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High strain stretchable solid electrolytes

Abstract
Wearable electronic devices that can be integrated seamlessly into clothing for monitoring and feedback need
to be not only flexible, but also stretchable with low stiffness. Currently there are few solid electrolytes that are
sufficiently stretchable for wearable electronic devices. Here we report stretchable solid electrolytes that can
be elastically stretched more than 500% of their original length with ionic conductivities as high as 7 x 10(-5)
S cm(-1) and tensile breaking strengths larger than 1.5 MPa. These solid electrolytes consist of poly(methyl
methacrylate) chemical networks solvated by an electrochemically stable ionic liquid. A stretchable
supercapacitor was demonstrated by coating a stretchable solid electrolyte with carbon nanotube electrodes.
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Abstract 

Wearable electronic devices that can be integrated seamlessly into clothing for monitoring 

and feedback need to be not only flexible, but also stretchable with low stiffness.  Currently 

there are few solid electrolytes that are sufficiently stretchable for wearable electronic 

devices.  Here we report stretchable solid electrolytes that can be elastically stretched more 

than 500% of their original length with ionic conductivities as high as 7×10-5 S cm-1 and 

tensile breaking strengths larger than 1.5 MPa.  These solid electrolytes consist of 

poly(methyl methacrylate) chemical networks solvated by an electrochemically stable ionic 

liquid.  A stretchable supercapacitor was demonstrated by coating a stretchable solid 

electrolyte with carbon nanotube electrodes. 
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Highlights 

• Stretchable and flexible solid electrolyte with elastic strains larger than 500% and 

ionic conductivities as high as 7×10-5 S cm-1. 

• Stretchable and flexible supercapacitor with capacitance of 4 F g-1. 

 

Keywords 

Stretchable electronics; solid electrolyte; ionogel; ionic liquid, poly(methyl methacryate); 

supercapacitor 
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1. Introduction 

Stretchable electronics refers to stretchable components and circuitry[1].  Examples include 

electronic skin[2] which monitors body functions whilst having a compliance similar to 

human skin, soft bionic interfaces like electrophysiological sensors[3], and, stretchable 

batteries and supercapacitors[4-7]. The key to any stretchable device is the maintenance of 

electronic properties at different tensile extensions.  The extension required is application 

dependent, and varies from a few percent for a compliant neural interface to several hundred 

percent for electronic clothing. 

 

Most reported stretchable electronic devices consist of rigid electron conducting components 

mounted in a stretchable rubber film or matrix, or, mesh like constructs from non-elastic 

materials which are able to undergo large elastic deformation via localized bending[1]. 

 

Energy storage devices are an essential element of any electronic textile system. As such 

considerable attention has been paid to the development of stretchable electrodes [5, 7-9]. 

Surprisingly the development of robust stretchable electrolytes that mechanically reinforce 

the electrochemical cell in which they are located has earned relatively little attention. 

 

One approach to synthesizing stretchable electrolytes is to form a polymer network within an 

ionic liquid.  The conductivity and negligible volatility inherent to all ionic liquids make 

them ideal electrolytes [10].  For many applications, encapsulation of individual stretchable 

electrochemical cells is difficult which makes negligible volatility a necessary property. 

Several ionic liquids also exhibit a wide electrochemical window which can be exploited in 

electrochemical supercapacitors [11, 12]. 
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Ionic liquids have also been shown to be an exceptional solvent for free radical 

polymerisation[13].  For example, it is known that both high molar mass and high yield can 

be achieved relative to more common organic solvents.  It follows that a network synthesized 

in an ionic liquid should have fewer defects and superior mechanical properties in 

comparison to networks synthesized from the same polymer in common organic solvents.   

 

High compliance and flexible electrolytes have been prepared by forming polymer networks 

within a range of ionic liquids, and the resulting solids are referred to as ionogels[14-18].  

