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Abstract 

A new procedure for the stereoselective synthesis of cross-conjugated dienones is reported. 

This method makes use of the Diels-Alder adduct of anthracene and dimethyl fumarate, a 

precursor to a spirocyclopent-2-enone anthracene adduct as the key intermediate. The 

addition of propyllithium or octyllithium to the key intermediate followed by a retro-Diels-

Alder reaction furnished -methylenecyclopentenones bearing a -propyl or -octyl side 

chain, respectively, in moderate yields and as single geometric isomers.   

Keywords: Stereoselective synthesis, -methylenecyclopentenones, Diels-Alder/retro-Diels-

Alder, anthracene 

 
1. Introduction 

Cyclopentenones are important precursors in the synthesis of a large number of bioactive 

natural products such as the prostanoids, including, clavulone I and clavulone II,1 marine 

natural products exhibiting strong cytotoxicity, and TEI-9826,2 an antitumour agent in 

preclinical trials. Many strategies have been developed to synthesise this class of compounds 

including the Nazarov cyclisation,3 the Pauson-Khand reaction,4 metal-catalysed 

cyclisations,5 and Diels-Alder/retro-Diels-Alder reactions using anthracene.6  Among these, 

the synthesis of the cyclopentenone ring system, particularly with control of relative and 

absolute stereochemistry, is highly desirable. There have been a number of reports on the use 

of 9-substituted chiral anthracene templates to generate enantiomerically pure building blocks 
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with highly diastereo- and regioselective reactions.7-9 However, a drawback of this strategy 

remains the preparation of the chiral auxiliary via asymmetric synthesis.10 Thus, we were 

interested in Thebtaranonth’s anthracene template-Diels-Alder/reto-Diels-Alder protocol6 to 

prepare -methylenecyclopentenones in a diastereoselective fashion. Herein, we report a 

stereoselective synthesis of two -methylenecyclopentenones A (R = propyl or octyl) via a 

spiro-cyclopent-2-enone anthracene template B using a retro-Diels-Alder reaction as the final 

step (Scheme 1).  

 

Figure 1. Structure of cross-conjugated dienone prostanoids 
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                Scheme 1  Retrosynthetic analysis of -methylenecyclopentenone A  

2. Results and discussion 

To investigate our proposed synthesis the known dimethyl fumarate-anthracene adduct 3a 

was prepared by a Diels-Alder reaction of anthracene and dimethyl fumarate which gave 

racemic trans-9,10-dihydro-9,10-ethanoanthracene-11,12-dimethyl ester (3a) in 78% yield 
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(Scheme 2). The cis-isomer of 3a was also detected as a minor component in large scale 

reactions. The structure of the trans-isomer was confirmed based on a comparison of its 

spectroscopic data with those in the literature.11 Reduction of the adduct 3a using LiAlH4 led 

to the diol 4 in quantitative yield. The diol 4 was converted to its monoacetate 5 and the 

unprotected hydroxyl group was oxidized to the carboxylic acid 6 in 91% yield (Scheme 2). 

Treatment of 6 under esterification conditions with methanol in the present of H2SO4 gave the 

hydroxy-methyl ester 7a. Re-protection the hydroxyl group of this compound by treatment 

with tert-butyldimethylsilylchloride/imidazole gave the silyl ether 7b in 89% from 6 (Scheme 

2). An alternative route to 7b was alkaline hydrolysis of 3a with KOH/MeOH to afford the 

monoacid 3b in 46% yield.12 Reduction of 3b with NaBH4/I2
13 gave alcohol 7a, however, in 

low yield (15%) together with various unidentified products. This was probably due to 

reduction of both the carboxylic acid and ester groups. Protection of the hydroxyl group in 7a 

with tert-butyldimethylsilyltriflate/2,6-lutidine provided silyl ether 7b in 96% yield (Scheme 

2).  
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Scheme 2. Synthetic route to methyl ester adduct 7b: (i) Xylene, 160 oC, overnight (ii) LiAlH4, THF, 0 oC (iii) 
Ac2O, pyridine, rt (iv) CrO3 in H2O, H2SO4, 0 oC (v) H2SO4, MeOH, rt (vi) TBDMSCl, imidazole, rt, 81% from 
6 or TBDMSOTf, 2,6-lutidine, rt, 96% from 3b (vii) KOH, MeOH (viii) NaBH4, I2, rt. 
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To complete the cyclopentenone synthesis, allylation of the methyl ester 7b was undertaken 

by treatment with LDA/allyl bromide in THF at 78 oC which afforded the allyl-methyl ester 

8a in 84% yield (dr 11:1). The annulation reaction of 8a, involving the intramolecular 

acylation of the allylic anion generated using LDA/TMEDA,6 afforded the spiro-

cyclopentenone anthracene adduct 9a in 37% yield together with the -enaminone 10a in 14 

% yield (Scheme 3). Attempts to increase the yield of 9a by using an excess of LDA were 

unsuccessful, often resulting in formation of the -enaminone 10a and starting material 8a. 

The structure of spiro-ketone 9a was confirmed by NMR spectroscopic analysis and from a 

comparison of its spectroscopic data with those of the previously prepared 9b (Scheme 3).14 

The structure of the -enaminone 10a was supported by its NMR data which indicated the 

absence of methoxy protons and the presence of one N-isopropyl group, which was 

characterized by the nonequivalent methyl groups (1.17 and 1.18 ppm, each a doublet with    

J = 6.3 Hz) which showed vicinal coupling to the methine proton at  3.60. In addition, the 
1H NMR spectrum showed a 3H singlet at  1.89 for the vinyl methyl group and a 1H singlet 

resonance at  5.06 for the vinyl proton (COCH=C(Me)(NHiPr). 

