
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science, Medicine and Health - 
Papers: part A Faculty of Science, Medicine and Health 

2005 

Bovine feces from animals with gastrointestinal infections are a source of Bovine feces from animals with gastrointestinal infections are a source of 

serologically diverse atypical enteropathogenic Escherichia coli and Shiga serologically diverse atypical enteropathogenic Escherichia coli and Shiga 

toxin-producing E. coli strains that commonly possess intimin toxin-producing E. coli strains that commonly possess intimin 

Michael A Hornitzky 
NSW Department of Primary Industries 

Kim Mercieca 
University of Wollongong 

Karl A Bettelheim 
University of Melbourne 

Steven P. Djordjevic 
NSW Department of Primary Industries 

Follow this and additional works at: https://ro.uow.edu.au/smhpapers 

 Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences 

Commons 

Recommended Citation Recommended Citation 
Hornitzky, Michael A; Mercieca, Kim; Bettelheim, Karl A; and Djordjevic, Steven P., "Bovine feces from 
animals with gastrointestinal infections are a source of serologically diverse atypical enteropathogenic 
Escherichia coli and Shiga toxin-producing E. coli strains that commonly possess intimin" (2005). Faculty 
of Science, Medicine and Health - Papers: part A. 1700. 
https://ro.uow.edu.au/smhpapers/1700 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smh
https://ro.uow.edu.au/smhpapers?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/smhpapers/1700?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1700&utm_medium=PDF&utm_campaign=PDFCoverPages


Bovine feces from animals with gastrointestinal infections are a source of Bovine feces from animals with gastrointestinal infections are a source of 
serologically diverse atypical enteropathogenic Escherichia coli and Shiga toxin-serologically diverse atypical enteropathogenic Escherichia coli and Shiga toxin-
producing E. coli strains that commonly possess intimin producing E. coli strains that commonly possess intimin 

Abstract Abstract 
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated 
from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New 
South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, 
and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth 
followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of 
enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting 
colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 
isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with 
eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age 
cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and 
S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were 
identified, including O5:H−, O8:H19, O26:H−, O26:H11, O113:H21, O157:H7, O157:H− and Ont:H− which 
are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes 
Ont:H− and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from 
nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to 
represent atypical EPEC, were identified, with O111:H− representing the most prevalent. Using both 
techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 
(15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar 
following enrichment in EC (modified) broth was the most successful method for the isolation of STEC 
(24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of 
EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important 
reservoirs of eae-positive E. coli. 
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Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from
191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South
Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA
were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by
plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and
on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the
intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence
(9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive
sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker,
K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439–6445,
2002). Forty-seven STEC serotypes were identified, including O5:H�, O8:H19, O26:H�, O26:H11, O113:H21,
O157:H7, O157:H� and Ont:H� which are known to cause severe disease in humans and 23 previously
unreported STEC serotypes. Serotypes Ont:H� and O113:H21 represented the two most frequently isolated
STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive
E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H� representing the most
prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were
cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture
on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation
of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation
of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important
reservoirs of eae-positive E. coli.

Enteropathogenic Escherichia coli (EPEC) and a subset of
the Shiga toxin-producing E. coli (STEC) known as enterohe-
morrhagic E. coli (EHEC) represent two of the five pathotypes
of the diarrheagenic E. coli recognized at present (32, 43). The
genetic diversity of diarrheagenic E. coli isolated from both
healthy and clinically affected humans (diarrhea, bloody diar-
rhea [BD], and hemolytic uremic syndrome [HUS]) continues
to increase as more epidemiological studies of humans rely on
the use of molecular tools (e.g., PCR) to detect virulence
genes. This is exemplified in a recent study of 677 STEC strains
isolated from humans in Germany over a 3-year period where
55 E. coli O groups and 24 different H types were identified (4).
Although 11 serotypes accounted for 69% of all STEC strains
isolated (4), 31 serotypes had previously not been described as
human STEC. Importantly, of these 677 isolates, 392 (58%)

possessed the intimin gene (eae) and a significant proportion of
these 334 (85.2%) (P � 0.01) were from patients with diarrhea,
BD, or HUS. Of 108 isolates from patients with BD or HUS,
94 (87%) possessed eae. These and other studies underscore
the importance of the association between (i) the presence of
intimin in STEC cells that cause disease in humans (8, 14) and
(ii) using molecular approaches to screen for clinically impor-
tant E. coli (4, 7, 12, 20, 45).

