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Generation of hydrogen peroxide-resistant murine neuroblastoma cells: a
target discovery platform for novel neuroprotective genes

Abstract
Oxidative stress has been suggested to play an important role in the pathogenesis of various
neurodegenerative diseases including Alzheimer’s disease (AD). Hydrogen peroxide (H2O2), one of the main
reactive oxygen species, is converted into the highly toxic ·OH radical in the presence of redox-active
transition metals, which then oxidises nucleic acids, lipids and proteins, leading to neurodegeneration and cell
death. There is an urgent need to gain more knowledge about relevant therapeutic targets to combat oxidative
stress and it neurotoxic effects, and how this knowledge can be utilized to develop novel neuroprotective
therapies for AD. One way to identify new mechanisms combating oxidative stress was via the creation of
H2O2-resistant cell lines and identification of the mechanisms responsible for their resistance. However, in
most cases catalase overexpression or increased glutathione content was identified as the primary mode of
H2O2 resistance in these cell lines. In this study, we have generated six different resistant neuronal cell lines or
populations (from the same original murine Neuro2a neuroblastoma line) by exposing cells to increasing
concentrations of H2O2 and performing continuous selection for survivors over a period of several months,
which appear to have acquired H2O2 resistance based on other, novel mechanisms. These six populations
showed a significant, but differential resistance against H2O2 when compared with the parental cell line.
Using combinations of catalase-, glutathione synthesis- and glutathione peroxidase-inhibitors it was shown
that the increased resistance of Neuro2a-HR cells is not solely based on an increased activity of catalase or the
glutathione system, suggesting that their resistance might be based on yet unknown, novel defence
mechanisms.

Keywords
generation, neuroprotective, hydrogen, genes, peroxide, resistant, murine, neuroblastoma, cells, target,
discovery, platform, novel, CMMB

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details
Maczurek, A. E., Wild, R., Laurenti, D., Steele, M. L., Ooi, L. & Munch, G. (2013). Generation of hydrogen
peroxide-resistant murine neuroblastoma cells: a target discovery platform for novel neuroprotective genes.
Journal of Neural Transmission, 120 (8), 1171-1178.

Authors
Annette E. Maczurek, Rebekka Wild, Daunia Laurenti, Megan L. Steele, Lezanne Ooi, and Gerald Munch

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/1035

http://ro.uow.edu.au/smhpapers/1035


1 | P a g e  
 

GENERATION OF HYDROGEN PEROXIDE RESISTANT MURINE 

NEUROBLASTOMA CELLS – A TARGET DISCOVERY PLATFORM FOR NOVEL 

NEUROPROTECTIVE GENES  

 

Annette E. Maczurek, Rebekka Wild, Daunia Laurenti, Megan L. Steele, Lezanne 

Ooi, Gerald Münch* 

Dept. of Pharmacology, School of Medicine, University of Western Sydney, 

Campbelltown, Australia 

*Molecular Medicine Research Group, University of Western Sydney. Australia 

 

Keywords: Hydrogen peroxide, oxidative stress, resistance, glutathione peroxidase, 

catalase  

 

 

Abbreviated title: HYDROGEN PEROXIDE RESISTANT NEURONAL CELL LINES 

 

Address for correspondence and reprints: 

Prof Gerald Münch,  

Dept. of Pharmacology,  

School of Medicine, University of Western Sydney,  

Locked Bag 1797, Penrith South DC 1797, Australia 

Tel.: ++61 2 4620 3814, Email: g.muench@uws.edu.au 

 

  



2 | P a g e  
 

 

Introduction 

Oxidative stress has been suggested to play an important role in the pathogenesis of 

various neurodegenerative condition including Parkinson’s and Alzheimer’s disease 

(AD) (Behl, 1997; Butterfield and Kanski, 2001; Jenner, 1991; Jenner and Olanow, 

1996, 2006). Oxidative damage in AD brain is manifested by increased protein 

oxidation (elevated levels of protein carbonyls and nitrated tyrosine residues), lipid 

peroxidation (elevated levels of thiobarbituric acid reactive substances 

malondialdehyde, 4-hydroxy-2-trans-nonenal, isoprostanes), DNA and RNA 

oxidation (elevated levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-

hydroxyguanosine (8-OHG)) and increased levels of glycoxidation products (Vitek et 

al., 1994).  