8a, R = CH2OTBDMS

7b
i ii
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O
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9b, R = H
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Scheme 3. (i) Allyl bromide, LDA, THF, HMPA, -78 oC, 84% (ii) LDA, TMEDA, -78 oC 
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Such enaminones have been previously observed as by-products upon treatment of esters 

with an excess amount of LDA at 0 oC.15-17 This has been shown to be a result of the 

formation of the corresponding N-isopropyl ketimine (Me2C=NiPr)) from the in situ oxidation 

of LDA. This ketimine is subsequently deprotonated by the excess of LDA to generate the 

corresponding aza-enolate which can attack the carbonyl group of the ester to provide an 

enaminone product. In contrast, treatment of the allyl-methyl ester 8b under similar 

conditions afforded the cyclopentenone 9b as a single product in good yield.14 These 

differences in yields of spiro-cyclopentenone products might be a result of the steric 

crowding caused by the CH2OTBS group in 8a which may inhibit formation of 9a, and thus 

enhance the formation of the N-isopropyl ketamine, by slowing down the rate of allylic 

deprotonation of 8a by the LDA.  

Transformation of ketone 9a to the -hydroxyenone 11 was readily achieved by epoxidation 

followed by base-catalysed ring opening using Et3N to afford 11 in 95% yield (dr 2.3:1) after 

purification by flash column chromatography (15:1 system of hexane/EtOAc). The 

diasteromers were separated by flash column chromatography (20:1 system of 

hexane/EtOAc) and the major diastereomer 11a was confirmed by an NOESY experiment 

which revealed the correlation between H-2 and the CH2-OSMDBT. This indicated that the 

major diastereomer arose from preferential epoxidation on the less hindered side of the 

alkene. The 1,2-addition reactions of the diastereomeric mixture 11 with propyllithium or 

octyllithium gave the corresponding diols 12a and 12b as the major diastereomers in yields of 

34% and 30%, respectively together with several unidentified products. Unfortunately the 

relative configurations of these major diastereomers could not be established by NMR 

experiments. The structure of 13a was confirmed unequivocally by single-crystal X-ray 

crystallography (Figure 2) after oxidation of 12a with PDC (Scheme 4). The analysis of 13a 

by single crystal X-ray crystallographic data (Figure 2) are (C30H38O3Si.H2O), Mr 492.73. 

Triclinic, P1, a = 9.3804 (2) Å, b = 11.5664 (3) Å, c = 13.9475 (4) Å,  = 82.5505 (11),  

= 84.4853 (14),  = 66.8558 (14), V = 1378.04 (6) Å3, Z = 2, F(000) = 532, Dx = 1.187 Mg 

m-3, Mo K radiation, = 0.71073Å, Cell parameters from 16794 reflections, θ = 2.6 - 27.5, 

 = 0.12 mm-1, T = 200 K, specimen = 0.54× 0.26×0.12 (colorless, block). 29223 reflections 

were measured. Final R (F2 > 2σ(F2)) = 0.042, wR(F2) = 0.108, S = 0.97. The crystal structure 

has been deposited at the Cambridge Crystallographic Data Centre and allocated the 

deposition number CCDC 935128. The crystal structure revealed that the propyl group in 12a 

had been added from the more hindered face of the ketone carbonyl group of 11.  
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Upon heating of solutions of 13a and 13b in 1,2-dichlorobenzene at 180 oC they underwent a 

retro-Diels Alder reaction9 to afford the highly functionalized cyclopentenones 14a and 14b, 

respectively in poor yields (8-11%) and as single geometric isomers. While NMR 

experiments could not confirm the configuration of the exocyclic double bond in 14a or 14b, 

the geometry shown for these compounds in Scheme 4 is that expected based on the 

established relative configuration of the starting compounds 13a and 13b.  

TBDMSO
O

HO

11 (dr 2.3:1)

9a

rac-12a, n = 1 (34%)
rac-12b, n = 6 (30%)

i-ii

iii

iv

v

n
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Scheme 4. (i) mCPBA, CH2Cl2 (ii) Et3N, THF (iii) alkyl lithium, THF (iv) PDC, DMF, 0 C (v) 1,2-

dichlorobenzene, 180 C in sealed tube. 
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Figure 2. Single-crystal X-ray structure of rac-13a (n = 1) 

 
 

3. Conclusions 
 

In summary, we have developed a procedure which allows for the stereoselective synthesis of 

4,4,5-trisubstituted cyclopent-2-enones bearing a α-methylene side chain via a Diels-

Alder/retro-Diels-Alder process starting from anthracene. This methodology may in the 

future provide an efficient route for the synthesis of prostanoid natural products without 

having to overcome stereoselectivity issues.  

 
4. Experimental 

 
4.1 General 
 
Melting points were determined on a Stuart Scientific SMP 2 melting point apparatus and are 

uncorrected. Infrared spectra were recorded as CH2Cl2-films with a Perkin Elmer Spectrum 

GX FT-IR spectrophotometer. 1H- and 13C-NMR spectra were recorded in (D) chloroform 

solutions at 300 MHz for 1H and 75 MHz for 13C with a Bruker AVANCE 300 spectrometer. 

Tetramethylsilane was used as the internal standard. Mass spectra were recorded on a 

POLARIS Q or HEWLETT PACKARD 5973 mass spectrometer.  