Unlike other diarrheagenic E. coli isolates, EPEC and many
EHEC isolates share the ability to form attaching and effacing
(A/E) lesions on the surfaces of epithelial cells in the gastro-
intestinal tract (17). Genes encoding proteins required for the
induction of A/E lesions reside on a chromosomally located
pathogenicity island known as the locus of enterocyte efface-
ment (LEE). The LEE encodes genes for a type III secretion
system, various translocated proteins including Tir and Esp
proteins, and intimin. The intimin gene, eae, was the first gene
to be associated with A/E activity, and its presence is often
used as a marker for the presence of the entire LEE island
since many eae-positive EPEC and EHEC strains are positive
when examined with the fluorescent-actin staining (FAS) assay

* Corresponding author. Mailing address: Elizabeth Macarthur Ag-
ricultural Institute, New South Wales Department of Primary Indus-
tries, Private Mail Bag 8, Camden, New South Wales 2570, Australia.
Phone: 61-246-406311. Fax: 61-246-406400. E-mail: michael.hornitzky
@agric.nsw.gov.au.
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(5, 26, 27, 39) and many eae-positive EPEC that are negative by
the FAS assay become FAS positive when the EAF plasmid
pMAR is introduced by conjugation (4). Thus, eae is a key
marker for infections caused by most EHEC and EPEC
strains.

EPEC cells have been broadly defined as diarrheagenic E.
coli cells that do not possess Shiga toxin genes and possess the
ability to form A/E lesions on intestinal cells (24). EPEC
strains remain a leading cause of endemic infantile diarrhea in
developing countries, and although the role of classic EPEC
serotypes as diarrheagenic agents in developing countries is
important, their frequency of appearance in infants less than 1
year old is very rare (32). However, recent studies suggest that
EPEC strains may comprise a genetically more complex group
of E. coli (5, 45). Multilocus enzyme electrophoresis studies
identified two distinct genetic groups of EPEC known as EPEC
1 and EPEC 2 (47). Furthermore, two types of EPEC, known
as the typical and atypical EPEC, have been described. Typical
EPEC cells possess a large EPEC adherence factor (EAF)
plasmid, generate a characteristic adherence pattern (localized
adherence pattern) within 3 h of incubation with tissue culture
cells (42), and belong to a defined group of serotypes including
O55:H6, O86:H34, O111:H2, O114:H2, O119:H6, O127:H6,
and O142:H6/H34 (45). Atypical EPEC cells do not possess
the EAF plasmid and can be subdivided into two groups: those
that possess the LEE island and those that possess LEE and
other virulence attributes including genes for enterohemolysin
(ehxA) and the enteroaggregative heat stable toxin (EAST1)
(45). Unlike typical EPEC, atypical EPEC has been isolated
from the feces of meat-producing animals (45).

Ruminants, particularly cattle and sheep, are a recognized
source of STEC and atypical EPEC and represent a major
reservoir for entry of these pathogens into the human popula-
tion via the food chain (3, 7, 12, 20, 40, 45). Extensive studies
of healthy, Australian slaughter-age cattle and sheep indicate
that these meat-producing animals harbor a wide variety of
serologically diverse STEC strains, several of which (O157:
H�/H7, O26:H1/H11, O113:H21; O5:H�; O103:H2) have
been commonly associated with both sporadic cases and out-
breaks of serious disease in humans (7, 12, 20, 46). Despite the
isolation of these STEC serotypes, the vast majority of STEC
strains recovered from the feces of healthy slaughter-age sheep
and cattle do not possess eae although many possess ehxA (12,
13, 20, 41). EHEC serotypes O157:H7 and O111:H�, which
are often found in association with patients with HUS and
bloody diarrhea, are rarely isolated from healthy slaughter-age
cattle and sheep in Australia (12, 13, 20). Contaminated mett-
wurst sausage containing O111:H� STEC (and several other
STEC serogroups, including O157, O160, O91, O113, O123,
and O128) was responsible for Australia’s largest outbreak of
HUS and bloody diarrhea (37), and this serotype and others,
including O26:H�, O113:H21, O130:H11, OR:H9, O157:H�,
Ont:H7, and Ont:H�, represent the most common EHEC
isolates recovered from patients with HUS in Australia (15).
Sursprisingly, despite a number of studies (11, 20), there is only
a single report of the isolation of O111:H� STEC from rumi-
nant sources in Australia (21).