Hydrogen peroxide (H2O2) is one of the most prominent and frequent representatives 

of reactive oxygen species (ROS). H2O2 itself is not very reactive and on its own not 

a very potent oxidizing threat to cells. However, it is easily converted into the highly 

reactive ·OH radical via the Fenton reaction, which then oxidises nucleic acids, lipids 

and proteins. Chronic treatment of mammalian cells with H2O2 has shown that cells 

are able to adapt to oxidative stress. The most common resistance mechanisms are 

based on an increase in glutathione GSH content or activity of antioxidative enzymes 

such as superoxide dismutase (SOD), catalase or glutathione peroxidase (GPX) 

(Bose Girigoswami et al., 2005; Cantoni et al., 1993; Spitz et al., 1992; Spitz et al., 

1988b).  

Cellular  detoxification systems such as GSH, thioredoxin, (SOD) or catalase which 

counteract oxidative stress are pushed to their limits (Lovell et al., 1995; Marcus et 

al., 1998). In brains of AD patients the GSH content was found to be significantly 
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decreased, while the expression of catalase, Cu/Zn-SOD, (GPX) and glutathione 

reductase (GR) was elevated (Aksenov et al., 2001; Aksenov et al., 1998; Liu et al., 

2004). Despite increased levels of catalase mRNA, the activity of catalase in AD 

affected brains was also found to be decreased (Gsell et al., 1995). 

It has been proposed that H2O2 resistant cell lines can be used to unravel novel 

H2O2 protection-conferring genes (or more correctly, the proteins they code for), and 

that such novel genes can contribute to the development of novel neuroprotective 

drugs.  To date, a number of studies have reported the generation of H2O2 resistant 

cells (Andley and Spector, 2005; Bose Girigoswami et al., 2005; Spector et al., 2000; 

Spitz and Sullivan, 2010). One of them, a murine hippocampal HT22 cell line, was 

generated by Schaferet al (Schafer et al., 2004) and showed a cross-resistance to 

glutamate, while the simultaneously created glutamate resistant cell line showed a 

similar resistance against H2O2. Further investigation revealed that both cell lines 

contained high levels of phosphorylated GSK-3β, resulting in an inactivation of this 

apoptosis-inducing protein. 

The aim of this study was to generate H2O2 resistant cells using the murine neuronal 

cell line Neuro2a for further studies on their differential gene expression. H2O2 

resistant cells are likely to exhibit changes in gene expression, allowing for the 

identification of novel genes and mechanisms that confer neuroprotection against 

oxidative stress. 
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Materials and Methods 

Cell Culture 

Neuro2a cells were cultivated in Dulbecco's Modified Eagle Medium (DMEM) 

containing 5% foetal bovine serum (FBS), 200 U/mL Penicillin, 200 μg/mL 

Streptomycin, 2.6 μg/mL Fungizone®, and 2 mM glutamine or GlutaMAX™-I 

(Invitrogen, Carlsbad, USA). Cells were maintained in a 5% CO2 incubator at 37°C. 

To passage confluent cells medium was aspirated and the cells were washed with 

sterile Ca2+ and Mg2+ free phosphate buffered saline (PBS), and incubated with 

Tryple Express (Invitrogen, Carlsbad, USA) at 37ºC until cells detached from the 

flask. Cells were resuspended in DMEM and transferred into new flask in a suitable 

ratio. 

 

Generation of H2O2 resistant cells by chronic H2O2 treatment 

High level weekly treatment to generate Neuro2a-HR_HL cells: Neuro2a cells were 

cultured in T175 flasks and treated weekly with 500 μM H2O2 in a volume of 40 mL 

growth medium. This medium was removed the day after treatment and fresh growth 

medium was added. Cells were split as required, so cells had a confluency of 80-

90% on the day of treatment. H2O2 concentrations were gradually increased to a final 

concentration of 1 mM. Those cells were named Neuro2a-HR_HL, clones B8, E3 

and F5 were isolated by dilution to approximately 0.8 cells/well from this population 

after six months of treatment.  

