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ABSTRACT: Cryptomelane-type K0.25Mn2O4 material is prepared via a template-free, one-step 

hydrothermal method. Cryptomelane K0.25Mn2O4 adopts an I 4/m tetragonal structure with a 

distinct tunnel feature built from MnO6 units. Its structural stability arises from the inherent 

stability of the MnO6 framework which hosts potassium ions, which in turn permits faster ionic 

diffusion, making the material attractive for application as a cathode in lithium-ion batteries. 

Despite this potential use, the phase transitions and structural evolution of cryptomelane during 

lithiation and delithiation remains unclear. The coexistence of Mn3+ and Mn4+ in the compound 

during lithiation and delithiation processes induce different levels of Jahn-Teller distortion, 

further complicating the lattice evolution. In this work, the lattice evolution of the cryptomelane 

K0.25Mn2O4 during its function as a cathode within a lithium-ion battery is measured in a 

customized coin-cell using in-situ synchrotron X-ray diffraction. We find that the lithiation-

delithiation of cryptomelane cathode proceeds through a solid-solution reaction, associated with 

variations of the a and c lattice parameters and a reversible strain effect induced by Jahn-Teller 

distortion of Mn3+. The lattice parameter changes and the strain are quantified in this work, with 

the results demonstrating that cryptomelane is a relatively good candidate cathode material for 

lithium-ion battery use. 

KEYWORDS: In-situ lattice evolution; lithium ion battery; cathode; Jahn-Teller effect; strain. 
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1. INTRODUCTION 

The search for cathode materials for lithium-ion batteries that are made from low cost 

components, are environmental friendly, and safe, alongside meeting performance requirements 

of high energy and power densities and cycling stability, is still a challenge.1,2 Manganese oxides 

are well-studied materials but are not very well-known for their properties as cathodes in lithium-

ion batteries.3,4 Nevertheless, for all types of MnO2 compounds, during lithiation Mn ions 

dynamically change oxidation states between Mn4+ and Mn3+, often resulting in mixed-valent Mn 

as determined through ex situ studies.5 Owing to the high-spin configuration of Mn3+ consisting 

of four unpaired electrons with parallel spin, the atomic arrangement in MnO2 compounds is 

distorted from ideal symmetrical packing by the cooperative Jahn-Teller effect as a result of the 

Mn3+.5,6 The Jahn–Teller distortion of Mn3+ lead to an asymmetric deformation of Mn3+O6 

octahedra during MnO2 lithiation-delithiation that can cause irreversible capacity fading during 

cycling. It has also been demonstrated that alkaline or alkaline-earth ions can be introduced and 

hosted in cathode materials, enhancing their electrochemical performance.7,8 This enhancement 

is probably due to structural stabilization during the lithium insertion/extraction process in 

combination with an increased interlayer spacing, acting to increase the ion diffusion-rate and 

accessible volume for lithium-ions in such materials.7-10 However, the interplay between the 

alkaline ions and lithium ion migration in the material remains unclear. 

Cryptomelane-type K0.25Mn2O4 is a member of the manganese-oxide family, adopting an I4/m 

tetragonal structure with the MnO6 framework featuring pore tunnels, similar to α-MnO2. 

Cryptomelane-type materials have been prepared by different approaches, which can result in 

different morphology, particle size, and distributions.11-16 Although cryptomelane was originally 

developed and used as a molecular sieve in the field of heterogeneous catalysis, harnessing 
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 4

advantageously the tunnel structural feature,12,14,15 it is also a potential cathode material for 

lithium-ion battery technology because of its inherent structural stability induced by the MnO6 

framework with hosted potassium ions, which in turn permits faster ionic diffusion.16 A crystal 

structure of cryptomelane is shown in Figure 1. We recently have investigated the 

electrochemical properties of K0.25Mn2O4 microclusters assembled from single-crystalline 

nanofibers and found this material can be used as a cathode in lithium rechargeable batteries.16 A 

mechanism to describe the reversible insertion/extraction of lithium in the K0.25Mn2O4 cathode 

during discharge/charge was also proposed based on X-ray photoemission spectroscopy (XPS) 

results.16 

0.25 2 4 0.25 2 4K Mn O Li e Li K Mn Oxx x −−−−+ + →+ + →+ + →+ + →       

(First discharge process)       (1) 