Approaches to synthesizing chemically cross-linked polymer networks within ionic liquids 

include free radical polymerisation, and, chemically crosslinking a prepolymer[18].  

Outstanding ionogels were produced by Fujii et al. exhibiting very high ionic conductivities 

(7.7-8.5 mS cm-1) and tensile breaking strains (310%-380%), but low tensile strengths of just 

15-33 kPa[18].  Although there are many reports of flexible solid ionogel electrolytes, few 

report high elastic mechanical properties, and, few have attempted to demonstrate their 

function in a stretchable electrochemical cell. 

 

We report here the fabrication of highly stretchable solid electrolytes by free radical 

polymerisation and demonstrate their application in stretchable supercapacitors. 

 

The motivation for the present work is to construct stretchable solid electrolytes with 

sufficient strength to support electrodes and eliminate the need for additional mechanical 

reinforcement.  This research will enable the development of fully stretchable 

electrochemical cells.  Here, the function of a solid electrolyte is not just an ionic conductive 

spacer sandwiched between electrodes, but also a vital mechanical element. 
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2. Method 

Stretchable transparent solid electrolytes were synthesized by free radical polymerization of 

MMA (Aldrich) with polyethylene glycol diacrylate (PEGDA) crosslinker (Aldrich) with a 

number average molar mass of 285 g mol-1 in 1-ethyl-3-methylimidazolium 

bis(trifluoromethane sulfonyl)imide (EMI.TFSI) (Australian National Fabrication Facility).  

EMI.TFSI was synthesized as described in [19] with an additional purification step of 

purging with Argon at 30°C.  The water content of the EMI.TFSI was measured by Karl 

Fisher to be ≤0.3%.  A weight ratio of MMA to EMI TFSI of 1:1 was used for all synthesis.  

Neat EMI.TFSI has a conductivity of 8×10-3 S cm-1 at 30°C[20].  Radical polymerization was 

thermally initiated (80°C) using 0.5 mol % methyl ethyl ketone peroxide (Aldrich).  

 

0.8 mm transparent thick free standing ionogel films were formed by injecting the mixed 

reagents into a mold consisting of two glass plates separated by a silicone rubber gasket.  The 

glass plates were coated with octadecyltrichlorosilane to reduce adhesion to the formed 

electrolytes.  Prior to polymerisation, the solutions were purged with nitrogen for 10 minutes 

within the moulds to reduce oxygen.  The samples were then placed in an oven at 80°C for 24 

h where polymerization took place. 

 

For mechanical testing, ionogels were cut into ISO 37 Type 3 dumbbell shape test pieces 

(gauge length 10 mm).  Samples were subjected to tensile tests with a crosshead speed of 5 

mm min-1 using an Instron 5566 universal testing machine. 

 

The ionic conductivity of the ionogels was determined by electrochemical impedance using a 

two electrode configuration.  The solid electrolytes were cut into 100 mm2 square pieces and 

then mounted between two single 100 nm thick platinum coated indium tin oxide (ITO) glass 
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electrodes that were clamped at a constant force of 156 N with a Bessey XC5TM series clamp. 

The impedance spectra were recorded from 50 mHz to 100 kHz with an amplitude of 10mV 

using a Gamry EIS 3000TM system instrument. The reported conductivity was taken at a 

frequency of 100 kHz.  Prior to all measurements, the open circuit potential was monitored in 

order to ensure the system was stable. 

 

The electrochemical stability of the ionogels was determined by cyclic voltammetry over the 

potential range of 0 V to 6 V relative to Li|Li+ at room temperature over a scan rate of 1 

mV.s-1. Solid electrolyte samples were mounted in between stainless steel and Li foil 

electrodes in a LR 2032 type coin cell configuration assembled in a glove box under an argon 

atmosphere.  