The culture of STEC and EPEC involved in infections of
humans or cattle can be problematic as there are no effective
differential media available to discriminate between STEC and

non-STEC and between EPEC and non-EPEC. The develop-
ment of techniques such as PCR and Shiga toxin assays have
contributed to the detection of more than 400 EHEC sero-
types (http:/www.lugo.usc/ecoli, http://www.microbionet.com
.au/vtectable.htm). The degree of success for the detection of
STEC is also a function of the microbiological culture proce-
dures employed. In one study of 65 patients with EHEC infec-
tions, direct culture of stool samples onto sorbitol MacConkey
(SMAC) agar failed to detect four patients with O157 infec-
tions but these were detected by subculturing the enrichment
broths (35). In a study of diagnostic bovine fecal samples,
STEC cells were isolated from 23 (18.7%) of 123 samples;
STEC cells were isolated from 14 samples by direct culturing,
and 13 samples yielded STEC after enrichment in E. coli (EC)
(modified) broths. In both instances, enterohemolytic colonies
were identified by plating on vancomycin-cefixime-cefsulodin
blood (BVCC) agar as described previously (30). Only four
fecal samples produced STEC cells by using both culture meth-
ods.

In this study, we examined the presence of the virulence
genes stx1, stx2, eae, and ehxA among E. coli samples cultured
from 191 diagnostic bovine fecal samples with the aim of de-
termining if cattle with the clinical signs indicative of gastro-
intestinal diseases excrete E. coli with virulence attributes akin
to those commonly isolated from patients in Australia with
HUS, hemorrhagic colitis, and diarrhea. Furthermore, we ex-
amined the effect of direct and enrichment culture protocols
on the diversity of serotypes of E. coli isolates possessing com-
binations of the four virulence genes isolated from these diag-
nostic fecal samples. Using a multiplex PCR (36), we tested
fecal samples for the presence of E. coli possessing O111 and
O157 serogroups and compared the efficiency of both direct
and enrichment culture procedures employing SMAC agar
with PCR on the isolation of O157 E. coli.

MATERIALS AND METHODS

Fecal samples. Bovine diagnostic fecal samples (191 total) from 85 (44.5%)
calves, 57 (29.8%) adult cattle, and 49 (25.7%) cattle of unspecified ages were
used in this study. These beef or dairy cattle were suspected of having salmo-
nellosis, yersiniosis, rotavirus, coccidiosis, parasites, colibacillosis, pestivirus, or
ill thrift. Fecal samples were submitted to the Regional Veterinary Laboratory,
Elizabeth Macarthur Agricultural Institute, New South Wales, over a 13-month
period. Samples were usually submitted by courier and arrived at the laboratory
within 24 h after their collection.

Detection of stx1, stx2, eae, ehxA, and O111 and O157 rfb regions in fecal
samples by multiplex PCR. Two preparation methods were employed. Feces (50
mg) were inoculated into 10 ml of EC (modified) broth (CM853; Oxoid, Bas-
ingstoke, United Kingdom) and incubated at 37°C for 18 to 20 h. Feces (50 mg)
were also inoculated into saline and vortexed. PCR for the specific detection of
stx1, stx2, eae, and ehxA was carried out on the saline sample and on the EC
(modified) broth after incubation as described previously (36). The detection of
specific portions of the rfb (O-antigen-encoding) regions of E. coli serotypes
O111 and O157 was carried out on the EC (modified) broths as described by
Paton and Paton (36). Procedures used for the preparation of DNA for PCR
have been described previously (16). Amplified DNA fragments were resolved by
gel electrophoresis using 2% agarose and stained with ethidium bromide. Glyc-
erol stocks of the overnight EC (modified) broth were stored at �80°C.

