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Abstract Abstract 
This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse 
osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples 
were collected at all individual filtration stages as well as at a cool and a warm weather period to 
elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-
nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32 ng/L. 
Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their 
detection limits (3e5 ng/L) but higher concentrations were detected in the feed after each filtration stage. 
As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in 
RO feed (177e475 ng/L) and permeate (34e76 ng/L). Overall rejection of NDMA among the three RO 
systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can 
influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages 
(14e78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On 
the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was 
considerably lower than values reported in previous laboratory-scale studies. A comparison between 
results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine 
rejection data between laboratory- and full-scale studies probably due to differences in water recoveries 
and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions). 
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Abstract 18 

This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines 19 

by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water 20 

recycling plants. Samples were collected at all individual filtration stages as well as at a cool 21 

and a warm weather period to elucidate the impact of recovery and feed temperature on the 22 

rejection of N-nitrosamines. N-nitrosodimethlyamine (NDMA) was detected in all RO feed 23 

samples varying between 7 and 32 ng/L. Concentrations of most other N-nitrosamines in the 24 

feed solutions were determined to be lower than their detection limits (3-5 ng/L) but higher 25 

concentrations were detected in the feed after each filtration stage. As a notable exception, in 26 

one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed 27 

(177-475 ng/L) and permeate (34-76 ng/L). Overall rejection of NDMA among the three RO 28 

systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature 29 

can influence rejection of NDMA. A considerable variation in NDMA rejection across the 30 

three RO stages (14-78%) was also observed. Overall NMOR rejections were consistently 31 

high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine 32 

(NDEA) varied from negligible to 53%, which was considerably lower than values reported 33 

in previous laboratory-scale studies. A comparison between results reported here and the 34 

literature indicates that there can be some discrepancy in N-nitrosamine rejection data 35 

between laboratory- and full-scale studies probably due to differences in water recoveries and 36 

operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions). 37 

Keywords: Water reuse; N-nitrosamines; NDMA; reverse osmosis (RO) membranes; full-38 

scale operation. 39 
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1. Introduction 40 

As clean water sources continue to dwindle in many parts of the world, water recycling has 41 

been used by water providers to secure safe and reliable supplies of water for municipal, 42 

industrial and agricultural uses (Shannon et al., 2008). In many water recycling schemes, 43 

reverse osmosis (RO) filtration is deployed as a key process to remove inorganic salts and 44 

trace organic chemicals (Bellona et al., 2004; Dolnicar et al., 2010; Shannon et al., 2008; 45 

Verliefde et al., 2008). However, among these trace organic chemicals, the rejection of N-46 

nitrosodimethylamine (NDMA) by RO membranes has often been reported to be low and 47 

highly variable (Fujioka et al., 2012a). As a result, subsequent treatment by advanced 48 

oxidation processes (AOPs), which is commonly based on UV-H2O2, is required where 49 

NDMA concentrations in the final product water is stringently regulated (Plumlee et al., 50 

2008; Poussade et al., 2009). In addition to NDMA, several other N-nitrosamines have also 51 

attracted scientific and regulatory attention due to their potentially carcinogenic properties 52 

(Sedlak and von Gunten, 2011; USEPA, 1993). These N-nitrosamines include N-53 

nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine 54 

(NDEA), N-nitrosopiperidine (NPIP), N-nitrosomorpholine (NMOR), N-55 

nitrosodipropylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) and their occurrence in 56 

wastewater and secondary treated effluent has been reported in the literature (Krauss et al., 57 

2010; Reyes-Contreras et al., 2012; Yoon et al., 2012). In particular, NMOR has been 58 

reported at up to 12.7 µg/L in secondary treated effluent (Krasner et al., 2009). Potential 59 

sources of the high NMOR concentrations in wastewater include toiletries and cosmetics 60 

(Spiegelhalder and Preussmann, 1984) and rubber and tire industries (Fajen et al., 1979). For 61 

the augmentation of drinking water sources, guideline values of NDMA (10 ng/L), NDEA 62 

(10 ng/L) and NMOR (1 ng/L) have been recommended by the Australian Guidelines for 63 

