections [19-21]. Using a similar approach, 

Verliefde et al. [22] have also developed a full-scale rejection model for several 

pharmaceutically active compounds (PhACs) using nanofiltration (NF) membranes. These 

models significantly enhance our understanding of the permeation of boron and PhACs 

through RO membranes under realistic conditions. However, to date, there have yet been any 

software packages or mathematical models that can simulate the rejection of N-nitrosamines. 

The aim of this study was to develop a mathematical model to predict the rejection of N-

nitrosamines by RO systems under a range of operating conditions. The developed model was 

validated using experimental data obtained from a pilot RO system. The potential application 

of this model for predicting N-nitrosamine rejection at full-scale level was also discussed. 

2. Theoretical background 

2.1. Membrane element characteristics 

A commercial spiral-wound element has one or several membrane leaves. Each leaf consists 

of two flat sheet membranes sealed on three sides with the forth side attached to a perforated 

tube called the permeate collector. The membrane leaf is wound around the permeate 

collector. As a result, each spiral-wound element can essentially be presented by a large flat 

sheet membrane. In this study, each element is geometrically described with the length (L), 
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width (W) and feed channel height (hb) (Figure 1). On the other hand, the irreversible 

thermodynamic principle can be used to model the rejection of N-nitrosamines by a small flat 

sheet membrane for a given hydrodynamic condition. Thus, the irreversible thermodynamic 

principle can also be used to model solute rejection by a spiral wound element. This can be 

done by sub-dividing the membrane area on each element smaller sections of the same size 

and using fluid mechanics to calculate and define the hydrodynamic condition for each sub-

section. In this study, the membrane area on one each element is divided into 20 sub-sections 

(m = 20) in a longitudinal direction where each sub-section length (Δx) is described as: 

m

L
x         (1) 

It is noteworthy that the length of each sub-section selected here is similar to that of the flat 

sheet membrane coupon used in the laboratory-scale study. The membrane surface area 

attached to the feed spacers is assumed to be 10% and this area is not utilised for filtration. 

Thus, the active surface area in each sub-section (ΔS) is defined as:   

m

S
S

9.0
        (2) 

The cross-section area of the feed channel (ΔSc) is expressed as: 

bc WhS         (3) 

 [Figure 1] 

2.2. Hydrodynamics 

The local permeate flux (Jp(i)), local permeate flow rate (Qp(i)) and the overall permeate flow 

rate of a membrane element (Qp,t) are calculated using equations 4 - 6.  

  )()()()( iiPiPLiJ pfpp      (4) 

SiJiQ pp  )()(       (5)  





m

i
ptp iQQ

1
, )(       (6) 
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where Lp = pure water permeability which is obtained from bench-scale tests and σ = 

reflection coefficient. Because permeate pressure (Pp) is negligible compared to feed pressure 

(Pf), local permeate pressure (Pp(i)) is assumed to be zero in this study. Local osmotic 

pressure (π(i)) shown in equation 4 is computed with feed solution temperature (T) and molar 

concentrations of ions (msalt(i)). 


i

imTi
1

)()273(19.1)(      (7) 

Concentration of the solute (msalt(i)) increases in the feed in the subsequent sub-sections since 

the solute is retained by the membrane. Changes in solute concentration can be calculated 

using the following equation: 

)1(

)()1()(
)()1(






iQ

iQRiQ
imim

f

psaltf
saltsalt    (8) 

where Qf(i) = local feed flow rate. In the model, overall feed flow measured in the pilot 

system is used as the feed flow of the first sub-section Qf(1). Local feed flow rate (Qf(i+1)) is 

calculated from the feed and permeate flow rates of the previous sub-section (Qf(i)): 

)()()1( iQiQiQ pff       (9) 

Using the local feed flow rate (Qf(i)), local bulk velocity of the feed within the feed channel 

(Ub(i)) is defined as: 

c

f
b S

iQ
iU




)(
)(        (10) 

The pressure drop in the feed stream (ΔPf(i)) and overall pressure drop of an element in the 

feed stream (ΔPf,t) is calculated using the following formula [23, 24]: 

h
bfbf d

x
iUifiP


 )()(
2

1
)( 2      (11) 

saltCMMMi  4.7522484004.498)( 2   (12)  
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TM 410757.20069.1       (13) 





m

i
ftf iPP

1
, )(       (14) 

where ffb = feed friction parameter, ρ(i) = local solution density [25], T = feed temperature 

and dh = hydraulic diameter (dh = 2hb) [23]. Friction parameter (ffb) is determined by an 

approach minimising the difference between the experimentally modelled and measured 

overall pressure drops. Feed pressure which is experimentally measured at the entrance of the 

first membrane element is used as the feed pressure of the first sub-section in the model. 