Isolation of STEC and EPEC. In this study, EPEC cells were defined as
eae-positive stx-deficient E. coli cells. Two methods were used for the isolation of
STEC and EPEC. One method examined the success of isolation of STEC and
EPEC by direct culturing on BVCC agar and SMAC agar. Several studies have
shown that there is a close association between the presence of stx and entero-
hemolysin (encoded by the ehxA gene) in STEC isolated from human and
ruminant sources (6, 12, 20, 30), and BVCC agar was developed to identify
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enterohemolytic colonies. The second method compared the success of isolation
of these E. coli subpopulations by plating EC (modified) fecal enrichment broths
on both BVCC agar and SMAC agar.

Method 1: direct culturing on BVCC and SMAC agars. Feces (50 mg) were
inoculated into 10 ml of saline and vortexed. Serial 10-fold dilutions were carried
out to 10�3, and the dilution which produced about 100 single colonies on
MacConkey agar with a 100-�l inoculum was cultured onto BVCC agar to
facilitate the detection of hemolysin variants of STEC. BVCC-agar-positive
colonies produce a characteristic small turbid zone of hemolysis after incubation
at 37°C for 18 to 24 h (30). SMAC agar was also inoculated for the detection of
non-sorbitol-fermenting colonies. Up to five BVCC- and SMAC-positive colo-
nies, if available, per fecal sample were examined by multiplex PCR as described
above.

Method 2: culturing on BVCC and SMAC agars from EC (modified) fecal
broth. Feces (50 mg) were inoculated into 10 ml of EC (modified) broth and
incubated at 37°C for 18 to 20 h, and an aliquot was examined for the presence
of four virulence genes (stx1, stx2, eae, and ehxA) by multiplex PCR as described
previously (36). Serial 10-fold dilutions of enrichment broths positive for these
virulence genes were plated onto MacConkey agar. The dilution that produced
single colonies (ideally about 100 colonies per plate) was cultured onto BVCC
and SMAC agar plates. Up to five BVCC-agar-positive and five SMAC-agar-
positive colonies per aliquot of EC (modified) enrichment broth were subjected
to multiplex PCR as described previously (36).

Biochemical and serological analyses of isolates. Isolates containing one or
more virulence factors were confirmed as being E. coli as described by Bettel-
heim et al. (1) and serotyped as described by Bettelheim and Thompson (2) and
Chandler and Bettelheim (10) using O antisera O1 through O181 and H antisera
H1 through H56. Twenty-three isolates were not serotyped.

RESULTS

Detection of E. coli virulence factors and of O111 and O157
rfb regions in fecal samples by multiplex PCR. Virulence genes
were detected in 14 (7.3%) fecal saline preparations and in 132
(69.1%) EC (modified) broths (Table 1), and all samples pos-
itive in fecal saline preparations were also positive in EC (mod-
ified) broths. The most common virulence gene combinations
identified in the saline preparations were stx2 alone, eae alone,
and stx1 with eae and ehxA; each were detected in 3 of 14
(21.4%) samples. The most common virulence gene combina-
tions identified in the EC (modified) broths were eae with ehxA
(21 of 132 [16.0%]), stx2 alone (19 of 132 [14.4%]), and stx2 and
ehxA (16 of 132 [12.1%]). STEC isolates with the profiles stx1

with eae and ehxA (13 of 132 [9.8%]) and stx1 with stx2 and ehxA
(13 of 132 [9.8%]), stx1 with stx2 (11 of 132 [8.3%]), and stx1

with stx2, eae, and ehxA (10 of 132 [7.6%]) were all well rep-

resented. Multiplex PCR data showing the combinations of
virulence genes detected are presented in Table 1.