Water Recycling (NRMMC et al., 2008). On the other hand, NDMA is the only N-64 

nitrosamine considered in the Australian Drinking Water Guidelines with a recommended 65 

guideline value of 100 ng/L (NHMRC and NRMMC, 2011). 66 

The rejection of small neutral solutes such as N-nitrosamines by RO membranes is mainly 67 

governed by size exclusion (Fujioka et al., 2012b). In general, the rejection of N-nitrosamines 68 

increases in the increasing order of their molecular size (Bellona et al., 2011; Miyashita et al., 69 

2009; Steinle-Darling et al., 2007). Thus, NDMA, which is the smallest molecule among N-70 
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nitrosamines, exhibits the lowest rejection (Fujioka et al., 2012a). Previous laboratory-scale 71 

studies (Bellona et al., 2011; Fujioka et al., 2012b; Miyashita et al., 2009) have elucidated the 72 

effects of operating conditions and feed water characteristics on the rejection of N-73 

nitrosamines. It is reported that permeate flux can play an important role in the rejection of 74 

low molecular weight N-nitrosamines. Fujioka et al. (2012b) also reported that a seven-fold 75 

increase in feed ionic strength (from 26 to 182 mM) could lead to some decrease in NDMA 76 

rejection (from 51 to 43%) and that pH changes in the feed (from pH 6.5 to 9) could also 77 

cause an increased NDMA rejection (from 37 to 51%). In addition to these water quality 78 

parameters, a recent laboratory-scale study by Fujioka et al. (2013a) has reported that 79 

membrane fouling by tertiary treated wastewater effluent resulted in an increase in the 80 

rejection of low molecular weight N-nitrosamines including NDMA. 81 

The rejection of N-nitrosamines by RO membranes has been extensively investigated at the 82 

laboratory scale (Bellona et al., 2011; Fujioka et al., 2012b; Miyashita et al., 2009; Steinle-83 

Darling et al., 2007). However, full-scale monitoring data to reaffirm findings from 84 

laboratory-scale experiments and to assess the impact of realistic operating conditions on the 85 

rejection of N-nitrosamines have rarely been reported in the peer review literature. Plumlee et 86 

al. (2008) studied the removal of NDMA by different treatment processes (including RO) at 87 

the Interim Water Purification Facility (Orange County, California, USA). NDMA removal 88 

by the RO process varied from 24 to 56%. The authors suggested that the variation in NDMA 89 

rejection observed in their study might be associated with changing feed conditions and 90 

membrane fouling. However, the authors did not monitor the feed and membrane fouling 91 

conditions. Farré et al. (2011) reported the fate of NDMA after each treatment process of the 92 

Bundamba Water Recycling plant in Queensland, Australia. Because Farré et al. (2011) did 93 

not focus on the RO process, only one overall rejection value of NDMA by the RO system 94 

can be inferred from their study. Some information about the rejection of NDMA and NMOR 95 

by a full-scale RO plant can also be inferred from a study by Krauss et al. (2010), who 96 

investigated the fate of N-nitrosamine precursors at the Wulpen/Torreele Water Recycling 97 

plant in Belgium. In comparison to NDMA, very little is known about the fate and removal of 98 

other N-nitrosamines during RO filtration at full scale. The scarcity of full-scale monitoring 99 

and the lack of information regarding operating conditions (e.g. permeate flux and recovery) 100 

and feed water characteristics (e.g. temperature, ionic composition) significantly hinder any 101 

meaningful data analysis. RO systems for wastewater recycling are typically designed using 102 
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three stages to achieve recovery around 85% (Fujioka et al., 2012a). Although the RO feed is 103 

further concentrated after each filtration stage, no studies available to date have examined 104 

rejection efficiencies for nitrosamines at subsequent stages.  105 

The aim of this study was to assess the removal of eight N-nitrosamines in three full-scale 106 

RO plants. N-nitrosamine rejection values obtained at different stages were systematically 107 

related to the operating conditions and feed water characteristics. In addition, the difference 108 

in N-nitrosamine rejections between a cool and a warm weather period at one plant was also 109 

elucidated. Based on the obtained results, implications to water recycling practice were 110 

highlighted and discussed. 111 

2. Materials and methods 112 

2.1. RO systems 113 

Samples were collected from three full-scale water recycling plants denoted as A, B and C 114 

located in Australia. In these plants, prior to RO filtration, secondary treated effluent is first 115 

pretreated by either microfiltration (MF) or ultrafiltration (UF). In all three plants, pre-formed 116 

chloramines were added to the process prior to MF or UF filtration to mitigate biofouling on 117 

the RO membranes (Figure 1). The RO membranes used in these plants are from three 118 

different manufacturers. The membranes used in these three plants are thin film composite 119 

with a polyamide skin layer. They were characterized by similar salt (NaCl) rejection and 120 

water permeability (Fujioka et al. (2013b). The process flow diagrams of these RO systems 121 

are shown in Figure 1. Samples were collected from plant A during cool (A-1) and warm (A-122 