 

4.2. 9,10-Dihydro-9,10-ethanoanthracene-11,12-dimethyl ester (3a) 

A mixture of anthracene (2.00 g, 11.2 mmol), dimethyl fumarate (2.05 g, 14.2 mmol) and 

xylene (15 mL) in a pressured tube with boiling chips was heated at 130 oC for 24 h. The 

reaction mixture was cooled to rt and the xylene was then removed under vacuo. The crude 
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product was purified using column chromatography (silica gel, 30:1 hexane/ EtOAc) to 

afford the adduct 3 (2.82 g, 78%) as a white solid, m.p. 103-105 oC (lit.11 107-108 oC); IR 

(CH2Cl2) max: 1732, 1459, 1435, 1221, 1198, 1018, 760 cm-1; 1H NMR  7.28-7.31 (m, 2H), 

7.22-7.25 (m, 2H), 7.07-7.14 (m, 4H), 4.73 (s, 2H), 3.62 (s, 6H), 3.42 (s, 2H); 13C NMR  

172.8, 142.0, 140.3, 126.4,126.3, 124.6, 123.8, 52.2, 47.8, 46.7. 

 

4.3 11-Carboxylic acid-9,10-dihydro-9,10-ethanoanthracene-12-methyl ester (3b) 

Dimethyl ester 3a (0.10 g, 0.31 mmol) was added to a solution of THF (2.6 mL), MeOH 

(0.50 mL) and water (0.40 mL). 1 M KOH (0.37 mL, 0.37 mmol) was added and the mixture 

was stirred at rt for 50 min. The reaction was then cooled to 0 oC and quenched with 1M HCl 

(1 mL). The aqueous layer was extracted with EtOAc (2 × 15 mL), and the combined organic 

extracts were washed with brine, dried (Na2SO4) and concentrated. The mixture was purified 

by flash column chromatography (silica gel, 4:1 hexane/EtOAc) to give monoacid 3b (88 mg, 

46%) as a white solid; m.p. 199-201 oC (lit.3 202 oC); IR (CH2Cl2) max: 3444, 1737,1704, 

1434, 1267, 1208, 740 cm-1; 1H NMR  7.31 (m, 2H), 7.24 (m, 2H), 7.10 (m, 4H), 4.70 (d, J 

= 2.0, 2H), 3.62 (s, 3H), 3.41 (dd, J = 2.6, 5.0 Hz, 1H), 3.32 (dd, J = 2.6, 5.0 Hz, 1H). 13C 

NMR  176.8, 172.2, 142.0, 141.9, 140.1, 140.0, 140.0, 126.5, 126.5, 126.4, 126.4, 125.0, 

124.6, 123.7, 52.3, 47.8, 47.7, 46.6, 46.4.; HRESI-MS m/z cald for [M+Na]+C19H16NaO4: 

331.0946, found: 331.0952. 

 

4.4 9,10-Dihydro-9,10-ethanoanthracene-11,12-dimethyl alcohol (4) 

To a solution of 3a (2.75 g, 8.54 mmol) in THF (60 mL) at 0 oC was slowly added lithium 

aluminium hydride (1.94 g, 51.2 mmol). The mixture was stirred at 0 oC under argon 

atmosphere for 30 min. The reaction mixture was quenched with sat. NaHCO3 solution and 

extracted with Et2O (3 × 30 mL). The combined organic phase was dried (Na2SO4), filtered 

and concentrated under reduced pressure to give the diol 4 (2.15 g, 98%) as a white solid; 

m.p. 196-198 oC; IR (CH2Cl2) max: 3442, 3054, 2987, 1422, 1022 cm-1; 1H NMR  7.38–

7.35 (m, 4H), 7.18-7.15 (m, 4H), 4.44 (s, 2H), 3.22-3.17 (m, 1H), 2.89-2.81(m, 1H), 1.38-

1.33 (m, 2H); 13C NMR  144.5, 141.7, 126.1, 125.8, 123.4, 64.5, 45.9, 45.3; HRESI-MS m/z 

cald for [M+Na]+ C18H18NaO2: 289.1193, found: 289.1182. 

 

4.5 11-Acetoxy-9,10-dihydro-9,10-ethanoanthracene-12-methanol (5) 
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To a solution of the diol 4 (5.80 g, 21.8 mmol) in pyridine (2.11 mL, 26.2 mmol) at rt was 

added acetic anhydride (2.06 mL, 21.8 mmol). The mixture was stirred at rt for 2 h. The 

reaction mixture was quenched with water and extracted with CH2Cl2 (2 × 20 mL). The 

combined extracts were dried (Na2SO4), filtered and concentrated under reduced pressure. 

The crude product was purified by flash column chromatography (silica gel, 3:1 hexane/ 

EtOAc) to give the mono-acetate 5 (3.48 g, 52%) as a white solid; m.p. 89-91 oC; IR 

(CH2Cl2) max: 3451, 3054, 2987, 1736, 1422, 1025 cm-1; 1H NMR  7.27-7.23 (m, 4H), 7.11-

7.07 (m, 4H), 4.32 (d, J =1.8 Hz, 1H), 4.21 (d, J = 1.8 Hz, 1H), 3.81 (dd, J = 10.6, 5.8 Hz, 

1H), 3.51 (dd, J = 10.4, 8.7 Hz, 1H), 3.27 (dd, J =10.6, 5.8 Hz, 1H), 3.06 (dd, J = 10.4, 8.7 

Hz, 1H), 2.48 (br. s, 1H), 2.03 (s, 3H), 1.66-1.52 (m, 2H); 13C NMR  171.2, 143.5, 143.1, 

140.7, 140.4, 126.3, 126.2, 125.9, 125.8, 125.5, 125.4, 123.5 (2×C), 67.1, 65.5, 45.9, 45.7, 

45.5, 42.2, 21.0; HRESI-MS m/z cald for [M+Na]+ C20H20NaO3: 331.1310, found: 331.1306. 