Of 191 samples, 14 (7.3%) were positive for the O111 rfb
region and 7 (3.7%) were positive for the O157 rfb region by
PCR. One sample (0.5%) was positive for both O111 and O157
rfb regions (data not shown).

Isolation of STEC and EPEC. Of the 191 fecal samples, 90
(47.1%) yielded STEC or EPEC. Using both culture tech-
niques STEC cells were cultured from 69 (36.1%) samples and
EPEC cells were cultured from 30 (15.7%) samples, including
9 (4.7%) samples which yielded both STEC and EPEC.

Virulence genes and serotypes in STEC and EPEC cells
isolated by direct culturing on SMAC agar. Of the 191 diag-
nostic fecal samples, 25 (13.1%) yielded non-sorbitol-ferment-
ing colonies containing virulence factors, and 4 (2.1%) of these
yielded two isolates with different virulence factors. Of these,
17 (75.0%) yielded STEC and 4 (16.3%) yielded EPEC (in-
cluding one sample which also yielded STEC). Direct culture
on SMAC detected seven STEC serotypes (O119:H�, O146:
H21, O159:H9, O177:H�, Ont:H16, Ont:H38, and OR:H21)
which were not detected elsewhere. The most common STEC
profile was stx2, which was detected on seven (24.1%) occa-
sions and belonged to serotypes O119:H�, O159:H�, Ont:
H�, Ont:H16, and Ont:H38. STEC strains possessing ehxA
with stx2 were detected on five (17.3%) occasions and belonged
to serotypes O8:H19 and Ont:H11 (Table 2). Three isolates
possessed stx2 with eae and ehxA (serotypes Ont:H� and OR:
H�), and one isolate (serotype O146:H21) possessed all four
virulence genes. The 25 samples yielding non-sorbitol-ferment-
ing colonies belonged to 13 STEC serotypes, none of which
included the O157 serogroup. EPEC isolated by direct culture
on SMAC agar belonged to serotypes O98:H�, O118:H� and
OR:H� (Table 3). Of the 29 isolates recovered from direct
culture on SMAC agar, there were 20 STEC and 4 EPEC.

Virulence genes and serotypes in STEC and EPEC cells
isolated by direct culture on BVCC agar. Of the 191 samples
that were cultured directly onto BVCC agar, 59 (30.9%)
yielded BVCC-agar-positive colonies containing virulence

TABLE 1. Multiplex PCR data derived from 191 diagnostic bovine
fecal samples

Virulence factor
profile

No. detected in:

Saline EC broth

stx1 0 6
stx1, stx2 1 11
stx1, stx2, eae 0 2
stx1, stx2, eae, ehxA 0 10
stx2 3 19
stx2, eae, ehxA 1 6
eae 3 6
eae, ehxA 1 21
stx1, eae 0 2
stx1, eae, ehxA 3 13
stx2, ehxA 0 16
stx1, stx2, ehxA 0 13
ehxA 2 7
Negative 177 59

TABLE 2. Virulence factors detected in SMAC and BVCC agar-
positive colonies (one isolate per animal) from direct culture and

enrichment in EC (modified) broth

Virulence profile

No. of isolates

Direct SMAC agar
enrichment Direct BVCC agar

enrichment

eae 2 2 2 0
ehxA 5 4 2 6
ehxA, eae 2 7 25 16
stx1 3 2 1 1
stx2 7 6 0 0
stx1, stx2 0 2 0 0
stx1, eae 0 0 0 1
stx2, eae 0 0 1 0
stx2, ehxA 5 4 15 25
stx1, stx2, ehxA 1 0 5 8
stx1, ehxA, eae 0 1 8 8
stx2, ehxA, eae 3 2 3 2
stx1, stx2, ehxA, eae 1 2 2 1