2) weather periods. At plant A, chloramination is normally added downstream of the 123 

coagulation process, which was the configuration when sampling campaign A-1 was 124 

conducted (Figure 1). During an extended period of warm weather when it is necessary to 125 

control algal growth during the coagulation process, chloramination can be added upstream 126 

of the coagulation process. Plant A was operated in this configuration when the sampling 127 

campaign A-2 took place (Figure 1). Unlike plants B and C, plant A is equipped with a 128 

booster pump prior to the third stage to maintain the same average flux at all three stages 129 

(Figure 1). All three systems produce reclaimed water for industrial and/or agriculture uses. 130 

Plants A and B were designed for a possible indirect potable water recycling application 131 

where high quality reclaimed water can be used to replenish an existing reservoir for drinking 132 
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water supply. Thus, the UV-H2O2 process was also installed after the RO process at these 133 

systems for the destruction of residual NDMA in the RO permeate. Similar installation using 134 

the UV-H2O2 process specifically for the removal of residual NDMA in the RO permeate can 135 

also be found elsewhere (Drewes and Khan, 2011; Plumlee et al., 2008).  136 

[Figure 1] 137 

2.2. Sampling protocol 138 

RO feed and permeate samples were collected from each RO stage (Figure 1). From each 139 

sampling point, one sample was collected from plant C in May and December 2012 and 140 

duplicate samples were collected in all other sampling events for N-nitrosamine analysis. 141 

These samples (500 mL) were stored in amber glass bottles. Deuterated N-nitrosamines 142 

corresponding to each target compound were used as isotope labelled surrogates. These 143 

deuterated N-nitrosamines were purchased from CDN Isotopes (Pointe-Claire, Quebec, 144 

Canada). A surrogate stock solution containing 100 µg/L of each deuterated N-nitrosamines 145 

was prepared in pure methanol. Immediately after sample collection, the surrogate stock 146 

solution was added to the sampling bottles to obtain 50 ng/L of each isotope labelled N-147 

nitrosamine. Analytical grade sodium thiosulfate (100 mg/L) was also added to the sample as 148 

quenching reagent to prevent any further NDMA formation during transportation and sample 149 

processing. From each sampling point, 20 mL sample was collected in plastic bottles for the 150 

analysis of cations and boron and 100 mL sample was collected in amber glass bottle for the 151 

analysis of anions and total organic carbon. Operating conditions and feed temperature of the 152 

RO systems on the sampling day are summarised in Table 1. The difference in feed 153 

temperature between the entrance and exit of each RO unit was less than 1 °C. 154 

[Table 1] 155 

2.3. Analytical technique 156 

An analytical method previously developed for the determination N-nitrosamines in drinking 157 

water and treated municipal effluent was employed (McDonald et al., 2012). The method 158 

uses solid phase extraction (SPE), gas chromatography and analysis by tandem mass 159 

spectrometry with electron impact ionization. Eight N-nitrosamines investigated in this study 160 

have molecular weight in the range from 74 to 158 g/mol (Supplementary Material Figure 161 
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S1). These eight target N-nitrosamines are hydrophilic in the operating pH range of the RO 162 

plants (pH 6-8). Further details of their physicochemical characteristics can be found 163 

elsewhere (Fujioka et al., 2012a). The use of direct isotope dilution ensures accurate 164 

quantification, accounting for analytical variability that may occur during sample processing, 165 

extraction and instrumental analysis. SPE was conducted using SupelcleanTM Coconut 166 

Charcoal SPE cartridges purchased from Supelco (St Louis, MO, USA). The concentrations 167 

of N-nitrosamines were quantified using an Agilent 7890A gas chromatograph coupled with 168 

an Agilent 7000B triple quadrupole mass spectrometer. Calibration curves were established 169 

for each N-nitrosamine with a range of 0.5-500 ng/L. The NMOR calibration curve was 170 

extended to account for the NMOR concentration of over 400 ng/L. The quantitative 171 

detection limits of this technique were 3 ng/L for NDMA, NDEA, NPIP, and NMOR, and 5 172 

ng/L for NMEA, NPYR, NDPA, and NDBA.  173 

Total organic carbon (TOC) concentration was determined using a TOC-VCSH analyser 174 