0.25 2 4 - 0.25- 2 4Li K Mn O Li K ( )e Li K Mn Ox x y my m y m −−−−− − − + →− − − + →− − − + →− − − + →       

(First charge process)        (2) 

- 0.25- 2 4 - 0.25- 2 4Li K Mn O Li e Li K Mn Ox y m x y z mz z −−−−
+++++ + →+ + →+ + →+ + →      

(Reversible electrochemical reaction)      (3) 

When x Li+ ions are intercalated into the K0.25Mn2O4 electrode during the first discharge (Eq. 

1), y Li+ ions, together with m K+ ions (Eq. 2), are de-intercalated from the cathode in the 

corresponding first charge process. Since K+ is extracted from the electrode during first charge, 

this creates some vacant active sites in the electrode which are available for z Li+ in the 

following discharge process (Eq. 3). This results in increasing capacity over the course of 

cycling.  
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Figure 1. Crystal structure of cryptomelane KxMn2O4 showing tunnel structure along the (001) 

that allows fast diffusion via the 4e site. The red and light-blue balls are oxygen and manganese 

ions, respectively.  The balls with 3-quarter white and 1-quarter purple denote the potassium ions 

and vacancies at 4e site that allows lithium ions diffusion.  

 

As both K+ and Li+ can occupy the 4e site in the crystal structure of K0.25Mn2O4, it is expected 

that the amount of Mn ions in the 3+ valence state will increase during lithiation and decrease 

during delithiation, to maintain charge neutrality. Mn3+ gives rise to Jahn-Teller distortion and 

consequently strain in the electrode. Assuming non-uniform strain as a result of Jahn-Teller 

distortion, i.e. non-uniform over the crystal, the strain can be quantified during a powder 

diffraction experiment through the observation of peak broadening. Stokes and Wilson suggested 

that the weighted average strain <ε> can be expressed as: 

θ
ε

tan

B
=         (4) 

where B is the integral breadth of the reflection and can be derived from the full-width at half 

maximum (FWHM) using standard peak-fitting.   
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FWHM
2ln4

2/1

×






=
π

B       (5) 

In addition, Vegard’s law is an approximate empirical relationship which leads to 

a linear relation between lattice parameter and the concentration of a “guest” element of the 

crystal structure.17 The expansion and contraction of the lattice parameters a and c can therefore 

be related to the lithium (and also potassium) concentration during cycling if the reaction 

mechanism taking place is a solid-solution and follows Vegard’s law. Moreover, the volume of a 

tetragonal structure, such as cryptomelane, is the product of the square of lattice parameter a 

(proportional to the tunnel size) and the lattice parameter c (height of the rectangular prism). As 

shown in Figure 1, the rectangular prism has a significant smaller height, providing a short 

diffusion path to lithium ions diffusion along (001), and a Mn-O framework, supporting the 

structural stability against lattice deformation during lithiation and delithiation.  

To the best of our knowledge, the phase transitions and structural evolution of cryptomelane 

during lithiation and delithiation still remain unclear. Although it can be assumed from the 

structure that lithium insertion and extraction follows a 1-dimensional pathway along the c-

direction, some fundamental atomic level questions such as the expected anisotropic change in 

the lattice and MnO6 octahedra distortion as expected from the Jahn-Teller distortion common 

for MnO2 materials5,6 remain a mystery. Moreover, the contribution from the potassium ions in 

the lithium insertion/extraction mechanism during cycling may provide insight on how materials 

like cryptomelane and cathode compositions in general can be optimised through alkali-ion 

addition. In this work, the lattice evolution of the cryptomelane K0.25Mn2O4 and the strain 

induced by Jahn-Teller distortion of Mn3+ during its function as a cathode within a lithium-ion 

battery is quantified using in-situ synchrotron X-ray diffraction.  
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2. EXPERIMENTAL SECTION 

Manganese (II) acetate tetrahydrate (Mn(C2H3O)2·4H2O) 99%, oxone monopersulfate 

compound (2KHSO5·KHSO4·K2SO4), and potassium nitrate (KNO3) all from Sigma-Aldrich Co. 