Low level daily treatment to produce Neuro2a-HR_LL cells: Neuro2a-HR_LL cells 

were generated by growth in 6-well plates and treated with 30 μM H2O2 in a volume 

of 2 mL growth medium daily. H2O2 concentrations were slowly increased up to 

200 μM. Cells were split as required. For Neuro2a-HR_LL, subpopulations E525, 
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E725 and E735 were selected by dilution to approximately 0.8 cells/well in 96-well 

plates after four months. 

 

Assessment of H2O2 resistance of Neuro2a cells 

In order to only test constitutively expressed genes, cells were withdrawn from H2O2 

treatment for at least 2 weeks prior to testing them for H2O2 resistance. In brief, 

5 x 104 cells/well were seeded in 96-well plates and incubated overnight. Medium 

was aspirated, replaced with 100 µL growth medium containing differing amounts of 

H2O2 and cells were incubated at 37°C and 5% CO2. The cell viability was 

determined 24 hr later using the resazurin (Alamar Blue) assay (O'Brien et al., 2000). 

 

Assessing contribution of catalase and glutathione system to H2O2 resistance 

of Neuro2a cells 

The two major H2O2 detoxification systems in mammalian cells are the catalase 

system and the GSH system. To investigate the contribution of each of these 

systems to the H2O2 resistance of the resistant neuron-like cells, cells were seeded 

and incubated overnight. Cells were incubated with 10 mM catalase inhibitor 3-

Amino-1,2,4-triazole (3-AT) and/or 10 mM GPX inhibitor mercaptosuccinic acid (MS) 

for 2 hr and/or 1 mM γ-glutamylcysteine synthetase inhibitor L-Buthionine-

sulfoximine (BSO) for 22 hr. To obtain comparable results for all tested conditions all 

plates were seeded on the same day, the next day the medium containing 5% FBS 

was replaced with DMEM with 1% FBS with or without 1 mM BSO for 22 hr. 

Thereafter all medium was replaced with DMEM containing 1% FBS with or without 

the other inhibitors or combinations of inhibitors for 2 hr. After removal of the 

inhibitor(s) containing medium, fresh medium with 5% FBS containing different 
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amounts of H2O2 was added and cells were incubated at 37°C and 5% CO2. Cell 

viability was determined 24 hr later using the resazurin reduction assay. All 

preparations of the inhibitor in DMEM were sterile filtered using 0.22 µm filters; 

preparations containing MS were pH adjusted to 7.5. 

 

Cell viability assay 

Cell viability was measured as mitochondrial metabolic activity using resazurin to 

resorufin reduction (John O'Brien, 2000). Briefly, 100 μL DMEM containing 0.125 

mg/L resazurin were added to each well of a 96-well plate and incubated for 2 hr at 

37°C. Fluorescence was then measured at 560EX nm/590EM nm in a BMG Labtech 

POLARstar Omega fluorescent plate reader (BMG LABTECH, Ortenberg, Germany). 

Wells containing resazurin and no cells were used to determine background 

fluorescence. All measurements were done in triplicate and expressed as a 

percentage of control cells. Experiments were repeated once. 

 

Determination of H2O2 in cell culture medium via PCA-Fox assay 

To measure H2O2 clearance from the medium, 1 mM H2O2 in 100 μL DMEM were 

added to each well of a 96-well plate containing 5 x 104 cells. After incubation for 

0-90 min at 37° the conditioned media was removed from the cells and diluted 1:10 

in PBS. The diluted samples (180 μL) were transferred into a new 96-well plate and 

20 μL Fox-reagent (2.5 mM ferrous ammonium sulphate, 2.5 mM xylenol orange, 

1.10 M HClO4) were added and mixed. The plate was incubated on a rocking 

platform for 30 min and the absorbance was measured at 545 nm in a BIORAD 

microplate reader (Bio-Rad Laboratories, Hercules, US).  
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Statistical Analysis 