 

4.6 11-Acetoxy-9,10-dihydro-9,10-ethanoanthracene-12-acetic acid (6) 

A solution of the alcohol 5 (0.22 g, 0.71 mmol) in acetone (6 mL) was treated with Jones 

reagent18(4 mL) at 0 C until TLC analysis showed the reaction was complete (ca. 1h). 

Isopropanol (0.6 mL) was added slowly dropwise to destroy excess reagent and the mixture 

was stirred for another 5-10 min until the colour of the solution changed from red to green. 

CH2Cl2 (20 mL) and water (20 mL) were added. The aqueous phase was extracted with 

CH2Cl2 (3 × 10 mL). The combined organic extracts were washed with water (40 mL) and 

brine (40 mL) and then died (Na2SO4), filtered and evaporated in vacuo to give compound 6 

(0.21g, 91%) as a yellow oil; IR (CH2Cl2) max: 3436, 2987, 1737, 1708, 1422, 1036 cm-1; 1H 

NMR  7.35-7.28 (m, 4H), 7.18-7.12 (m, 4H), 4.68 (d, J = 2.1 Hz, 1H), 4.33 (d, J = 2.1 Hz, 

1H), 3.89-3.84 (m, 1H), 3.77-3.70 (m, 1H), 2.73-2.65 (m, 1H), 2.42 (dd, J = 5.6, 2.3 Hz, 1H), 

2.60 (s, 3H); 13C NMR   178.1, 171.0, 143.3, 141.9, 140.2, 139.9, 126.4 (3×C), 126.1, 125.5, 

125.3, 123.6, 123.5, 66.7, 48.2, 46.3, 45.9, 41.7, 20.9; HRESI-MS m/z cald for [M+Na]+ 

C20H18NaO4: 345.1103, found: 345.1089. 

 

4.7 9,10-Dihydro-9,10-ethanoanthracene-11-methanol-12-methyl ester (7a) 

Method A 

To a suspension of NaBH4 (0.12 g, 3.24 mmol) in THF (3.5 mL) was slowly added a solution 

of the monoacid 3b (0.50 g, 1.62 mmol) in THF  (5 mL) at rt. The mixture was stirred until 

the evolution of gas ceased. A solution of iodine (0.36 g, 1.41 mmol) in THF (3 mL) was then 
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added slowly (5 min) at rt and the mixture was stirred for  a further 1 h. 3 M HCl (5 mL) was 

then added carefully and the mixture was extracted with ether. The organic extract was 

washed with 3 M NaOH (3 × 10 mL) and brine, then dried (Na2SO4), filtered and  

concentrated  under  reduced  pressure to give alcohol 7a (69 mg, 15%) as  a  yellow oil.  

 

Method B 

To a solution of 6 (2.34 g, 7.27 mmol) in methanol (14 mL) was  added dropwise conc. 

H2SO4 (1 mL). The mixture was stirred at rt for 12 h. The reaction mixture was quenched 

with  water and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were dried 

(Na2SO4), filtered and concentrated to give 7a (1.82 g, 85%) as a yellow oil. 

7a; IR (CH2Cl2) max: 3443, 2987, 1733, 1422, 1023 cm-1; 1H NMR   9.20 (br. s, 1H), 7.32-

7.23 (m, 4H), 7.11-7.05 (m, 4H), 4.62 (d, J = 2.1 Hz, 1H), 4.31 (d, J = 2.1 Hz, 1H), 3.27 (s, 

3H) 3.09-2.96 (m, 2H), 2.58-2.50 (m, 1H), 2.22 (dd, J = 5.7, 2.1 Hz, 1H); 13C NMR   177.2, 

143.6, 142.4, 140.7, 140.2, 126.3, 126.28, 126.25, 126.0, 125.6, 125.5, 123.5, 123.4, 75.8, 

58.9, 48.7, 46.1, 45.6, 42.7; HRESI-MS m/z cald for [M+Na]+ C19H18NaO3: 317.1154, found: 

317.1148. 

 

4.8 11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydro-9,10-ethanoanthracene-12-

methyl ester (7b) 

Method A 

To a solution of alcohol 7a (1.23 g, 4.18 mmol) in dry CH2Cl2 (20 mL) under an argon 

atmosphere was added 2,6-lutidine (0.62 mL, 5.44 mmol) followed by TBDMSOTf (1.15 

mL, 5.02 mmol). The mixture was stirred at rt for 2 h. The reaction mixture was quenched 

with sat. NaHCO3 solution and then extracted with CH2Cl2 (2 × 30 mL). The combined 

extracts were dried (Na2SO4), filtered and concentrated. Purification by flash column 

chromatography (silica gel, 30:1 hexane/ EtOAc) gave TBDMS ether 7b (1.64 g, 96%) as a 

white solid. 

 

Method B 

To a solution of alcohol 7a (1.50 g, 5.09 mmol) in dry CH2Cl2 (43 mL) under an argon 

atmosphere was added imidazole (0.66 g, 10.2 mmol) followed by TBDMSCl (0.88 g, 5.61 

mmol). The mixture was stirred at rt for 15 h. The reaction mixture was quenched with sat. 

NaHCO3 solution and then extracted with CH2Cl2 (2 × 30 mL). The combined extracts were 
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dried (Na2SO4), filtered and concentrated. Purification by flash column chromatography 

(silica gel, 30:1 hexane/ EtOAc) gave TBDMS ether 7b (1.68 g, 81%) as a white solid, m.p. 