Ltd were used as starting materials for the cryptomelane  synthesis and all reagents were used 

without any further purification. Nanofiber microclusters of cryptomelane-type manganese oxide 

(K0.25Mn2O4) were prepared via a template-free, one-step hydrothermal method.15 Manganese 

(II) acetate tetrahydrate (0.2 g), potassium nitrate (0.165 g), and oxone monopersulfate (1.5 g) 

compound were dissolved and mixed in de-ionized water and the resultant mixture was 

transferred to an autoclave and kept in an oven at 80 °C for 20 hours. After the hydrothermal 

process, the product was washed with de-ionized water, centrifugally separated and dried at 60 

°C in vacuum. The microstructure of the as-prepared sample was characterized by XRD (GBC 

MMA diffractometer) with CuKα radiation at a scanning rate of 2° min–1 in the 2θ range of 10-

80°. The cryptomelane structure was refined against the XRD data using the structural model 

adopting I 4/m symmetry18 using Rietica version 1.7.7.19 The as-prepared sample was also 

examined using field-emission SEM (JEOL JSM-7500FA) and TEM (JEOL 2011 200 kV with a 

JEOL energy-dispersive X-ray spectroscopy detector (EDS) and a JEOL EDS software analysis 

system).  

A customized CR2032 coin cell was designed and made were the working electrodes were 

prepared by mixing as-prepared K0.25Mn2O4 (75 wt.%) with carbon black (15 wt.%) and  

polyvinylidene difluoride (10 wt.%, PVdF, Sigma-Aldrich) binder in anhydrous N-methyl-2-

pyrrolidinone (NMP, Sigma-Aldrich, 99.5%) to form a homogeneous slurry. The slurry was 

uniformly pasted onto aluminum foil before being dried in a vacuum oven at 100 °C for over 12 

hours, and finally pressed prior to the assembly of the coin cell. A CR2032 coin-type cell using 
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 8

the K0.25Mn2O4 working electrode, Li foil as the counter electrode, a microporous polypropylene 

film as the separator, and 1 M LiPF6 in a 1:1 (v/v) mixture of ethylene carbonate (EC) and 

diethyl carbonate (DEC) as the electrolyte, was assembled in an Ar-filled glove box (H2O & O2 

< 0.1 ppm, Mbraun). Holes for permitting synchrotron beam transmission were punched in the 

top and bottom casing of the coin-cell that were then sealed by kapton tape and wax to protect 

the contents of the cell from the air. The cell was galvanostatically charged and discharged over 

a voltage range of 1.5 – 4.2 V vs. Li at constant current of 0.5742 mA (equivalent to 0.1C) 

during the data collection. SXRD experiments were conducted at the Powder Diffraction 

beamline at the Australian Synchrotron where data were collected every 150 seconds during 

battery cycling. Due to the breadth and subsequent overlap of the phase reflections as a result of 

the small particle size, the lattice response was extracted from a Rietveld calculated fit where the 

structure was not refined, avoiding unambiguity in the indexing due to constraint of the 

reflection intensities. To further justify this result, the lattice parameters calculated from the 

Rietveld method were reconciled with results from single-peak fitting analysis. Single-peak 

fitting was performed using the Large-Array Manipulation Program (LAMP)20 and sequential 

Rietveld refinement was undertaken using Fullprof with visualization in WinplotR.21,22 The 

refineable parameters included the background coefficients, peak shape parameters, zero-shift, 

oxygen positional parameters, and isotropic atomic displacement parameters for single-pattern 

refinements (at OCV, discharge states and charge state). The zero-shift, peak-shape parameters 

(except W), oxygen positional parameters, and isotropic atomic displacement parameters are 

fixed during a highly constrained sequential refinement. The figures of merit for the sequential 

refinement include the Bragg statistical reliability factor (RB), the weighted profile factor (Rwp), 
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 9

the expected R parameter (Rexp), and the goodness-of-fit (χ2, defined as the square of the ratio of 

Rwp/Rexp), and are presented in Table S1. 

 

 3. RESULTS AND DISCUSSION 

Rietveld analysis of the X-ray powder diffraction (XRD) pattern of the as-prepared K0.25Mn2O4 

microclusters (Figure S1) indicate that tetragonal (I4/m) K0.25Mn2O4 is exclusively observed. 