All measurements were done in triplicate and expressed as a percentage of 

untreated control cells. One-way ANOVA was performed using SPSS® Statistics 18 

software (IBM, Armonk, USA) on data expressed as percentage of control cells for 

each experiment and the Games-Howell posthoc test was used when variances 

were significant different within groups; for homogeneity of variance the Tukey 

posthoc test was used. Results were presented as the mean ± SD using GraphPad 

Prism® Version 5.04 (GraphPad Software, La Jolla, USA). 
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Results 

Generation and selection of H2O2 resistant murine neuronal cells 

The aim of these experiments was to create a neuron-like cell line derived from 

murine Neuro2a cells with increased resistance against H2O2, in which novel 

neuroprotective genes that confer protection against H2O2, could be identified.  

The murine neuroblastoma cell line Neuro2a was used to generate two different 

types of H2O2 resistant cell populations. The basic principles of this process were to 

treat Neuro2a cells with increasing amounts of H2O2 over long time periods and to 

select for the “best survivors” under these conditions (Spitz et al., 1988a).  

For the generation of Neuro2a-HR_HL (high level) subclones: Parental Neuro2a 

cells were treated with 250 µM H2O2 once a week. This concentration of H2O2 led to 

95-99% cell death within 24 hr of treatment, after which the surviving cells regrew to 

confluence within a week. However, cells adapted to the treatment with 250 µM 

H2O2, and the rate of cell death decreased upon subsequent challenges. Therefore, 

H2O2concentrations were slowly increased so that still a significant rate of cell death 

was seen (highest concentration of 1 mM H2O2). After six months of H2O2 treatment 

three single cell clones, termed Neuro2a-HR_HL B8, E3 and F5 were isolated using 

the dilution method. 

For the generation of the Neuro2a-HR_LL subpopulations, parental Neuro2a cells 

were treated with 30 µM H2O2 daily. At this concentration cells seemed to be mostly 

unaffected by the treatment and no cell death was observed by microscopy. The 

H2O2 concentration was increased slowly by ~10 µM per week until reaching 200 µM 

daily within four months. Three subpopulations of cells, termed Neuro2a-HR_LL 

E525, E725 and E735, were isolated after fourmonths as daily treatment with H2O2 
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Determination of H2O2 resistance of the Neuro2a-HR cells 

The H2O2 resistance of Neuro2a-HL and Neuro2a-LL cells in comparison with the 

parental cells was tested after challenge with hydrogen peroxide. Cells were 

incubated with H2O2 at concentrations up to 10 mM, and cell viability determined 

after 24 hours. Parental Neuro2a cells exhibited an LC50 (lethal concentration of 

H2O2 to cause 50% cell death) value of 214 ± 10µM (n=3, in triplicate), while the LC50 

for all the H2O2 resistant Neuro2a cells was > 1mM, reaching 10.5  ± 0.71 mM in the 

most resistant subpopulation, LL E725 (Figure1 A and B Table 2).  

 

Contribution of catalase activity to the resistance of Neuro2a-HR cells 

For the successful identification of novel H2O2 resistance-conferring genes in the 

resistant cells it is necessary that the Neuro2a-HR populations would still show an 

increased H2O2 resistance when compared to parental cells, even when the H2O2 

detoxification systems such as catalase and/or GPX are inhibited. To exclude that 

the resistance of the generated Neuro2a-HR cells was simply based on an increase 

in catalase activity, the H2O2 resistance of the selected six H2O2 resistant clones or 

subpopulations was tested after inhibition of catalase. Cells were pre-incubated with 

the irreversible catalase inhibitor 3-AT (10 mM) for 2 hr before being challenged with 

H2O2. This treatment has been previously found to completely inhibit catalase activity 

in astrocytes (Dringen and Hamprecht, 1997). Cell viability was determined after 

24 hr. 