81.7-84.8 oC; IR (CH2Cl2) max: 3445, 2953, 1737, 1470, 1253, 1213, 1094, 837, 746 cm-1; 1H 

NMR   7.29-7.25 (m, 4H), 7.12-7.06 (m, 4H), 4.59 (d, J = 2.2 Hz, 1H), 4.43 (d, J = 2.2 Hz, 

1H), 3.60 (s, 3H), 3.45 (d, J = 9.7, 5.6 Hz, 1H), 2.95 (t, J = 9.7 Hz, 1H), 2.51-2.47 (m, 1H), 

2.14 (dd, J = 5.6, 2.2 Hz, 1H), 0.91 (s, 9H), 0.0033 (s, 6H); 13C NMR  173.5, 144.1, 142.6, 

141.1, 140.8, 126.4, 126.2 (2×C), 125.9, 125.8, 125.1, 123.6, 123.5, 65.7, 61.9, 48.0, 46.9, 

45.7, 45.6, 26.1; HRESI-MS m/z cald for [M+Na]+ C25H32NaO3Si: 431.2018, found: 

431.2049.  

 

4.9 11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydro-9,10-ethanoanthracene-12-

(2-propenyl)-12-methyl ester (8a) 

Butyllithium (2.79 mL, 2.79 mmol, 1.0 M in hexane) was added dropwise to a stirred solution 

of diisopropylamine (0.47 mL, 3.35 mmol) in THF (4 mL) at 78 C, and the mixture was 

then stirred at 0 C for 1 h. HMPA (0.61 mL) was then added at 78 C, followed by a 

solution of 7b (0.95 g, 2.33 mmol) in THF (4 mL) and stirring was continued for 3 h at 0 C.   

The solution was cooled to 78 C and allylbromide (0.303 ml, 3.50 mmol) was added to the 

reaction mixture which was left stirring at 0 C for 30 min. The mixture was stirred at rt for 

15 h. The resulting mixture was quenched with an aqueous saturated NH4Cl solution and 

extracted with CH2Cl2 (3 × 15 mL). The combined extracts were washed with water (30 mL) 

and saturated NaCl solution (30 mL). The combined organic layer was dried (Na2SO4), 

filtered and concentrated in vacuo. Purification of the residue by flash column 

chromatography (silica gel, 40:1 hexane/ EtOAc) gave allyl adduct 8a (0.88 g, 84%) as a 

white solid, m.p. 85.1-88.5 oC; IR (CH2Cl2) max :  2952, 1737, 1470, 1211, 1213, 1094, 837, 

746 cm-1; 1H NMR   7.32-7.29 (m, 2H), 7.26-7.25 (m, 1H), 7.22-7.20 (m, 1H), 7.12-7.09 (m, 

2H), 7.06-7.04 (m, 2H), 5.80-5.72 (m, 1H), 5.10 (d, J = 10.1 Hz, 1H), 4.94 (d, J = 16.9 Hz, 

1H), 4.56 (s, 1H), 4.51 (d, J = 1.9 Hz, 1H), 3.70 (dd, J = 9.6, 4.6 Hz 1H), 3.54 (s, 3H), 3.02 (t, 

J = 9.6 Hz, 1H), 2.51-2.48 (m, 1H), 2.09 (dd, J = 13.9, 6.7 Hz, 1H), 1.65 (dd, J = 13.9, 6.7 

Hz, 1H), 0.96 (s, 9H), 0.074 (s, 3H), 0.057 (s, 3H); 13C NMR  180.8, 149.9, 146.6 (2×C), 

146.3, 138.9, 131.2 (2×C), 131.1 (2×C), 130.7, 128.3, 123.5, 67.6, 59.1, 56.9, 55.2, 53.3, 

50.8, 42.7, 31.2, -5.31; HRCI-MS m/z cald for [M+H]+ C28H37NaO3Si: 449.2512, found: 

449.2532. 
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4.10 Cyclization of 8a 

Butyllithium (1.55 mL, 1.55 mmol, 1.0 M in hexane) was added dropwise to a stirred solution 

of diisopropylamine (0.25 mL, 1.76 mmol) in THF (2 mL) at 78 C, and stirring was 

continued at 0 C for 1 h. TMEDA (0.86 mL) was added at 78 C, followed by allyl adduct 

8a (0.23 g, 0.52 mmol) in THF (1.5 mL) and the mixture stirred at 0 C for 30 min and then 

at rt for 18 h. The resulting mixture was quenched with an aqueous saturated NH4Cl (20 mL) 

and extracted with CH2Cl2 (3 × 15 mL). The combined extracts were washed with water (20 

mL) and saturated NaCl solution (20 mL) and then dried (Na2SO4), filtered and concentrated 

in vacuo. Purification of the residue by flash column chromatography (silica gel, 25:1 

hexane/ EtOAc) gave 11-(tert-butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-

ethanoanthracene-12,1'-cyclopent[2']en]-5'-one 9a (0.10 g, 37%) as a white solid and 12-

allyl-11-(tert-butyl-dimethyl-silanyloxy)methyl-9,10-dihydro-9,10-ethanoanthracen-12-yl)-3-

(isopropylamino)but-2-en-1-one 10a (15 mg, 14%) as a colorless oil. 

9a: m.p. 117-119 oC; IR (CH2Cl2)  max: 2952, 1746, 1468, 1256, 1103, 1094, 837, 758 cm-1; 
1H NMR  7.34 (d, J = 6.3 Hz, 2H), 7.19-7.11 (m, 6H), 6.08 (d, J = 7.2 Hz, 1H), 5.23 (d, J = 

7.2 Hz, 1H), 4.49 (s, 1H), 3.89 (s, 1H), 3.14 (q, J = 9.9, 6.0 Hz, 1H), 3.10 (d, J = 20.4 Hz, 

1H), 2.98 (dd, J = 9.9, 9.6 Hz, 1H) , 2.80 (d, J = 22.8 Hz, 1H), 2.27 (td, J = 9.6, 6 Hz, 1H), 

0.88 (s, 9H), -0.04 (s, 6H); 13C NMR  199.0, 161.5, 142.4, 141.9, 134.9, 126.7, 125.6, 125.3, 

125.2, 125.1, 125.0, 124.9, 122.5, 117.0, 63.8, 49.1, 48.5, 46.6, 44.6, 38.5, 25.9, -5.3; HRCI-

MS m/z cald for [M+H]+ C27H33O2Si: 417.2250, found: 417.2240. 