The crystallographic details of the phase are presented in Table 1. The broad peaks in the X-ray 

pattern suggest a small crystallite size. Gaussian fitting of the K0.25Mn2O4 130 reflection at 2θ = 

28.69° reveals the full-width at half-maximum (FWHM) to be 1.154(6)°, indicating a mean 

crystallite size of ~70.5 Å (7.05 nm), calculated using the Scherrer equation.23 The particle size 

and morphology of the as-prepared sample were also investigated using scanning electron and 

transmission electron microscopy (SEM and TEM, respectively). The micrographs are shown in 

Figure 2 (a - d). Each particle is fiber-like, with individual particles forming a spherical 

microcluster as a secondary particle. The fiber-like particles have a diameter of about 6-8 nm 

which agrees well with the broad peaks observed in the XRD and the corresponding calculated 

mean crystallite size. Due to the nano particle size of the material, we believe synchrotron might 

be more superior in resolving the high background and broad peak shapes, than neutron-based 

techniques, although a successful case on similar material – Li(Co0.16Mn1.84)O4 cathode using in-

situ neutron diffraction has been demonstrated.24   

In situ synchrotron X-ray powder diffraction (SXRD) patterns from a customized coin-cell 

containing the cryptomelane cathode in a selected 2θ region are presented in Figure 3. In 

addition to the cryptomelane phase, the reflections of the aluminum current collector (at 2θ  ~ 

20.5, 23.7, and 33.8°) and a broad feature from carbon (2θ  ~11.3°) are also detected. We find no 
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 10

evidence for a two phase reaction of the cryptomelane during charging and discharging as 

supported by the lack of peak splitting or the emergence of new peaks, indicating that the 

cryptomelane undergoes a solid-solution transition accompanied by lattice changes. Sequential 

Rietveld refinements of the cryptomelane structure obtained from the XRD data using SXRD 

data where the strong Al reflections were excluded was performed. The Rietveld calculated 

profile fit for the first in situ SXRD dataset is shown in Figure 4. The lattice parameters were 

found to be a = b = 9.9806(5) Å and c = 2.8785(2) Å at an open-circuit voltage (OCV) of 2.76 V 

vs. Li. We note that the lattice parameters obtained for the cathode at this OCV are higher than 

those of the as-prepared powders. It is not unusual to see the different lattice parameters and 

from the SXRD results that the cryptomelane expand upon lithiation, we conclude that at OCV 

certain amount of lithium ions have intercalated into the structure through chemical lithiation 

achieved by the surrounding of the active material in the lithium-containing acidic electrolyte 

prior to cell cycling.  

 

Table 1. Crystal structure of cryptomelane K0.25Mn2O4 obtained from XRD data.  

Atom Valence Wyckoff 
site 

x y z Atomic 
Displacement 
Parameter 
(Å2) 

Site 
Occupancy 
Factor 

K +1 4e 0 0 3/8 8.5(15) 0.25 

Mn +4 8h 0.351(1) 0.167(1) 0 2.2(1) 0.75 

Mn +3 8h 0.351(1) 0.167(1) 0 2.2(1) 0.25 

O -2 8h 0.132(1) 0.194(1) 0 1.7(6) 1 

O -2 8h 0.516(2) 0.188(1) 0 1.4(4) 1 
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 11

 

Figure 2. SEM micrographs of KxMn2O4 morphology showing (a) the cluster structure and (b) 

distribution of the whisker-like individual KxMn2O4 particles. (c) TEM micrograph of the cluster 

and (d) high-resolution image of the nano-whisker, inset shows the lattice fringe spacing of 0.49 

nm, the KxMn2O4 020 reflection. 
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Figure 3. Stack of selected synchrotron X-ray diffraction patterns of the customized cell 

containing KxMn2O4 cathode and Li anode collected at various states of charge. The vertical bars 

show Bragg positions for the KxMn2O4 phase.   

Page 12 of 45

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 13

 

Figure 4. Rietveld-refined profile fit to SXRD data collected at OCV. The crosses (+) represent 

the experimental data, the red solid-line is the calculated pattern, the green line is the difference 

between the experimental data and the calculated pattern, and the blue bars at the bottom show 

Bragg positions for the KxMn2O4 phase. The grey areas denote excluded regions where Al 

reflections are located. 