Total 29 32 64 68
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genes. One fecal sample yielded three isolates with different
virulence gene profiles, and three samples possessed two iso-
lates with two virulence gene profiles. Thirty-three (59.3%) of
the BVCC-agar-positive samples yielded STEC (including two
samples with two different STEC virulence factor profiles), and
26 (46.7%) yielded EPEC, including two samples that also

yielded STEC and one sample that yielded two EPEC with
different virulence gene profiles. Two samples yielded E. coli
containing ehxA. Three O157:H� isolates were recovered us-
ing this approach. STEC with serotypes O8:H19, O53:H41,
O113:H21, O130:H11, O174:H8, Ont:H�, Ont:H11, Ont:H19,
and Ont:Hnt possessed the most common virulence gene pro-

TABLE 3. Virulence gene profiles of STEC serotypes isolated from diagnostic bovine fecal samples

Serotype
No. of isolates
(no. of cattle

colonized)

Previously
reported Virulence factor profile

Culture method (no. of isolates)

Calf/cow/unknownaDirect Enrichment

stx1 stx2 eae ehxA SMAC BVCC agar SMAC BVCC agar

O2(rel):Hnt 1 (1) No � � � � 1 Unknown
O5:H� 7 (4) Yes � � � � 2 3 2 Calf/cow
O7:H21 1 (1) No � � � � 1 Calf
O8:H19 11 (4) Yes � � � � 4 2 5 Calf/unknown
O15rel:H� 2 (1) No � � � � 2 Unknown
O22rel:H29 1 (1) No � � � � 1 Unknown
O26:H� 6 (3) Yes � � � � 4 2 Calf
O26:H11 1 (1) Yes � � � � 1 1 Calf
O53:H41 1 (1) No � � � � 1 Calf
O71:H9 2 (1) No � � � � 1 1 Calf
O74:H28 2 (1) Yes � � � � 2 Unknown
O75:H32 2 (1) No � � � � 2 Unknown
O81:H� 1 (1) No � � � � 1 Cow
O84:H� 2 (2) Yes � � � � 2 Calf
O88:H� 1 (1) Yes � � � � 1 Calf
O112a,b:H19 3 (2) Yes � � � � 1 2 Unknown
O113:H21 9 (7) Yes � � � � 1 8 Cow/unknown
O119:H� 1 (1) Yes � � � � 1 Calf
O123:H11 6 (2) Yes � � � � 4 2 Calf
O130:H11 3 (2) Yes � � � � 2 1 Cow/unknown

4 (3) � � � � 3 1 Calf/unknown
O130:H38 2 (1) No � � � � 1 1 Cow
O146:H21 1 (1) Yes � � � � 1 Cow
O157:H� 5 (2) Yes � � � � 3 2 Calf
O157:H7 2 (1) Yes � � � � 1 1 Calf
O159:H9 1 (1) No � � � � 1 Calf
O159:H21 2 (1) No � � � � 2 Cow
O163:H� 1 (1) Yes � � � � 1 Cow
O174:H8 7 (3) No � � � � 2 1 4 Calf/unknown
O175:H� 2 (1) No � � � � 1 1 Unknown
O177:H� 3 (1) Yes � � � � 3 Cow
O177:H32 1 (1) No � � � � 1 Calf
O178:H19 1 (1) Yes � � � � 1 Cow
O179:H8 1 (1) No � � � � 1 Cow
O181:H49 1 (1) No � � � � 1 Unknown
ONT:H� 1 (1) Yes � � � � 1 Calf

5 (5) � � � � 2 1 Cow
5 (3) � � � � 2 1 2 Calf/cow
1 (1) � � � � 1 Cow

ONT:H2 1 (1) Yes � � � � 1 Unknown
2 (1) � � � � 2 Calf

ONT:H11 7 (3) No � � � � 1 2 1 3 Unknown
1 (1) � � � � 1 Unknown

ONT:H16 2 (2) Yes � � � � 2 Calf/cow
ONT:H19 3 (1) Yes � � � � 2 1 Cow
ONT:H21 1 (1) No � � � � 1 Unknown
ONT:H38 3 (2) No � � � � 3 Calf
ONT:H41 1 (1) No � � � � 1 Calf
ONT:H49 1 (1) No � � � � 1 Unknown
ONT:HR 1 (1) No � � � � 1 Calf
OR:H� 3 (2) Yes � � � � 2 1 Calf