 

A symmetric stretchable supercapacitor was assembled by drop-casting a 1 mg ml-1 

dispersion of functionalized multi-walled carbon nanotubes (CNT) in dimethylformamide 

(DMF) on both sides of an ionogel with a prestrain of 30%.  Upon evaporation of the DMF, 

the CNT films function as stretchable supercapacitor electrodes. Electrical contacts to the 

CNT films were made by copper tape.  Prior to drop casting, CNT with an outer tube 

diameter of 30-50 nm and length of 10-20 µm  (Chengdu Organic Chemicals Co. Ltd.) were 

functionalized by mixing into an acid solution consisting of H2SO4 and HNO3 (3:1) using a 

sonication bath (Branson B5500R-DTH) until a suspension was formed with no CNT 

particles observed by eye.  The functionalized CNT were dispersed into dimethylformamide 

(DMF) (1 mg ml-1) by probe ultrasonication. The surface morphology of the supercapacitor 

electrodes was investigated by means of a cold-field-gun field emission microscope (FESEM, 

JEOL JSM7500FA).  Electrochemical characterisation of the supercapacitor was conducted 
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in air on the laboratory bench with the specific capacitance of the supercapacitor calculated as 

described in[21]. 

 

3. Results and discussion 

The produced ionogels were capable of undergoing extraordinary strain before break.  Their 

mechanical properties are more than adequate to mechanically reinforce a stretchable 

electrochemical cell.  The elongation to break increased whilst the elastic modulus decreased 

with an increase to the cross-linker density (Fig. 1a). Strains as large as 6× the original length 

were achieved. The engineering failure stress was greater than 1.5 MPa for all samples, and 

remained independent of cross-link density even though the molar ratio of cross-linking 

molecule to monomer was varied over an order of magnitude.  The elastic modulus was 

between 10 and 3× less than the failure stress and increased from 130 to 470 kPa as the mol 

% of crosslinker was increased from 0.5 to 5.  The gels with just 0.5 mol % crosslinker are 

likely to have a homogenous density network as the modulus was 87% of that predicted by 

rubber elasticity for a model network.  A model network assumes that there is 100% yield 

from polymerisation, and, that there are no dangling chain ends.  Clearly, the use of 0.5 mol 

% crosslinker and 0.5 mol% initiator as used here allows efficient low defect polymerisation 

to proceed.  Ionogels formed under the same conditions, but with 1 mol % initiator were 

flexible, but, exhibited much lower elongation to break.  Other reagent ratios may lead to a 

more fragile network due to a larger defect density.  Cyclic tensile tests showed that the 

samples are elastic at strains up ~ 90% of the elongation to break. 

 

The ionogels reported here exhibited the behaviour expected of a solvated polymer network.  

For example, there was no decrease in the tangent modulus prior to failure, confirming that 

yield prior to failure does not occur, unlike a similar system reported by Matsumoto et al. for 
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similar systems[22, 23].  The tensile breaking strains were more than 10× larger than those 

reported in the literature for a free radical polymerised ionogel [16, 23].  Of note, the failure 

strain for both a 1 and 0.5 mol % crosslinked ionogels was larger than the maximum failure 

strain (380%) reported by Fujii et. al. for a polymer network formed from prepolymer[18].  

Although a breaking strain of 600% is more than required by most applications, there is no 

apparent reason why it could not be increased further by decreasing the crosslinker 

concentration below 0.5 mol %.  The elastic modulus of the ionogels was in the same range 

as that reported for similar systems , but almost 2 orders of magnitude higher than that 

observed for a prepolymer system with a much higher ionic liquid volume fraction. 

 

Gels with a network structure containing few defects are anticipated to have high mechanical 

strength[24].  Given the observed high modulus relative to a model network, and, the 

observed high breaking strains it is complicit that the breaking tensile stress should be high.  

The breaking strength was several times larger than that reported for similar systems[23].  As 

expected by the large difference in ionic liquid volume fraction, the breaking stress is also 

more than 2 orders of magnitude larger than those reported by Fujii et. al. for their high strain 

preopolymer ionogels[18].  Gayet et. al[17]. described polymer-nanocomposite ionogels with 

breaking strains and tensile strengths comparable to those reported here (>200% and >3 MPa 

respectively), however, their system is only elastic at small strains. 