(Shimadzu, Japan). Conductivity and pH were measured using an Orion 4-Star Plus 175 

pH/conductivity meter (Thermo scientific, USA). Cation and boron concentration were 176 

determined using an Inductive Coupled Plasma - Mass Spectrometer (7500CS, Agilent 177 

Technologies, Wilmington, DE, USA) following the protocol previously reported by Tu et al. 178 

(2011). Anion concentrations were determined using an ion chromatography system 179 

(Shimadzu, Tokyo, Japan).  180 

[Figure 2] 181 

2.4. Calculation 182 

The rejection of N-nitrosamines and other solutes in each RO stage and combined RO stages 183 

was calculated using the following equations. 184 

Each stage rejection Ri [%] = 1001 











fi

pi

C

C
  (1) 185 

Overall rejection RT [%] = 1001
1













f

pT

C

C
  (2) 186 
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where i is the number of stage, Cpi is the solute concentration in the RO permeate of the stage 187 

i, Cfi is the solute concentration in the RO feed of the stage i, and CpT is the solute 188 

concentration in the combined RO permeate. 189 

3. Results and discussion 190 

3.1. Organic and inorganic constituent removal 191 

The feed waters to the three RO systems differed markedly in TOC concentration and salinity 192 

(Supplementary Material Table S2). In particular, the feed water to plant A exhibited a 193 

relatively high conductivity (salinity) at approximately 2.5 mS/cm. The sewer catchment of 194 

plant A is predominantly in a low-lying coastal area and is subjected to seawater intrusion. In 195 

fact, due to seawater ingresses, boron concentration in the feed to plant A was also higher 196 

compared to plant B and C. Despite the high feed water salinity, the quality of RO permeate 197 

at plant A was comparable to that at the other two RO systems. Most common cations and 198 

anions in the feed water can be rejected well by the RO membranes. As a result, the permeate 199 

at all three RO systems was of high quality with respect to basic water quality parameters. In 200 

agreement with the 85% water recovery (Table 1) of these RO systems, TOC and 201 

conductivity concentrations in the final concentrates were approximately six times greater 202 

than those in the feed waters (Supplementary Material Table S2). 203 

The rejections of TOC, cations (sodium, magnesium, potassium and calcium), anions 204 

(chloride, nitrate and sulphate) and boric acid by all three RO systems are summarised in 205 

Figure S3 of the Supplementary Material. Divalent ions (i.e. magnesium, calcium and 206 

sulphate) were consistently removed over 99%. On the other hand, in agreement with  a 207 

previous study by Bellona and Drewes (2007), nitrate rejection was slightly lower than that of 208 

all other ions. The rejection of boric acid was in the range of 15-30%, which is consistent 209 

with the fact that boric acid has a small molecular size and is uncharged at pH below 8 (Tu et 210 

al., 2010). The difference between the charged and uncharged solutes observed here can be 211 

attributed to the electrostatic interaction and size exclusion rejection mechanisms. In addition 212 

to size exclusion, electrostatic repulsion can also play an important role in the rejection of 213 

charged solutes by NF/RO membranes (Bellona et al., 2004).  214 
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3.2. N-nitrosamine removal 215 

3.2.1. Occurrence of N-nitrosamines in the RO feed water 216 

NDMA was detected in all RO feed water samples (Figure 2). NDMA concentrations (7-16 217 

ng/L) detected in the RO feed solutions were below or only marginally higher than the value 218 

(i.e. 10 ng/L) in the final product water stipulated by the Australian Guidelines for Water 219 

Recycling, with samples from A-2 being the only exception. In A-2, chloramine was added 220 

upstream of the coagulation process and thus resulting in an increase in NDMA formation. 221 

Results in Figure 2 are consistent with those obtained from previous studies (Farré et al., 222 

2011; Mitch et al., 2005; Plumlee et al., 2008). For typical water recycling plants where 223 

NDMA in raw water can be controlled to similar levels found in this study, reducing NDMA 224 

formation in the feed (Mitch et al., 2005) and RO filtration can be implemented to meet the 225 

guideline value without relying on an additional subsequent treatment process such as AOP.  226 

In addition to NDMA, several other N-nitrosamines (i.e. NPYR, NDEA, NPIP, NMOR and 227 