10a: 1H NMR  10.41 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.27-7.22 (m, 2H), 7.16 

(d, J = 8.1 Hz, 1H), 7.08-7.05 (m, 2H), 7.02-6.98 (m, 2H), 5.85-5.71 (m, 1H), 5.06 (d, J = 5.6 

Hz, 2H), 4.87 (d, J =16.8 Hz, 1H), 4.63 (s, 1H), 4.39 (s, 1H), 3.71 (dd, J = 9.8, 6.0 Hz, 1H), 

3.60 (q, J = 6.3 Hz, 1H), 3.23 (t, J = 9.8 Hz, 1H), 2.48 (td, J = 7.2, 6.0 Hz, 1H), 2.17 (dd, J = 

13.7, 5.4 Hz, 1H), 1.89 (s, 3H), 1.50 (dd, J = 13.7, 8.7 Hz, 1H), 1.18 (d, J = 6.3 Hz, 3H), 1.16 

(d, J = 6.3 Hz, 3H), 0.96 (s, 9H), 0.093 (s, 3H), 0.064 (s, 3H); 13C NMR   199.0, 161.6, 

145.0, 142.7, 142.6, 142.0, 134.9, 126.7, 125.7, 125.4, 125.3, 125.1, 125.0, 124.9, 122.5, 

117.0, 93.2, 63.8, 56.2, 49.1, 48.5, 48.2, 46.6, 44.6, 38.6, 26.0, 23.9, 23.7, 19.1, -5.57; HRCI-

MS m/z cald for [M+H]+  C33H46NO2Si: 516.3298, found: 516.3328. 

 
4.11 11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-ethanoanthra- 

cene-12, 1'-cyclopent[3']ene]-2'-hydroxy-5'-one (11) 
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To a solution of the spiro ketone 9 (82 mg, 0.19 mmol) in dry CH2Cl2 (0.72 mL) was added a 

solution of m-chloroperoxybenzoic acid (74 mg, 0.43 mmol) in dry CH2Cl2 (1.1 mL) at 0 C 

and the mixture stirred at rt for 10 h. The mixture was then washed with sat. NaHCO3 

solution at 0 C and then water and dried (Na2SO4), filtered and concentrated to dryness to 

give the crude epoxide which was used in the next step without any further purification. To a 

solution of the crude epoxide (90 mg, 0.21 mmol) in dry THF (1.2 mL) was added 

triethylamine (0.0058 mL, 0.42 mmol) at 0 C and the mixture was left  to stir at rt overnight. 

The solution was washed with water at 0 C, and brine then dried (Na2SO4), filtered and 

concentrated in vacuo. Purification of the residue by flash column chromatography (15:1 

system of hexane/EtOAc) gave the alcohol 11 (87 mg, 95%) as a mixture of 2 diastereomers 

(dr 2.3:1)as a white solid. The diastereomers were separated by flash column chromatography 

(20: 1 system of hexame/EtOAc) to afford (1'S,2'R,11S)-11-(tert-Butyl-dimethyl-

silanyloxy)methyl-9,10-dihydrospiro[9,10-ethanoanthracene-12, 1'-cyclopent[3']ene]-2'-

hydroxy-5'-one (11a) as a major diastereomer; m.p. 115.2-118.5 C; IR (CH2Cl2) max: 3417, 

2953, 2929, 1711, 1469, 1256, 1173, 1094, 837, 760 cm-1; 1H NMR   7.58 (dd, J = 6.0, 2.1 

Hz, 1H), 7.39-7.31 (m, 4H), 7.20-7.09 (m, 4H), 6.25 (d, J = 6.0 Hz, 1H), 4.93 (s, 1H), 4.35 

(d, J = 2.7 Hz, 2H), 3.6-3.57 (m, 2H) , 2.54 (td, J = 6.0, 2.4 Hz, 1H), 0.82 (s, 9H), 0.016 (s, 

3H), -0.07 (s, 3H); 13C NMR  206.3, 160.8, 144.3, 143.5, 141.9, 141.7, 132.5, 126.15, 126.1, 

125.9, 125.6, 125.5, 125.2, 125.1, 122.9, 81.3, 75.2, 65.2, 50.7, 48.5, 48.0, 25.8, -5.5, -5.7; 

HRESI-MS m/z cald for [M+Na]+ C27H32NaO3Si: 455.2018, found: 455.1974. (1'S,2'S,11'S)-

11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-ethano anthracene-12, 1'-

cyclopent[3']ene]-2'-hydroxy-5'-one (11b) was obtained as a minor diastereomer; 1H NMR   

7.39-7.17 (m, 9H), 6.18 (d, J = 6.0 Hz, 1H), 4.63 (s, 1H), 4.27- 4.24 (m, 2H), 3.83-3.73 (m, 

2H), 2.59-2.56 (m, 2H), 0.96 (s, 9H), 0.023 (s, 6H). 