Then local feed pressure (Pf(i+1)) is calculated from the feed pressure (Pf(i)) and the feed 

pressure loss (ΔPf(i)) of the previous section: 

)()()1( iPiPiP fff       (15) 

[Figure 2] 

2.3. Solute permeation through membranes  

Local real rejection (Rreal(i)) of various solutes such as ions and organic chemicals including  

N-nitrosamines [26-29] can be commonly expressed by the Spiegler-Kedem equation [30]:  

))(1(

))(1(

)(

)(
1)(

iF

iF

iC

iC
iR

m

p
real 





     (16)  

 







 
 )(

1
exp)( iJ

P
iF p

s


     (17)  

where Ps = permeability coefficient and σ = reflection coefficient both of which can be  

obtained from bench-scale experiments. Local observed rejection (Robs(i)) can be calculated  

with the local real rejection (Rreal(i)) and local mass transfer coefficient (k(i)) as follows [31]:  

  )(
)(

)(
exp)(1

)(
)(

iR
ik

iJ
iR

iR
iR

real
p

real

real
obs











    (18)  
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















 

L

Peh
iSc

h

D

K

K
ik b

b

  (19) 

where K = efficiency of mixing net (K = 0.5), Sc = Schmidt number (μ/ρ(i)D), Pe = Peclet 

number (Pe = 2hbUb(i)/D) and μ = viscosity of feed solution. 

140

8.247
5 1010141.2   T      (20) 

Once the local observed rejection (Robs(i)) is determined, the local permeate concentration 

(Cp(i)) can also be calculated using local feed concentration (Cf(i)) using equation 21. Then 

local feed concentration in the following sub-section (Cf(i+1)) can be expressed by equation 

22. The overall permeate concentration of an element j (Cp(j)) can be calculated by totalling 

mass transport in all sub-sections of the membrane element as described in equation 23. 

))(1)(()( iRiCiC obsfp       (21) 

)(

)()()()(
)1(

iQ

iCiQiCiQ
iC

c

ppff
f


    (22) 








m

i
p

m

i
pp

p

iQ

iQiC
jC

1

1

)(

)()(
)(      (23) 

Because permeate streams from each membrane element blend in the combined permeate 

stream, solute rejection by a certain number (n) of membrane elements need to be evaluated 

using the combined concentration. The combined permeate concentration of n elements 

(Cp(n)), combined observed solute rejection of n elements (Robs(n)), and recovery of n 

elements (Rc(n))  can be calculated as follows:  








n

j
p

n

j
pp

p

jQ

jQjC

nC

1

1

)(

)()(

)(      (24) 
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)(

)()(
)(

jC

nCjC
nR

f

pf
obs


 , j = 1    (25) 

)(

)(

)( 1

jQ

jQ

nR
f

n

j
p

c


 , j = 1     (26) 

The iterative procedure to determine the hydrodynamic constants (Eqs 1 – 15) and solute 

transport following the irreversible thermodynamic principle described Eqs 16 – 26 above 

provide the basis for this mathematical model as schematically summarised in Figure 2. 

3. Materials and methods 

3.1. Pilot-scale filtration system and RO element 

A pilot-scale cross-flow RO filtration system was used in this investigation. The pilot system 

comprises three 4 inch glass-fibre pressure vessels, 300 L feed reservoir, stainless steel pipes 

in the feed stream and PVC pipes in the permeate stream (Figure 3). Each pressure vessel 

holds one 4 inch × 40 inch RO membrane element. The feed solution was delivered from the 

feed reservoir to the first stage by a pump (CRN 3-25, Grundfos, Bjerringbro, Denmark) and 

the concentrate of the first stage was transferred to the second stage followed by the third 

stage. The permeate and concentrate streams were returned back into the feed reservoir. The 

permeate flow rate and cross flow rate were both monitored by flow meters and regulated by 

a globe valve and speed controller of the pump. Feed solution temperature was conditioned in 

the feed reservoir using stainless steel heat exchanging pipes connected to a chillier/heater 

unit (Aqua Cooler S360PD-CT, Chester Hill, NSW, Australia). 