After catalase inhibition the LC50 of parental cells dropped by approximately 70%, 

from 214 ± 10 µM to 75.2 ± 29.0 µM (n=3, in triplicate). Among the resistant cells, the 

Neuro2a-HR_LL cells reached the LC50 at approximately 400 - 600 µM, indicating a 
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possible five to almost eight-fold higher resistance than the parental cells. Neuro2a-

HR_HL clones appeared not as homogenous in this assay, with LC50 ranging from 

310 µM for clone B8 to approximately 600 µM for clones E3 and F5 (Fig. 2) . This 

“resistance gap” of 4-8fold compared to the parental cells even at complete inhibition 

of catalase activity indicates that the increased resistance of all six Neuro2a-HR 

populations is not simply caused by overactivity of the catalase system.  

 

Contribution of glutathione peroxidase (GPX) activity to the resistance of 

Neuro2a-HR cells 

GPX is a further enzymatic system involved in the direct detoxification of H2O2. GPX 

was inhibited to assess the contribution of this enzyme to the increased resistance of 

Neuro2a-HR cells towards H2O2. Cells were pre-incubated for 2 hr with 10 mM MS, a 

reversible inhibitor of GPX. Cells were then challenged as previously described and 

cell viability was determined. In astroglial cells these treatment conditions were found 

to fully inhibit GPX activity (Dringen et al., 1998; Kussmaul et al., 1999).GPX 

inhibition resulted in a decrease in the LC50 of parental and all Neuro2a-HR cells.The 

LC50 of parental cells decreased from 214± 10 µM to 132 ± 64 µM, a decrease of 

almost 50%. Neuro2a-HR_LL subpopulations had LC50 values that ranged from 

341 µM to ≥ 450 µM. Similar findings were made for Neuro2a-HR_HL cells, which 

displayed LC50 values between 194 µM to ≥ 311 µM. As seen in prior experiments, 

the B8 clone did not perform as well as the E3 and F5 clones, reaching a LC50 of 

194 ± 43 µM while all other clones reached LC50 values of ≥ 311 µM. This 

“resistance gap” indicates that an increased GPX activity is also not responsible for 

the increased resistance of Neuro2a-HR cells. 



11 | P a g e  
 

 

Contribution of the total GSH pool to the resistance of Neuro2a-HR cells 

Increased resistance of Neuro2a-HR cells could be based on a faster production or a 

higher level of free available GSH (the cofactor for GPX, but also may other GSH 

dependent enzymes). To examine this possibility, cells were pre-incubated with 

1 mM BSO for 22 hr and then challenged with 0-400 µM H2O2 as previously 

described. BSO is an irreversible inhibitor of γ glutamylcysteine synthetase, the rate 

limiting enzyme in GSH synthesis(Drew and Miners, 1984). BSO treatment reduced 

the LC50 of parental cells by 48% to 119 ± 24 µM, while Neuro2a-HR_LL cells 

showed LC50 values of 233 to 564 µM. Neuro2-HR_HL cells showed comparable 

resistance, with LC50 values ranging from 233 ± 51µM for clone B8 to ≥ 400 µM for 

both other clones (Table 5).  

 

 

Combined contribution of catalase and the GSH pool to the resistance of 

Neuro2a-HR cells 

In the previous sections, it was shown that the higher resistance of Neuro2a-HR cells 

is not solely due to an increased catalase activity, GPX activity or GSH pool of the 

cells, as inhibition of both pathways still showed an increased resistance against 

H2O2 when compared to parental cells. This indicates that Neuro2a-HR cells might 

have acquired additional defence systems. To confirm this hypothesis, two 

treatments from previous experiments were combined and cells were treated with 3-

AT and BSO to inhibit catalase and GSH synthesis (which includes GSH as the rate-

limiting cofactor for GPX activity) before assessing their H2O2 resistance. 
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It was found that the parental tolerance against H2O2 decreased by more than 90%, 

showing an LC50 of 20.5 ± 5.4  µM. Neuro2a-HR_LL cells showed LC50 values 

between  125 µM and ≥ 200µM, suggesting an at least 6-fold higher resistance than 

the parental cells (Table 6). Comparable results were observed when catalase and 

GSH production were inhibited in Neuro2a-HR_HL cells, with LC50 values ranging 

between 34 µM for clone B8 and ≥ 80 µM for F5. This “resistance gap” suggests 

again that an increased catalase activity and higher GSH content is not responsible 

for the increased resistance of Neuro2a-HR cells, but that other mechanisms must 

play a role in the acquired resistance mechanism. 