 

4.12 (1'S,2'S,11S)-11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-

ethanoanthracene-12,1'-cyclopent[3']ene]-2'-propyl-2',5'-diol (12a) 

Propyllithium (1.59 mL, 0.64 mmol, 0.81 M in hexane) was added dropwise to a stirred 

solution of alcohol 11 (0.28 g, 0.64 mmol) in THF (8.3 mL) at 78 C, then the mixture  

stirred at 0 C for 2 h. The resulting reaction mixture was quenched with aqueous saturated 

NH4Cl solution and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed 

with water (20 mL) and brine (20 mL) then dried (Na2SO4), filtered and concentrated in 

vacuo to give the crude mixture as a yellow solid. Purification of the mixture by flash column 
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chromatography (silica gel, 6:1 hexane/EtOAc) gave the major product 12a (0.105 g, 34%) as 

a white solid, m.p. 143.3-146.0 C; IR (CH2Cl2) max:  3552, 3410, 2956, 1469, 1256, 1188, 

837, 768 cm-1; 1H NMR  7.42-7.39 (m, 1H), 7.36- 7.30 (m, 3H), 7.15- 7.11 (m, 4H), 6.19 (d, 

J = 5.8 Hz, 1H), 6.07 (dd, J = 5.8, 2.8 Hz, 1H), 4.87 (s, 1H), 4.55 (d, J = 2.1 Hz, 1H), 3.33 (s, 

1H), 3.22 (dd, J = 9.1, 3.2 Hz, 1H), 2.88 (t, J = 9.5 Hz, 1H), 1.95 (dd, J = 9.5, 2.5 Hz, 1H), 

1.31-1.13 (m, 2H), 0.93-0.92 (m, 11H), 0.63 (t, J = 7.3 Hz, 3H), 0.02 (s, 3H), -0.03 (s, 3H); 

13C NMR  144.7, 142.6, 142.1, 141.7, 135.8, 126.0, 125.7, 125.6, 125.56, 125.46, 125.3, 

124.8, 123.5, 86.7, 77.4, 63.7, 58.9, 46.7, 46.4, 46.3, 35.5, 25.9, 17.5, 14.5, -5.19, -5.2; 

HRESI-MS m/z cald for [M+Na]+ C30H40NaO3Si: 499.2644, found: 499.2632. 

 

4.13 (1'S,2'S,11S)-11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-

ethanoanthracene-12,1'-cyclopent[3']ene]-2'-octyl-2',5'-diol (12b) 

Octyllithium (0.62 mL, 0.11 mmol, 0.1 M in hexane) was added dropwise to a stirred solution 

of alcohol 11 (40 mg, 0.090 mmol) in THF (0.5 mL) at 78 C, and the mixture was stirred at 

0 C for 2 h. The resulting reaction mixture was quenched with aqueous saturated NH4Cl and 

extracted with CH2Cl2 (3 × 10 mL). The combined extracts were washed with water (10 mL) 

and brine (10 mL) then dried (Na2SO4), filtered and concentrated in vacuo to give the crude 

mixture as a yellow solid. Purification of the mixture by flash column chromatography (silica 

gel, 20:1 hexane/EtOAc) gave the major product 12b (15 mg, 30%) as a solid, m.p. 91.7-94.5 

C; IR (CH2Cl2) max :  3423, 2927, 1469, 1254, 1088, 837, 759 cm-1; 1H NMR  7.44-7.28 

(m, 4H), 7.17-7.11 (m, 4H), 6.20 (d, J = 5.8 Hz, 1H), 6.10 (dd, J = 5.8, 2.7 Hz, 1H), 4.88 (s, 

1H), 4.57 (s, 1H), 3.35 (s, 1H), 3.25 (dd, J = 9.1, 3.0 Hz, 1H), 2.89 (t, J = 10 Hz, 1H), 1.99-

1.95 (m, 1H), 1.33-1.13 (m, 10H), 0.95 (s, 13H), 0.92 (t, J = 6.6 Hz, 3H), 0.04 (s, 3H), -0.004 

(s, 3H); 13C NMR  144.7, 142.6, 142.1, 141.7, 135.8, 126.0, 125.7, 125.6, 125.56, 125.5, 

125.2, 124.8, 123.5, 86.7, 77.5, 63.7, 58.9, 46.7, 46.32, 46.25, 33.0, 31.8, 29.9, 29.2, 25.9 

(2×C), 24.0, 22.6, 14.1, -5.17, -5.2; HRESI-MS m/z cald for [M+Na]+ C35H50NaO3Si: 

569.3427, found: 569.3465. 

 

4.14 (1'R,2'S,11S)-11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-

ethanoanthracene-12,1'cyclopent[3']ene]-2'-hydroxy-2'-propyl-5'-one (13a) 

To a solution of alcohol 12a (0.11 mg, 0.22 mmol) in dry DMF (0.63 mL) was added a 

solution of pyridinium dichromate (0.16 g, 0.44 mmol) in dry DMF (0.64 mL) at 0 C and the 

mixture was stirred at 0 C for 10 h. The DMF was evaporated in vacuo and the residue was 



16 
 

partitioned between CH2Cl2 and water. The layers were separated and the organic layer 

washed with water (3 × 10 mL), dried (Na2SO4) and evaporated to dryness. The crude 

product was purified by column chromatography (silica gel; 6:1 hexane/ EtOAc) to give 

ketone 13a (85 mg, 81%) as a solid; m.p. 99.5-102.3; IR (CH2Cl2) max: 3570, 3423, 2956, 

2930, 1708, 1468, 1256, 1190, 836, 776, 735 cm-1;  1H NMR  7.43 (d, J = 6.0 Hz, 1H), 7.33-

7.24 (m, 4H), 7.12-7.07 (m, 4H), 6.06 (d, J = 6.0 Hz, 1H), 4.32 (d, J = 3.5 Hz, 2H), 3.56 (t, J 

= 9.7 Hz, 1H), 3.24 (dd, J = 9.7, 6.5 Hz, 1H), 2.42 (t, J = 6.4 Hz, 1H), 1.51- 1.44 (m, 2H), 

1.25-1.13 (m, 2H), 0.84 (s, 9H), 0.79 (t, J = 7.0 Hz, 3H), -0.08 (s, 6H); 13C NMR  204.8, 

162.0, 146.4, 141.9, 141.7, 141.4, 132.5, 126.0, 125.9, 125.8, 125.7, 125.6, 125.5, 124.7, 

123.5, 84.3, 64.2, 63.1, 52.1, 48.3, 46.8, 44.1, 25.8, 17.2, 14.5, -5.4, -5.5; HRESI-MS m/z 

cald for [M+Na]+ C30H38NaO3Si: 497.2488, found: 497.2467. 