[Figure 3] 

Three ESPA2-4040 (Hydranautics, Oceanside, CA, USA) spiral wound elements were used. 

The ESPA2-4040 membrane element has an equivalent length of 1.016 m, actual membrane 

sheet length (L) of 0.9 m, membrane area (S) of 7.9 m2, and feed channel height (hb) of 6.60 × 

10-4 m. According to the manufacturer, permeability of individual membrane element may 

vary by up to 25%. It is noteworthy that the ESPA2 membrane is commonly deployed in full-

scale RO installations in the USA and Australia for water reuse application [5, 32].  
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3.2. Chemicals 

Analytical grade N-nitrosamines were obtained from by Sigma-Aldrich (St Louis, MO, USA). 

An N-nitrosamine stock solution containing 10 mg/L of each N-nitrosamine was prepared in 

pure methanol. All N-nitrosamines used in this investigation exist as an uncharged solute in 

treated wastewater (pH 6-8) [16]. Deuterated N-nitrosamines (N-nitrosodimethylamine-D6, 

N-nitrosomethylethylamine-D3, N-nitrosopyrrolidine-D8, N-nitrosodiethylamine-D10, N-

nitrosopiperidine-D10, N-nitrosomorpholine-D8, N-nitrosodipropylamine-D14 and N-

nitrosodi-n-butylamine-D9) were supplied by CDN isotopes (Pointe-Claire, Quebec, Canada) 

and a surrogate stock solution of 100 µg/L of each deuterated N-nitrosamine was also 

prepared in pure methanol. These stock solutions were kept at -18 ºC in the dark and were 

used within 1 month of preparation. Key physicochemical properties and transport parameters 

of these N-nitrosamines through the ESPA2 membrane which was obtained from a previous 

study [33] are summarised in Table 1. Analytical grade NaCl, CaCl2 and NaHCO3 were also 

purchased from Ajax Finechem (Taren Point, NSW, Australia). Stock solutions of these 

chemicals were also prepared in Milli-Q water at 2M (NaCl) and 0.1M (CaCl2 and NaHCO3) 

concentrations and used as the background electrolytes during the filtration experiments.  

[Table 1] 

3.3. Filtration experiments 

Prior to the first filtration experiment, the membrane system was operated at approximately 

1000 kPa for 12 hours using 100 L Milli-Q water. Following the start-up stage, the Milli-Q 

water in the feed was conditioned with 20 mM NaCl, 1 mM CaCl2 and 1 mM NaHCO3 to 

simulate the background electrolyte composition typically found in treated wastewater. The 

stock solution of N-nitrosamines was also introduced into the feed to obtain approximately 

250 ng/L of each N-nitrosamine. The permeate flux was then adjusted to 10 L/m2h, and 

stepwise increased up to 30 L/m2h. The overall system recovery was adjusted to 25% because 

only three membrane elements were used. During the experiments, feed pressure was 

measured at the entrance of the each element and the exit of the third element. The system 

was operated for at the least 12 h before the first samples were taken for analysis to ensure 

the separation efficiency has been stabilised. A previous laboratory-scale study revealed no 

significant changes in the rejection of almost all N-nitrosamines after one hour of filtration 
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[16]. From each sampling point, a sample of 200 mL was collected using amber glass bottles 

for N-nitrosamine analysis. Immediately after the sample collection, the surrogate stock 

solution was added to the sampling bottles to obtain 50 ng/L of each isotope labelled N-

nitrosamine. The feed temperature during the experiments was kept at 20±0.1°C. It is 

noteworthy that the overall recovery of each vessel (or stage) which holds six to seven RO 

elements is about 50% in most full-scale wastewater recycling RO plants.  