5 (2) � � � � 3 2 Calf
OR:HNT 1 (1) No � � � � 1 Unknown
OR:H21 1 (1) Yes � � � � 1 Unknown

a Cattle of unknown age.
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file of ehxA with stx2, which was isolated on 15 (25.4%) occa-
sions. STEC cells that possessed ehxA with stx1 and eae was
recovered on eight occasions (13.6%) and belonged to sero-
types O5:H�, O26:H�, O26:H11, O74:H28, O84:H�, O123:
H11, Ont:H�, and OR:H� (Table 2). Seven STEC serotypes
were detected only by direct culturing on BVCC agar [O2
(rel):Hnt, O15 (rel):H�, O53:H41, O88:H�, O159:H21,
O163:H�, and OR:Hnt].

Virulence genes and serotypes in STEC and EPEC from EC
(modified) broths and culturing on SMAC agar after enrich-
ment in EC (modified) broth. Virulence factors were detected
in 32 E. coli isolates cultured from 28 samples. Four samples
contained two E. coli isolates with different virulence factor
profiles. stx2 alone was the most common STEC virulence gene
profile (from six [18.8%] samples) and belonged to serotypes
O7:H21, Ont:H�, Ont:H2, and Ont:HR. STEC cells with stx2

and ehxA were detected on four (12.5%) occasions and be-
longed to serotypes O8:H19, O174:H8, and Ont:H11. Three
isolates belonging to the O157 serogroup (two O157:H� iso-
lates and one O157:H7 isolate) were recovered. Interestingly,
three O5:H� isolates with ehxA, eae, and stx1 were recovered;
this important serotype has not previously been reported to be
nonsorbitol fermenting. Four serotypes (O7:H21, O75:H32,
O177:H�, and Ont:HR) were detected only on SMAC agar
after enrichment in EC (modified) broth (Table 3). A total of
15 serotypes were shown to possess non-sorbitol-fermenting
colonies (Table 3). EPEC cells were cultured from nine sam-
ples, of which seven contained ehxA and eae; two contained eae
only (Table 2). Non-sorbitol-fermenting EPEC cells with ehxA
and eae belonged to serotypes O41:H2, Ont:H7, Ont:H25, and
OR:H�. EC (modified) enrichment on BVCC agar. Sixty-
eight E. coli isolates (from 63 samples) contained virulence
genes. Five samples yielded E. coli with two different virulence
gene profiles. The most common STEC virulence gene profile
was stx2 with ehxA, which was detected in 25 samples (39.7%).
Serotypes that possessed stx2 with ehxA included O8:H19, O81:
H�, O113:H21, O130:H11, O174:H8, O179:H8, O181:H49,
Ont:H�, Ont:H2, Ont:H11, Ont:H19, and Ont:H21. Thirteen
serotypes were detected only after enrichment followed by
culturing on BVCC agar (O22rel:H29, O74:H28, O81:H�,
O84:H�, O178:H19, O179:H8, O181:H49, Ont:H41, and Ont:
HR). The most common EPEC profile was ehxA with eae,
which was detected on 16 (25.4%) occasions (Table 2). Sero-
types that possessed eae with ehxA included O98:H�, O111:
H�, O111:H11, and O177:H11.

Isolation of E. coli O111 and O157 from O111 and/or O157
PCR-positive fecal samples. Eleven of the 14 fecal samples
that were positive in an O111 rfb PCR yielded E. coli isolates
with the O111 serogroup. These consisted of nine fecal sam-
ples that contained O111:H� isolates and three isolates that
yielded O111:H11. One sample yielded both serotypes. All
isolates were cultured on BVCC agar (from EC [modified]
enrichment broths and via direct culture). One fecal sample
produced an O111:H11 isolate that was negative with the O111
rfb PCR. Three of seven fecal samples positive with the O157
rfb PCR yielded E. coli isolates belonging to the O157 sero-
group. One of these possessed an O157:H7 serotype, and the
other two possessed an O157:H� serotype.