 

Comparison of the rate of detoxification of H2O2 between Neuro2a and 

Neuro2a-HR cells 

The previous sections suggest that the resistance mechanism of Neuro2a-HR cells 

is not simply based on an increased detoxification of H2O2 by catalase and GPX. To 

further test this hypothesis, it was investigated if Neuro2a-HR cells detoxify H2O2 

more effectively than the original parental cell line. For this purpose, the rate of 

clearance of 1 mM H2O2 exogenously added to the cell culture medium, was 

measured using the PCA-Fox assay (Gay et al., 1999). No significant differences in 

the rate of detoxification of exogenous added H2O2 (calculating half-life assuming 

first order kinetics) were detected between the parental and Neuro2a-HR cells. All 

cells clones were capable of detoxifying 1m M H2O2, with a T1/2 of 30.2 ± 2.0 min for 

the parental cells, and between 26.0 and 31.6 min for the resistant clones or   

subpopulations (Fig. 3). This supports our hypothesis that the increased resistance 

of Neuro2a-HR cells is not simply based on a higher activity of the detoxification 

systems for H2O2. 
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Discussion  

Identification of novel defence mechanisms against H2O2 could lead to the 

development of new drug targets for the treatment of neurodegenerative diseases, 

and AD particularly, as oxidative stress plays an important role in these diseases 

(Boll et al., 2008; Butterfield et al., 2002; Shamoto-Nagai et al., 2007). Slowly 

adapting cells against a toxin has proven to be beneficial in order to find such 

protection-conferring mechanisms against such a toxin. This method, called 

conditioning, has shown to often lead to an increased tolerance or total resistance of 

those cell populations against the toxin (Ramakrishnan et al., 2010). These resistant 

cell lines can then be further examined to find the protection-conferring genes 

(Alborzinia et al., 2011; Bose Girigoswami et al., 2005).  

The future overall aim of this study is to find novel drug targets for diseases involving 

oxidative stress by comparison of the gene expression pattern between parental and 

H2O2 resistant cells. It was therefore necessary to generate a H2O2 resistant neuron-

like cell line. The murine neuroblastoma cell line Neuro2a was chosen as the neural 

cell model for this purpose. 

AD is a human disease that mostly affects glutamatergic and cholinergic neurons 

and therefore it would be more than justifiable to use human primary cells 

(Greenamyre et al., 1987; Lewis et al., 2010; Pearson et al., 1983). Those cells 

would need to be made immortal by stable transfection of telomerase-based or 

oncogene-containing vectors (Davies et al., 2003). Constant passaging and 

immortalisation of such primary cells often affects their natural characteristics 

(Georgopoulos et al., 2011). Further characterisation of this newly created cell line 

would therefore be unavoidable. Another disadvantage of this approach would be the 

limited access to human brain samples. Instead, neuroblastoma cell lines are a 
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commonly used tool for neurotoxicity studies (LePage et al., 2005). Although these 

cells might not have an identical phenotype as the original cell line, they have the 

advantage of being well established and characterised. Depending on the aim of the 

study, they may be a valuable and valid alternative.  

Several different cell types, such as murine lens, monkey kidney or hamster ovarian 

cells, have been found to develop resistance after conditioning with H2O2 (da Silva et 

al., 1996; Spector et al., 2000). This suggests that the resistance is based on a 

universal mechanism, which potentially could be found in any cell line. Based on this 

hypothesis a murine neuroblastoma cell line was used for this project, as this allows 

the subsequent development of a mouse model as the next step in drug discovery. 

Two different approaches of H2O2 treatment were used, as acute high concentrations 

of H2O2 can lead to a different expression pattern of protective genes when 

compared to low chronic exposures (Cantoni et al., 1993).  