 
4.15 (1'R,2'S,11S)-11-(tert-Butyl-dimethyl-silanyloxy)methyl-9,10-dihydrospiro[9,10-

ethanoanthra cene-12,1'cyclopent[3']ene]-2'-hydroxy-2'-octyl-5'-one (13b) 

To a solution of the alcohol 12b (0.13 g, 0.12 mmol) in dry DMF (0.69 mL) was added a 

solution of pyridinium dichromate (0.18 g, 0.48 mmol) in dry DMF (0.7 mL) at 0 C and the 

mixture was stirred at 0 C for 10 h. The crude reaction mixture was worked up as described 

above for 13a. The crude product was purified by column chromatography (silica gel; 6:1 

hexane/EtOAc) to give ketone 13b (99 mg, 75%) as a clear oil; IR (CH2Cl2) max: 3425, 

2927, 1710, 1467, 1255, 1090, 836, 776 cm-1; 1H NMR  7.45 (d, J = 5.9 Hz, 1H), 7.36-7.28 

(m, 4H), 7.16-7.12 (m, 4H), 6.10 (d, J = 5.9 Hz, 1H), 4.35 (d, J = 4.9 Hz, 2H), 3.57 (t, J = 9.2 

Hz, 1H), 3.25 (dd, J = 9.8, 6.4 Hz, 1H), 2.45 (dd, J = 7.4, 6.2 Hz, 1H), 1.29-1.18 (m, 14H), 

0.91-0.84 (m, 12H), 0.033 (s. 3H), 0.024 (s, 3H); 13C NMR (CDCl3, 75 MHz): 204.9,  162.2, 

146.3, 141.9, 141.7, 141.4, 132.5, 126.1, 125.9, 125.8, 125.7, 125.6, 125.5, 124.7, 123.5, 

84.3, 64.2, 63.0, 51.9,  48.3, 46.7, 41.7, 31.8, 30.0, 29.4, 29.1, 25.9, 23.7, 22.6, 14.1, -5.39, -

5.45; HRESI-MS m/z cald for [M+Na]+ C35H48NaO3Si: 567.3270, found: 567.3293. 

 

4.16 (S,Z)-5-((tert-Butyl-dimethyl-silanyloxy)ethylidene)-4-hydroxy-4-propylcyclopent-

2-enone (14a) 

A solution of 13a (50 mg, 0.092 mmol) in dry 1,2-dichlorobenzene (1 mL) was stirred in a 

sealed tube at 180 C for 4 h. The crude product was purified by column chromatography 

(silica gel, hexane) and then thin layer chromatrography (6:1 hexane/EtOAc) to give 

cyclopentenone  14a (2 mg, 11%) as a clear oil; IR (CH2Cl2) max:  3417, 2930, 1703, 1656, 
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1255, 1099, 838, 777 cm-1; 1H NMR  7.31(d, J =  6.0 Hz, 1H),  6.33- 6.27 (m, 2H), 4.87 (qd, 

J = 17.3, 4.7 Hz, 2H), 1.85-1.78 (m, 2H), 1.32-1.26 (m, 2H), 0.94-0.89 (m, 12H), 0.09 (s, 

6H); 13C NMR  195.9, 160.8, 140.4, 138.8, 135.5, 78.7, 60.3, 41.6, 25.9, 17.8, 14.3, -5.2,  

-5.3; HRESI-MS m/z cald for [M+Na]+ C16H28NaO3Si: 319.1705, found: 319.1707. 

 
4.17 (S,Z)-5-((tert-Butyl-dimethyl-silanyloxy)ethylidene)-4-hydroxy-4-octylcyclopent-2-

enone (14b) 

A solution of 13b (0.10 g, 0.18 mmol) in dry 1,2-dichlorobenzene (1.2 mL) was stirred in 

sealed tube at 180 C for 4 h. The crude product was purified by column chromatography 

(silica gel, hexane) and then thin layer chromatrography (8:1 hexane/EtOAc) to give 

cyclopentenone 14b (5.4 mg, 8.1%) as a clear oil; IR (CH2Cl2) max: 3444, 2928, 1704, 1658, 

1464, 1256, 1100, 838, 778 cm-1; 1H NMR  7.33 (d, J = 6.3 Hz, 1H), 6.34-6.29 (m, 2H), 

4.89 (qd, J = 16.7, 4.3 Hz, 2H), 1.87-1.84 (m, 2H), 1.28 (s, 12H), 0.93-0.89 (m, 12H), 0.11 (s, 

6H); 13C NMR  195.8, 160.8, 140.5, 138.8, 135.6, 78.7, 60.3, 39.4, 31.8, 29.8, 29.7, 29.4, 

29.2, 25.9, 24.4, 14.0, -5.2 (2×C); HRESI-MS m/z cald for [M+Na]+ C21H38NaO3Si: 

389.2488, found: 389.2484.   
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