3.4. Analytical technique 

N-nitrosamine concentrations were determined using an analytical method previously 

developed by McDonald et al. [18]. The method uses solid phase extraction (SPE), followed 

by gas chromatography and analysis by tandem mass spectrometry with electron impact 

ionization. SPE was conducted using SupelcleanTM Coconut Charcoal SPE cartridges 

purchased from Supelco (St Louis, MO, USA). The concentrations of N-nitrosamines were 

quantified using an Agilent 7890A gas chromatograph coupled with an Agilent 7000B triple 

quadrupole mass spectrometer. Calibration curves were established for each N-nitrosamine 

with a range of 0.5-500 ng/L. The quantitative detection limits established in this 

investigation were 3 ng/L for NDMA, NDEA, NPIP, and NMOR, and 5 ng/L for NMEA, 

NPYR, NDPA, and NDBA. Conductivity and pH were measured using an Orion 4-Star Plus 

pH/conductivity meter (Thermo Scientific, USA). 

4. Results and discussion 

4.1. Determination of model parameters 

The pressure of each sub-section within the membrane system was calculated from the 

pressure of the previous sub-section and the local pressure drop. The local pressure drop 

(ΔP(i)) was determined using equation 11. The feed friction parameter (ffb), which is 

dependent upon the geometry of membrane element and operating conditions [23, 24], was 

obtained using the iteration procedure outline in Figure 2 to minimise the difference between 

the modelled and observed feed pressure to less than 5% at an average permeate flux of 10, 

20, and 30 Lm2/h (Figure 4). In this study, ffb values of 10, 20 and 30 Lm2/h were 3.9, 4.3 and 

5.5, respectively. Knowing the membrane permeability, the local permeate flux can then be 

calculated based on the local pressure. Subsequently, the overall permeate flux can also be 

calculated. In fact, the simulated permeate flux only deviated slightly from the observed 
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value at the applied pressure of 1.0 MPa (Figure 5). These results indicate that the model can 

adequately simulate the hydrodynamic condition (i.e. feed pressure and permeate flow) 

within the RO membrane elements. The small deviation observed in Figure 5 may be 

attributed to the fact that the determined ffb value was used for the entire system as well as the 

difference in permeability of membranes that were used in the fundamental and pilot-scale 

experiments. There can be some variation in permeability between different areas of the same 

membrane element or between different batches of production (Section 3.1). As the applied 

pressure increases, the pressure drop across the membrane element increases resulting in a 

larger deviation between the simulated and experimentally obtained values. 

[Figure 4] 

[Figure 5] 

4.2. N-nitrosamine rejection 

All N-nitrosamines used in this study are uncharged in the tested solution (pH 8). In general, 

the rejection of uncharged solutes by NF/RO membranes generally increases as permeate flux 

increases [22]. A similar trend using N-nitrosamines was also reported in a previous 

laboratory-scale study by Fujioka et al. [16]. As expected, the simulated rejection values of 

three lowest molecular weight N-nitrosamines (i.e. NDMA, NMEA and NPYR) increased 

when the overall (system) permeate flux increased (Figure 6). Among these three N-

nitrosamines, modelled NDMA rejection showed the most significant increase from 31 to  

54% with increasing overall permeate flux from 10 to 30 L/m2h, respectively. The impact of 

permeate flux on N-nitrosamine rejection was less significant as their molecular weights 

increase. The modelled rejections were comparable with the observed rejections at three 

different overall permeate fluxes (i.e. 10, 20 and 30 L/m2h) investigated here. Results from 

Figure 6 indicate that the developed model is capable of describing N-nitrosamine rejection at 

a range of permeate flux. It is also noteworthy that rejection values obtained from the model 

are conservative. In other word, the modelled rejections of NDMA, NMEA, and NPYR were 

slightly smaller than values obtained experimentally.  

Modelled rejections of the other N-nitrosamines (i.e. NDEA, NPIP, NDPA, NMOR and 

NDBA) were over 90%. As a result, only a slight increase in rejection was found with 

increasing overall permeate flux (data not shown). In fact, pilot-scale experiments conducted 
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in this study revealed that the observed rejections of these N-nitrosamines were over 90% and 

no discernible variation in rejection was observed for changes in permeate flux (Figure 7).  