All Neuro2a-HR cells displayed a high H2O2 resistance compared to parental cells 

when challenged with H2O2 concentrations of up to 1 mM. This gap in resistance was 

still present when catalase and/or the glutathione system were inhibited. It did not 

make a difference whether cells had been created by treatment with low or high 

levels of H2O2, as all Neuro2a-HR cells were resistant to equal amounts of H2O2. 

This is an opposite finding to prior studies where treatment of cells with higher 

concentrations of H2O2 also induced higher catalase activity (Cantoni et al., 1993).  

Inhibition of catalase decreased the LC50 by approximately 70% to 75 ± 29 µM, 

indicating that catalase is indeed an important defence system in mammalian cells, 

accounting for approximately 70% of H2O2 defence. Inhibition of GPX let to a 

decrease in LC50 by 42% (132 ± 64 µM) and depletion of GSH by γ-glutamylcysteine 

synthetase, the rate limiting enzyme in GSH synthesis, reduced the LC50 by 



15 | P a g e  
 

approximately 48%, indicating that catalase and the glutathione system contribute 

strongly to the detoxification of H2O2. 

Prior findings by Giblin et al indicate that the glutathione system detoxifies low levels 

of H2O2, while high levels are dismutated by catalase (Giblin et al., 1990). Giblin et al 

suggested that the function of the glutathione system mainly lies in the detoxification 

of secondary peroxidation products and is therefore vital for cell survival. As catalase 

and glutathione are already known and well characterized as antioxidant defence 

systems, it would be especially interesting to find other, so far unknown detoxification 

systems which could be developed as drug targets for AD and other related 

conditions. To investigate the contribution of unknown mechanisms, catalase as well 

as γ-glutamylcysteine synthetase were inhibited, as this approached would allow 

observation of even minor contributing mechanisms to the detoxification of H2O2. 

To address the question of whether the resistance of Neuro2a-HR cells is due to a 

more effective detoxification or to a higher tolerance to H2O2 before becoming 

apoptotic, the clearance of exogenously added H2O2 from the supernatant was 

measured. No dramatic difference in H2O2 detoxification between parental cells and 

Neuro2a-HR cells could be found, suggesting that the resistance mechanism is not 

based on a better H2O2 degradation.  

In summary, it can be stated that the created Neuro2a-HR cells show an at least 4-

fold higher resistance against H2O2 than the parental cell line and that both methods 

of cell conditioning, 1 mM weekly or 200 µM daily, lead to resistant clones or 

subpopulations. Furthermore, it was shown that the increased resistance of 

Neuro2a-HR is not based on catalase or glutathione related mechanisms. This 

indicates the contribution of additional, so far unknown, mechanisms which allow 

Neuro2a-HR cells to survive at higher levels of oxidative stress. The mechanism(s) 
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are most likely not based on faster detoxification of extracellular H2O2 as the 

clearance rate for exogenously added 1 mM H2O2 was similar between parental and 

resistant cells. These resistant clones might serve as interesting target discovery 

tools for the identification of neuroprotective genes.  

 

Figure Legends: 

Figure 1. Relative resistance of Neuro2a-HR cells. Relative resistance of Neuro2a-

HR_LL subpopulations E525, E725 and E735 (A) and Neuro2a-HR_HL cell clones 

B8, E3 and F5 (B). Results presented as mean ± SD, (* p < 0.05). 

 

Figure 2: Rate of detoxification of 500 µM H2O2 by the different clones / 

subpopulations  

All cells were capable of detoxifying 500 µM H2O2 with a t 1/2 of 26-32 min and an 

almost complete clearance of H2O2 was achieved after 90 min Half-life of H2O2 

added to Neuro2a and Neuro2a-HR cells assuming a first order kinetic decay is 

presented (n=2, in triplicate) 
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Table 1. Generated Neuro2a hydrogen peroxide resistant cells  

Neuro2a-HR_HL clones 

(≤1 mM H2O2 weekly) 

Neuro2a-HR-LL subpopulations  

(≤200 µM H2O2 daily) 

Neuro2a-HR_HL B8 Neuro2a-HR_LL E525 

Neuro2a-HR_HL E3 Neuro2a-HR_LL E725 

Neuro2a-HR_HL F5 Neuro2a-HR_LL E735 
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