 

Impedance measurements of the ionogels demonstrate its function as an electrolyte (Fig. 1b).  

The ionic conductance of the ionogels varied between 2×10-5 and 7.5×10-5 S/cm.  The ionic 

conductivity with 5 mol % crosslinker was less than half that of samples with 0.5 to 2 mol % 

crosslinker.  Generally cross-linking restricts the motion of the polymer backbone and so 

subsequently may decrease the ionic conductivity. 
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All of the ionogels were electrochemically stable up to 4.9 V relative to Li|Li+.   At potentials 

higher than 4.9 V a large increase in the current was observed where the electrolyte 

decomposes.  The electrochemical window is sufficiently large for many applications 

including Li-ion batteries and supercapacitors. 

 

Smooth CNT film electrodes were achieved on the solid electrolyte at a prestrain of 30% at 

which they were deposited (Fig. 2a).  When the prestrain was released, the CNT film 

exhibited a buckled structure due to a difference in the Poisson’s ratio of the CNT films and 

the stretchable electrolyte (inset of Fig. 2b).  Symmetric stretchable supercapacitors exhibited 

nearly rectangular cyclic voltammograms at scan rates of 5 (Fig. 2c) and 10 mV s-1, 

indicative of highly reversible electric double layer charge-discharge response. The 

supercapacitor demonstration confirms that the ionic conductivity of the solid electrolyte is 

sufficiently high for supercapacitor applications. The buckled CNT film retained most of its 

electrochemical activity. It is apparent that the rectangular shape of the cyclic voltammogram 

at 0 % strain is distorted relative to that at 30% strain indicating an increased cell resistance.  

It is likely that the electronic conductivity of the CNT films decreases when the initial 

prestrain is released. A potential window of 1 V was applied to the supercapacitor as it was 

tested in air and larger potential windows exhibit electrochemical events associated with 

oxygen and/or water.   An inert atmosphere is required to fully utilize large electrochemical 

window of the ionogel.  

 

In the as prepared condition at a scan rate of 5 mV s-1 the supercapacitor delivered a 

capacitance of 6.9 F g-1 of CNT. A slightly lower capacitance of 4.0 F g-1 of CNT was shown 

for the buckle-structured supercapacitor at the same scan rate. Following 50 stretching cycles 
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from 0 to 30% strain, and the capacitance slightly decreased to 4.0 and 3.8 F g-1 at 0% and 

30% strain respectively. These results clearly demonstrate that the solid stretchable 

electrolyte can function as a supercapacitor electrolyte between suitable electrodes.  
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4. Conclusions 

Very high strain, moderate strength stretchable ionogels were produced. The ionogel 

compliance and elongation at break are easily manipulated by changing crosslinker 

concentration during synthesis.  These ionogels exhibited ionic conductivities as high as 

7×10-5 S cm-1, with a stretchable super capacitor being demonstrated.  These ionogels are an 

ideal solid electrolyte platform for stretchable electrochemical cell applications including 

electronic skin and textiles.  Key properties of the solid electrolytes are negligible volatility 

and sufficient mechanical properties to reinforce freestanding film electrochemical cells.  

Application of these stretchable electrolytes is currently limited by development of 

stretchable electrodes. 
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Figure Captions 

 

Figure 1: (a) Tensile test, and, (b) electrochemical impedance studies of ionogels 

prepared with different crosslinker concentrations.  

 

 

Figure 2.  SEM images of the top surface of a CNT coated ionogel as prepared at 30% 

strain (a) and (b) after relaxation to 0% strain.  Cyclic voltammograms of symmetric 

supercapacitors scanned at 5 mV s-1 at 0% and 30% strain before (c) and after 50 

stretching cycles at 30% elongation.  
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