[Figure 6] 

[Figure 7] 

4.3. Impact of recoveries 

In full-scale RO plants, solute rejection can vary depending on the element position within a 

vessel and the overall train due to changes in hydrodynamic states and solution characteristics. 

The variation in solute rejection was investigated by extending the model calculation from 

three elements to seven elements and the rejections were plotted against recovery (Figure 8). 

The model showed approximately 50% recovery with seven RO membrane elements, which 

is equivalent to one vessel of the first stage in a full-scale RO train deployed for water 

reclamation applications. The simulated rejections of the three N-nitrosamines decreased 

when recovery increased (Figure 8). When the recovery of the RO system increased from 10 

to 50%, the modelled rejection of NDMA decreased remarkably from 49 to 35%. Likewise, 

for the same change in recovery, the rejections of NMEA and NPYR also decreased from 81 

to 72% and from 89 to 83%, respectively. The observed rejections of these three N-

nitrosamines were similar to the modelled rejections (Figure 8). 

[Figure 8] 

Changes in the localised rejection of NDMA within a membrane vessel containing several 

elements were further investigated by examining the variation in hydrodynamic states and 

mass transfers. As filtration progresses, local feed pressure decreases due to an increase in 

pressure loss (Figure 9). As a result of the reduced driving force, local permeate flux 

decreases along with the progress of the filtration. Since permeate flux affects the rejection of 

N-nitrosamines [33], the local NDMA rejection could also decrease. It is also noteworthy that 

an increase in TDS along with filtration also causes a slight decrease in N-nitrosamine 

rejection [33]. In addition, rejected compounds remain in the feed stream, leading to an 

increase in NDMA concentration in the subsequent feed and permeate. The increased NDMA 

concentration in the permeate stream contributes to deteriorations in the overall rejection of 

solutes, since the overall rejection is calculated based on solute concentrations in the feed 
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solution and combined permeate solution as described in equation 25. Thus, the simulation 

results reported here could explain the discrepancy between laboratory scale results with very 

low recovery and those from full-scale RO plants for water recycling applications with about 

85% recovery [15]. 

[Figure 9] 

5. Conclusions 

The developed model successfully simulated the hydrodynamic states (i.e. pressure and 

permeate flow) of the pilot-stale plant. The modelled results revealed that changes in 

permeate flux (from 10 to 30 L/m2h) considerably affected the rejection of low molecular 

weight N-nitrosamines such as NDMA (from 31 to 54%). The modelled N-nitrosamine 

rejections at each permeate flux were in a good agreement with experimentally determined 

N-nitrosamine rejections. Modelling conditions simulating a vessel with seven spiral-wound 

membrane elements revealed that recovery plays an important role in the rejection of low-

molecular weight N-nitrosamines. In particular, when recovery changed from 10 to 50% by 

increasing the number of elements from one to seven, NDMA rejection decreased 

considerably from 49 to 35%. Additional simulation using the model revealed that the local 

NDMA rejection decreased with NDMA concentration increasing along the flow path from 

the first to the last stage, resulting in a decrease in the overall rejection of NDMA. The 

presented results demonstrate that the developed model can be used for simulating N-

nitrosamine rejections during full-scale plant design and operation. Further work is required 

to examine the effects of several other factors (e.g. feed water characteristics, fouling and 

chemical cleaning) on N-nitrosamine rejection using a pilot-scale plant and incorporate these 

effects into the model. 
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7. Nomenclature 

Cf  feed concentration [kg/m3] 
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Cp permeate concentration [kg/m3] 

hb  feed channel height [m] 

i number of sub-section [-] 

j number of element [-] 

ffb  feed friction parameter [-] 

Jp  permeate flux [m3/m2s] 

k mass transfer coefficient [m/s] 

K  efficiency of mixing net [-] 

L membrane sheet length [m] 

Lp  pure water permeability [L/m2hPa] 

m number of sub-sections in a membrane sheet [-] 

msalt  molar concentrations of ions [mol/L] 

n quantity of elements [-] 

Pe  Peclet number [-] 

Pf feed pressure [Pa]  

Pp feed pressure [Pa]  

ΔP pressure drop [Pa] 

Ps   permeability coefficient of a compound [m/s] 

Qf feed flow [m3/s] 