 

The variations in lattice parameters and lattice volume upon lithiation and delithiation are 

shown in Figure 5. The lattice parameters a (= b) and c change to accommodate lithium ions. By 

implementing Vegard’s law,17 the expansion and contraction of the lattice parameters a and c can 

be treated as a result of varying lithium occupation, thought to occur at 4e sites in the structure, 

during cycling. During discharge (lithiation) it is expected that the lithium ions increasingly 
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occupy the potassium or vacant sites with time. Given that the number of 

intercalated/deintercalated lithium ions are linearly proportional to the apparent capacity (or to 

time at a constant applied current), the lattice parameters a and c can be further considered as 

related to capacity. The lattice parameters and volume of the cryptomelane cathode alongside 

their rate of change, obtained during charge-discharge cycling of the battery are presented in 

Table 2. The capacity achieved in the discharge and charge processes is also calculated and 

shown in Figure S2.   

 

Table 2. Cryptomelane lattice evolution during the lithiation-delithiation-lithiation process.  

Process Lattice Parameter 
a at the process 
start and end  (Å) 

Lattice 
parameter  

c at the process 
start and end (Å) 

Volu
me 
chang
e 

(Å3) 

Rate of lattice 
change* 

(Å/mA h) 

Rate of 
Volum
e 
change
* 

(Å3/m
A h) 

Curre
nt 
applie
d 
(mA) 

 Initial Final Initial Final  a c   

First 
lithiatio
n 

9.9717(
4) 

10.0377
(1) 

2.8738
(2) 

2.9201
(5) 

8.47(
7) 

2.49739
(3) 

0.14315
(8) 

28.739
(8) 

-
0.574
2 

First 
delithiat
ion 

10.0377
(1) 

10.0107
(8) 

2.9201
(5) 

2.8815
(3) 

5.45(
8) 

0.10972
(5) 

0.17241
(3) 

23.761
(3) 

+0.57
42 

Second 
lithiatio
n 

10.0107
(8) 

10.0353
(9) 

2.8815
(3) 

2.9233
(5) 

5.63(
9) 

0.10763
(6) 

0.14315
(9) 

20.625
(9) 

-
0.574
2 

* The rate of change is determined by linear least-squares linear to the time evolution of the 
lattice parameter. Fit profiles and figures of merit are shown in Figure S3.   
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Figure 5. Lattice parameters and volume of cryptomelane as determined from the sequential 

Rietveld refinement of the KxMn2O4 structure upon lithiation and delithiation using SXRD. The 

discharge-charge profile is also shown.   

 

As expected, we observe a lattice expansion upon intercalation of lithium ions into the 

cryptomelane structure. The lattice parameters are correlated to both the diameter and length of 

the pore channels though to accommodate lithium diffusion. During initial lithiation of a fresh 

cryptomelane-containing battery, lithium ions intercalate and occupy the tunnel vacancies while 

the potassium ions are still present. According to Zhang et al.16 at this point mixed Li/K 

occupation exists at the 4e sites, contributing to the increase in lattice parameters and volume 

that we observe. The change in lattice parameters between the charges and discharged state 

during the first lithiation are 0.66(5)% and 1.61(5)% for a and c parameters, respectively, and the 

change in the lattice volume for this process is 2.96(8)%, ranging from a maximum of 294.22(7) 

Å3 to a minimum of 285.75(2) Å3. From the absolute changes in lattice parameters, the lithium 
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intercalation at the 4e site induces a larger expansion of the ab plane relative to the ac or bc 

planes. A schematic diagram illustrating the change of ab plane of the unit cell on going from the 

OCV discharged state to the charged state is shown in Figure 6 (close-up views of the crystal 

plane are shown as subfigure). The lattice parameters are also affected by the cooperative Jahn-

Teller distortion, as a result of the changing ratio of Mn3+ to Mn4+, which is higher upon 

lithiation. With the potassium still in place, the number of lithium ion that can be intercalated is 

restricted, restraining the Jahn-Teller distortion at the expense of capacity. 
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Figure 6. Schematic illustration in the ab plane of the Lix-yK0.25-mMn2O4 at various states. The 

crystal structures of the Lix-yK0.25-mMn2O4 are plotted based on the Rietveld refinement result 

using selected patterns. The bottom figure details the 4e-site occupation in the structure and the 

variation of the tunnel size. Bond lengths and distorted angle are measured and summarized in 

Table S2. 