NDBA) were also detected in some but not all RO feed water samples (Supplementary 228 

Material Figure S4). NMEA, which is the second lowest molecular weight compound among 229 

the N-nitrosamines investigated here, was not detected during any sampling campaign. 230 

Surprisingly, a comparatively high NMOR concentration (177-475 ng/L) was observed in the 231 

feed water at plant C. Compared to plant C, NMOR concentrations detected in the RO feed in 232 

plants A-2 and B configurations were low. It is noted that NMOR concentrations in A-1, B 233 

and C-1 were not reported due to unsatisfactory variation between duplicate samples and 234 

poor recovery of the isotopically labelled internal standard. In fact, a sampling program 235 

conducted in plant A from 2010 to 2012 revealed low NMOR concentrations (< 21 ng/L) in 236 

the RO feed (Supplementary Material Figure S5) which indicates that a very high NMOR 237 

concentration like plant C has not been identified in plant A. Likewise, a sampling program 238 

conducted in plant B from 2009 to 2011 also showed a relatively low NMOR concentrations 239 

in the range from 9 to 57 ng/L in the RO feed (Supplementary Material Figure S5). The 240 

results reported here suggest that high NMOR concentrations in RO feed may be site specific 241 

and could relate to certain industrial dischargers. The source of NMOR appears to be site 242 

specific and further research is necessary to identify sources of NMOR within the catchment 243 

of plant C. 244 
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After each stage, concentrations of the N-nitrosamines increased to quantifiable levels due to 245 

the concentration effect leading to higher feed concentrations in subsequent stages (Figure 2). 246 

As a result, the highest N-nitrosamine concentration was consistently observed in the final 247 

RO concentrate. For example, NDMA concentrations in the final RO concentrate were two to 248 

six times higher than those in the RO feed. Likewise, NMOR concentrations in the RO 249 

concentrate were approximately six times higher than those in the RO feed.     250 

[Figure 2] 251 

3.2.2. N-nitrosamine concentrations in the RO permeate 252 

NDMA concentrations in the RO permeate were detected above the detection limit (3 ng/L) 253 

at least once in samples from each plant (Figure 3). However, most of these detections did not 254 

exceed the guideline value of 10 ng/L, again with a sample collected from A-2 being the only 255 

exception. Of the seven remaining N-nitrosamines, only NDEA, NMOR and NDBA were 256 

detected in RO permeate samples (Supplementary Material Figure S6). NMOR concentration 257 

in the RO permeate samples of plant C varied between 34 and 76 ng/L, which was 258 

comparatively higher than the other N-nitrosamines. This is because NMOR concentration in 259 

the RO feed of plant C was also higher than all other N-nitrosamines (Figure 3). Once again, 260 

NMOR concentrations in A-1, B and C-1 are noted as not available due to a large variation in 261 

analysed NMOR concentration between duplicate samples and poor recovery of the 262 

isotopically labelled internal standard. 263 

In all cases, the concentration of N-nitrosamines in the RO permeate increased in later stages 264 

due to the increased concentration in the RO feed for each stage (Figure 3). As a result, N-265 

nitrosamine concentrations in the overall RO permeate (i.e. the combined RO permeate of the 266 

first, second and third stages) were higher than those in the first stage. The results here 267 

indicate that rejection estimates obtained from laboratory-scale systems, which are operated 268 

at low water recovery, may result in an underestimation of N-nitrosamine concentrations in 269 

the RO permeate. Although the permeation of NDMA through RO membranes can be 270 

managed by a subsequent UV-H2O2 based AOP, little is known about its removal efficiency 271 

for NMOR and other N-nitrosamines. The results reported here also suggest that, in addition 272 

to NDMA, it is necessary to monitor the concentration of several other N-nitrosamines 273 

particularly NMOR in secondary treated effluent and the corresponding RO permeate.  274 
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[Figure 3] 275 

3.3. Rejections by RO membranes  276 

3.3.1. Overall rejection 277 

Overall NDMA rejections varied significantly with a range of 4-47% among the three RO 278 

systems (Figure 4). In plant A, two distinct overall NDMA rejections (36 and 4%) were 279 

observed during different sampling occasions. Plant A was operated under the same operating 280 

conditions (e.g. recovery and permeate flux) during the two sampling events (i.e. A-1 and A-281 