Qp permeate flow [m3/s] 

Rc recovery [-] 

Robs observed rejection [-] 

Rreal  real rejection [-]  

ΔS  valid surface area [m]  
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ΔSc cross-section area [m] 

Sc  Schmidt number [-] 

T  feed solution temperature [°C] 

Ub bulk velocity of the feed within the feed channel [m/s]  

W membrane sheet width [m] 

Δx sub-section length [m] 

ρ  density of solution [kg/m3] 

σ  reflection coefficient [-] 

π  osmotic pressure [Pa] 

µ  viscosity of feed solution [Pa-s]  
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Table 1: Physicochemical characteristics and transport parameters of the selected N-nitrosamines. 486 
Name NDMA NMEA NPYR NDEA NPIP NMOR NDPA NDBA 

Structure 

 
 

Molecular weight 
[g/mol] 

74.05 88.06 100.06 102.08 114.08 116.06 130.11 158.14 

Log Kow
a -0.50 0.01 -0.09 0.52 0.44 -0.81 1.54 2.56 

Diffusion 
coefficient b, D 
[m2/s] 

9.7 × 10-10 

 

8.0 × 10-10 8.0 × 10-10 8.0 × 10-10 8.6 × 10-10 9.2 × 10-10 8.2 × 10-10 8.0 × 10-10 

Permeability 
coefficient c, Ps 

[m/s] 

5.35 × 10-6 1.14 × 10-6 5.12 × 10-7 2.26 × 10-7 9.25 × 10-8 2.06 × 10-7 6.02 × 10-8 4.33 × 10-8 

Reflection 
coefficient c, σ [-] 

0.953 0.958 0.973 0.985 0.993 0.991 0.992 0.990 

a ACD/PhysChem Suite software (Advanced Chemistry Development, Inc., Ontario, Canada). 487 
b GSI chemical properties database (GSI Environmental Inc.), http://www.gsi-net.com/en/publications/gsi-chemical-database.html. 488 
c [33]. 489 
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LIST OF FIGURES 490 

Figure 1: Representation of a spiral-wound RO element as flat sheet configuration including 491 

the mass balance of a flat sheet sub-section. 492 

Figure 2: Schematic diagram of the iteration procedure to determine the pressure drop in a 493 

spiral-wound element and the subsequent rejection calculation. 494 

Figure 3: Flow diagram of the pilot-scale plant. 495 

Figure 4: Observed and modelled feed pressure within three RO elements (overall permeate 496 

flux = 10, 20 and 30 L/m2h; feed solution contains 20 mM NaCl, 1 mM NaHCO3, and 1 mM 497 

CaCl2; feed temperature = 20.0 ± 0.1 °C). 498 

Figure 5: Observed and modelled overall permeate flux as a function of the feed pressure at 499 

the system entrance (feed solution contains 20 mM NaCl, 1 mM NaHCO3, and 1 mM CaCl2; 500 

feed temperature = 20.0 ± 0.1 °C).  501 

Figure 6: Observed and modelled overall rejection of NDMA, NMEA and NDEA (feed 502 

solution contains 20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2; feed temperature = 20.0 ± 503 

0.1 °C). 504 

Figure 7: Overall rejection of N-nitrosamines by the pilot-scale experiments (overall 505 

permeate flux = 10, 20 and 30 L/m2h; feed solution contains 20 mM NaCl, 1 mM NaHCO3, 506 

and 1 mM CaCl2; feed temperature = 20.0 ± 0.1 °C). Open symbols indicate that the permeate 507 

concentration was below the instrumental detection limit. Values reported here are the 508 

average and ranges of duplicate results. 509 

Figure 8: Effects of recovery on the rejection of NDMA, NMEA and NPYR (feed solution 510 

contains 20 mM NaCl, 1 mM NaHCO3, and 1 mM CaCl2; feed temperature = 20.0 ± 0.1 °C). 511 

Figure 9: Variation in (a) feed pressure, (b) local permeate flux, (c) NDMA rejeciton and (d) 512 

NDMA concentration in the feed and permeate (feed solution contains 20 mM NaCl, 1 mM 513 

NaHCO3, and 1 mM CaCl2; feed temperature = 20.0 ± 0.1 °C). 514 



 