On delithiation, potassium ions are partially extracted along with lithium ions and both are 

dissolved in the electrolyte.16 As a consequence, the lattice contracts to 288.77(5) Å3, which is 

still larger than the OCV lattice and this appears to be at odds with potassium removal from the 

structure (e.g. the removal of all lithium and some potassium ions should result in a smaller 

lattice than that observed at OCV, following Vegard’s law). An explanation for the larger lattice 

at apparently lower lithium and potassium concentrations is that a significant amount of lithium 

remains in the structure. By assuming some potassium extraction16 and considering the larger 

lattice of the electrode at this state, the composition of the electrode is theoretically predicted to 

be Lix-yK0.25-mMn2O4 with x > y + m. The remaining lithium in the structure is also evidenced by 

the measured capacity loss, where we find 0.65 mA h (2.43 ×10-5 mol lithium ions) for the first 

lithiation but only 0.59 mA h (2.20 ×10-5 mol lithium ions) for the first delithiation. Morever, the 

variation of the a and c lattice parameters differ from each other. The lithium (and potassium) 

extraction from 4e sites result in a relative larger contraction of the lattice parameter c, in 

comparison to the a and b parameters. The non-uniform contractions may suggest that the 

capacity is not only carried by delithiation, but also potassium extraction from the host structure. 

Additionally, the rate of change of the a lattice parameter during the second lithiation is 50% less 

than that of the first lithiation. In other words, with a lower potassium content in the electrode, 
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the lithium insertion and extraction exhibits a greater influence on the c than on the a lattice 

parameter.  

On second lithiation, the number of remaining potassium ions is supposedly unchanged in the 

structure and no further potassium ions are inserted. Upon lithium insertion, the cryptomelane 

structure expands with increasing lithium occupation at the 4e site. The rate of change of the 

lattice parameter a is nearly the same as that of the previous delithiation process, indicating a 

greater stability in the reversibility of lithium insertion/desertion in the structure, with the 

remaining potassium in the cathode acting effectively as a spectator to these processes. The 

monotonic change in the lattice parameter a with lithium occupation is expected as a result of the 

stable MnO6 framework, allowing for good cycling stability during charge-discharge. 

Nevertheless, the least-squares residual of linear fits to the variation of lattice parameter c with 

lithium occupation, especially at high lithium concentrations, indicates a deviation from linearity, 

suggesting that the lattice distortion is more pronounced at higher Mn3+ (and Li+) concentrations. 

As shown in Table 2, the variation of the lattice parameter a, related to the size of the tunnels 

available for ionic diffusion, increases linearly with the amount of intercalated lithium ions. A 

figure detailing the 4e-site occupation in the structure and the variation of the tunnel size are 

shown in Figure 6. Considering Vegard’s law, the non-linearity in the relationship between 

lithium content and the lattice parameter c suggests the present of lattice distortion caused by a 

change in bonding, likely as a result of Jahn-Teller effects. These effects can be considered in 

two parts of the lithiation processes – the first 2/3 and the last 1/3 of the process, forming two 

different reaction mechanisms of lithium intercalation in cryptomelane structure (see Figure 

S3b). Here we see an increase in the non-uniformity of Jahn-Teller distortion, accompanied by 
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anisotropic expansion and contract of the a and c axes that suggest that the Jahn-Teller induced 

strains vary in different directions.  

The anisotropy of the expansion is clearly revealed from single-peak fitting of the SXRD data. 