2), but their feed water temperature differed (19.4 and 28.0 °C) (Table 1). A previous 282 

laboratory-scale study revealed that an increase in feed temperature from 20 to 30 °C resulted 283 

in a reduction of NDMA rejection from 49 to 24% (Fujioka et al., 2012b). 284 

NDEA rejection at plant A and C varied between zero and 53% (Figure 4). This is 285 

considerably lower than the values (86-95%) reported in a recent laboratory-scale study using 286 

low pressure RO membranes and synthetic clean water solutions (Fujioka et al., 2012b). 287 

Although the mechanism underlining this phenomenon is still unknown, the results reported 288 

here indicate that RO filtration in treated wastewater can result in a significant reduction in 289 

NDEA rejection. In fact, in a laboratory-scale study Fujioka et al. (2013a) reported a 290 

considerable deterioration in NDEA rejection using tertiary effluent as feed water. Overall, 291 

NMOR rejection was high and each stage exhibited rejection ranges of 87-91% (Figure 4) 292 

which is consistent with previous laboratory-scale studies (Fujioka et al., 2013a; Fujioka et al., 293 

2012b). 294 

[Figure 4] 295 

3.3.2. Rejection at each stage 296 

In plant B, 16 inch membrane elements were used whereas 8 inch membrane elements were 297 

used in plants A and C. Thus, the hydraulic distribution of plant B can differ significantly 298 

from that of plant A and C. At plant B, a significant variation in NDMA rejection (14-78%) 299 

was observed among the three RO stages (Figure 5). Changes in the permeate flux after each 300 

filtration stage may contribute to this variation to some extent (Fujioka et al. 2012b). 301 

However, because permeate flux was not monitored in each individual stage at plant B, it was 302 

not possible to confirm this hypothesis. Rejection of N-nitrosamines was further investigated 303 
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using the two sampling events at plant A, focusing on the difference in NDMA rejection 304 

among the three stages. As RO filtration progressed, feed pH increased slightly and feed 305 

conductivity increased significantly for both sampling events (Figure 6). During the first 306 

sampling event (A-1) an increase in NDMA rejection from the first stage to third stage was 307 

observed. In general, an increase in feed conductivity (or ionic strength) results in a decrease 308 

in N-nitrosamine rejection (Fujioka et al., 2012b). However, the current study revealed an 309 

opposite trend which indicates that another factor such as membrane fouling may have been 310 

developed more extensively in later stages and may have compensated the decreased trend of 311 

NDMA rejection. On the other hand, during the second sampling event (A-2), NDMA 312 

rejections decreased as RO filtration progressed to later stages (Figure 6). The results 313 

reported here indicate that NDMA rejections among three RO stages may vary significantly 314 

even when operating conditions (i.e. permeate flux and recovery) were maintained constant. 315 

[Figure 5] 316 

[Figure 6] 317 

4. Conclusions 318 

NDMA was detected in all feed samples at the three full-scale RO trains investigated in this 319 

study. Although most other N-nitrosamines were not detected in the RO feed, several N-320 

nitrosamines became detectable as the feed was further concentrated after each filtration stage. 321 

N-nitrosamine concentrations in the final RO concentrate were up to six times higher than 322 

those in the RO feed. As a notable exception, one of the three plants exhibited high NMOR 323 

concentrations (177-475 ng/L) in the feed, resulting in high NMOR concentrations (34-76 324 

ng/L) in the permeate. In most cases, NDMA, NDEA and NDBA were detected below the 325 

Australian guideline value in the RO permeate. Overall rejection of NDMA and NDEA 326 

among the three RO systems varied significantly with a range of 4-47% and 0-53%, 327 

respectively. NDMA rejections among three RO stages also exhibited a significant variation 328 

in several cases. These rejection variations may have resulted from the difference in feed 329 

temperature and possibly membrane fouling. These findings suggest that N-nitrosamine 330 

rejection estimates derived from laboratory-scale flat-sheet membrane studies, which are 331 

operated at very low water recovery, may not be representative of full-scale operation. On the 332 

other hand, overall NMOR rejections were equally high with a range of 81-84%. The findings 333 

of this study provide insights for potential variations in N-nitrosamine rejection among 334 
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different RO systems and RO stages. Nevertheless, it is prudent to note the causes of some 335 

variations reported here were not sufficiently identified due to changes in multiple parameters 336 

during full-scale RO operation. Therefore, additional work is necessary to examine the 337 

impact of each cause (e.g. fouling and feed temperature) using a pilot- or full-scale RO 338 

systems. 339 
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