21 
 

 515 

 516 

Figure 1517 

 

L 

W 

Feed 

Permeate

∆x 

Feed Qf (i-1) 
Cf (i-1) 

Q
f
(i+1) 

C
f
(i+1) 

0.5Q
p
(i) 

C
p
(i) 

0.5Q
p
(i) 

C
p
(i) 

L/m W 

Q
f
 (i) 

C
f
 (i) 



 

22 
 

 518 
Figure 2  519 

Inputs 
a. Membrane element characteristics 
b. Feed solution characteristics 
c. Transport parameters (Lp, Ps, σ): 

obtained from bench‐scale experiments

Overall feed pressure 
loss ΔPf,actual 

Calculate overall feed 
pressure loss (ΔPf,t) 

Input 
parameters 
(nF, kfb) 

ΔPf,t 
≈ ΔPf,actual 

No 

Yes

Output
a. Local and overall rejection 
b. Hydrodynamic states 
c. Local compound concentrations 

Calculate local rejection (Robs(i)) 
and apply mass balance 
calculation 

Model  Hydrodynamic 
characteristics of the 
spiral–wound system 

Feed flow and feed 
pressure measured at 
the entrance of the first 
element 



 

23 
 

P 

PI  PI PI

PI 

FI  FI  FI PI

FI Flow Meter 

Pressure Gauge

P Pump 

Globe Valve 

Chiller 

FI

FI

 520 
Figure 3  521 



 

24 
 

0.0 0.5 1.0 1.5 2.0 2.5
0.2

0.4

0.6

0.8

1.0

1.2   Observed  Modelled 
30 L/m2h                 
20 L/m2h               
10 L/m2h             

Fe
ed

 P
re

ss
ur

e 
[M

P
a]

Distance from the entrance [m]

21

Element Position [-]

3

 522 
Figure 4  523 



 

25 
 

0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

40

 Observed
 ModelledA

ve
ra

ge
d 

P
er

m
ea

te
 F

lu
x 

[L
/m

2 h]

Feed Pressure [MPa]
 524 

Figure 5525 



 

26 
 

10 15 20 25 30
0

20

40

60

80

100

 Permeate Flux [L/m2h]

     
Modelled  Observed

NPYR             
NMEA             
NDMA             

R
ej

ec
ito

n 
[%

]

 526 
Figure 6  527 



 

27 
 

80 100 120 140 160
0

20

40

60

80

100

 30 L/m2h
 20 L/m2h
 10 L/m2h

R
ej

ec
tio

n 
[%

]

Molecular Weight [g/mol]

N
D

M
A

N
M

EA

N
M

O
R

N
PY

R
N

D
EA

N
PI

P

N
D

PA

N
D

BA

 528 
Figure 7  529 



 

28 
 

10 20 30 40 50
0

20

40

60

80

100

            Modelled  Observed 
NPYR          
NMEA         
NDMA          

R
ej

ec
tio

n 
[%

]

Recovery [%]

765432

Modelled Element Position [-]

1

 530 
Figure 8  531 



 

29 
 

0.0

0.2

0.4

0.6

0

10

20

30

0

20

40

60

80

100

0 1 2 3 4 5 6
0

100

200

300

400

500

 Feed Pressure

 Cumulative Pressure Loss

 Osmotic Pressure

(d) NDMA Concentration

(c) NDMA Rejection

(b) Permeate Flux

(a) Pressure
P

re
ss

ur
e 

[M
P

a]

 Local Permeate Flux

 

P
er

m
ea

te
 F

lu
x 

[L
/m

2 h]

 NDMA Rejection

 

R
ej

ec
tio

n 
[%

]

1 2 3 4 5 6 7

Element Position [-]

 Permeate

 Feed

C
on

ce
nt

ra
tio

n 
[n

g/
L]

Distance From the Entrance [m]

 532 
Figure 9 533 


	Modelling the rejection of N-nitrosamines by a spiral-wound reverse osmosis system: mathematical model development and validation
	Recommended Citation

	Modelling the rejection of N-nitrosamines by a spiral-wound reverse osmosis system: mathematical model development and validation
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors

	Microsoft Word - Modelling - Manuscript Final 281113_Fresh