The results of Gaussian peak fitting to the cryptomelane 130 and 121 reflections are presented in 

Figure 7 (a-c). As expected, these reflections shift to lower angles during discharge (lithiation) 

and to higher angles during charge (delithiation), as consistent with the lattice parameter changes 

determined above. Interestingly, the intensity (height) of both reflections decreases with the 

amount of intercalated lithium, however, simulated patterns with lithium occupancy at the 4e 

sites suggest that the integrated intensity should increase slightly (Figure 8). We first focus on 

the cryptomelane 130 reflection, where calculations show that extraction of K+ from the structure 

results in a decrease in reflection intensity. Comparison of the 130 reflection intensity in the 

SXRD data between the two discharged states (at 68 and 186 min) reveals a significantly lower 

reflection intensity at 186 min than at 68 min, further evidencing the extraction of K+ ions during 

the first delithiation process. Regarding cryptomelane 121 reflection intensity, the decrease is 

compensated by the increase of FWHM, providing a nearly unchanged integrated intensity. It 

notes that the simulated patterns are calculated at fixed peak-shape parameters. These reflections 

broaden, which is consistent with strain induced by the presence of an increasing amount of 

distorted Mn3+O6 octahedra as a result of Jahn-Teller effects during lithiation. As the Mn3+ 

concentration changes during cycling, the degree (and strength) of Jahn-Teller effects also vary. 

As a consequence, there is significant strain during lithium insertion and desertion that is 

commensurate with MnO6 octahedral distortion (see Figure 6). The strain-induced peak 

broadening is modeled and quantified using the reflection FWHM as shown in Equation 4 and 

the results are shown in Figure 9. The strain as measured using the cryptomelane 130 and 121 
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reflections increases and decreases with the lithium occupation during lithiation and delithiation, 

respectively. Moreover, the variation of strain along the [121] direction is found to be 

significantly larger than that of the [130] direction during lithiation and delithiation. The 

reversibility of the strain suggests that the cryptomelane cathode will exhibit good cycling 

stability, a very useful property for lithium ion battery application, despite the significant Jahn-

Teller distortion. 
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Figure 7. Single-peak fitting results showing the variation of (a) position, (b) intensity, and (c) 

FWHM of the cryptomelane 130 and 121 reflections. 
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Figure 8. Calculated XRD patterns of Lix-yK0.25-mMn2O4 at a wavelength of 0.8352 Å (that used 

in the SXRD experiments) using a fixed peak shape. Reflections are labeled. Offsets are applied 

for both x and y axes for ease of comparison.  
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Figure 9. Variation of Jahn-Teller distortion-induced strain upon cycling.  

 

4. CONCLUSIONS 

The structural evolution of the cryptomelane cathode in a custom-made lithium ion battery 

during cycling (lithiation and delithiation) is investigated using in-situ synchrotron X-ray powder 

diffraction. A solid-solution reaction mechanism and an associated Jahn-Teller distortion-

induced strain were found to take place when lithium ions intercalate into and deintercalate from 

the cryptomelane. Details of the structural evolution of the cryptomelane are gained from both 

single-peak fitting and Rietveld analysis. Both a and c lattice parameters expand with lithium 

intercalation and contract with lithium deintercalation. The variation of the lattice parameter a 

reveals that the size of tunnels in the cryptomelane structure available for lithium diffusion 

increases linearly with the amount of intercalated lithium. Further, deviation from linearity in the 

relationship between lithium content and the lattice parameter c suggests the present of lattice 

distortion as a result of reversible Jahn-Teller distortion, which we quantify in terms of the non-
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uniform weighted average strain along the [130] and [121] directions in the structure. The 

variation of the strain along the [121] direction is found to be significantly larger than that of 

[130] direction during lithiation and delithiation, in good agreement with both the deviation from 

linearity observed for the lattice parameter c and the capacity measurement (lithium 

concentration). Taken together, these results suggest that the cryptomelane K0.25Mn2O4 

microclusters we study are an excellent candidate cathode material for use in lithium-ion 

batteries. 
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Laboratory XRD pattern of the as-prepared K0.25Mn2O4 microclusters and profile fitted using an 

I4/m structure (Figure S1), discharge-charge profiles of the K0.25Mn2O4 cathode within a voltage 

window of 1.5 and 4.2 V (vs. Li) (Figure S2), linear least-square fits to the time evolution of 

lattice parameters (Figure S3), figure-of-merits for sequential refinement results (Table S1), and 

bond lengths and distorted angle of Mn-O octahedron (Table S2).  This material is available free 

of charge via the Internet at http://pubs.acs.org. 
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