Identification of STEC and EPEC serotypes. All STEC and
EPEC isolates were identified as E. coli by using standard

biochemical assays (1). Of the 47 STEC serotypes identified,
the most common belonged to serotypes Ont:H� (11 isolates
from nine animals), O113:H21 (9 isolates from seven animals),
O130:H11 (7 isolates from five animals), O8:H19 (11 isolates
from four animals), O5:H� (7 isolates from four animals),
O26:H�/H11 (7 isolates from four animals), Ont:H11 (8 iso-
lates from four animals), and OR:H� (8 isolates from four
animals). Two fecal samples yielded O157:H� (five isolates),
and one sample yielded O157:H7 (two isolates) A description
of all STEC serotypes, their virulence gene profiles, and their
method of isolation is shown in Table 3. STEC cells isolated
during this study with serotypes O5:H�, O26:H�, O26:H11,
O113:H21, O146:H21, O157:H�, and O157:H7 have been re-
covered from patients with HUS, hemorrhagic colitis, and
bloody diarrhea. Of the recently described E. coli serogroups
O174-O181, we identified STEC with serotypes O174:H8,
O175:H�, O177:H�/H32, O178:H19, O179:H8 and O181:
H49. One of these (O179:H8) has previously been recovered
from patients with bloody diarrhea. Twenty-three STEC sero-
types are reported here for the first time (Table 3). Fifteen
EPEC serotypes were identified, and the majority of these
were isolated from calves. The vast majority of eae-positive
isolates also possessed enterohemolysin, suggesting that many
of these may represent atypical EPEC. The most common
EPEC serotypes were O111:H� (18 isolates from nine ani-
mals) and O177:H11 (13 isolates from six animals). The isola-
tion of eight O111:H11 isolates from three animals was also
significant.

There were six fecal samples which yielded E. coli containing
ehxA only, and these possessed serotypes O69:H32, O76.H�,
O84:H38, O149:H�, O149:H7, and O168:H8.

DISCUSSION

Ruminants, particularly cattle and sheep, are regarded as
the major reservoirs of STEC that contaminate food for hu-
man consumption. However, studies of STEC isolated from
the feces of healthy, slaughter-age cattle and sheep show that
most STEC strains do not possess the eae gene (3, 7, 12, 20, 29,
40, 46). The high prevalence of serologically diverse STEC
cells containing eae (35 [29.2%] of 120 isolates) (Tables 2 and
3) was a feature of the current study. This observation rein-
forces findings from a previous preliminary Australian study of
123 bovine diagnostic fecal samples of which 23 yielded STEC
cells containing ehxA and/or eae. Of these 23, 11 (47.8%) also
possessed eae with stx1, eae, and ehxA, representing the most
common virulence gene profile (22). The high prevalence of
eae-positive STEC cells in diagnostic bovine fecal samples is in
marked contrast to the virulence factor profiles of STEC cells
from healthy Australian cattle in a snapshot study where 37 of
1,692 (2.2%) isolates were colonized with STEC isolates con-
taining ehxA and/or eae but only nine (0.5%) of these carried
eae (20).

Many of the STEC isolates identified in our study (O5:H�,
O26:H�/H11, O113:H21, O157:H�/H7) represent serotypes
that are commonly recovered from humans with serious dis-
ease (http:/www.lugo.usc/ecoli, http://www.microbionet.com.au
/vtectable.htm). Collectively, our data indicate that diagnostic
bovine feces are a source of STEC with serotypes and virulence
gene attributes that show many similarities to those identified
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in EHEC from human patients with a range of gastrointestinal
and other serious diseases.

Studies of STEC cells recovered from healthy calves and
diarrheagenic calves and adult cattle, both within Australia and
overseas, also show that a significant number possess eae (11,
19, 23, 28, 33, 48). STEC isolated during longitudinal studies of
Australian dairy cattle (11) showed that (i) significantly more
STEC isolates possessed stx2, (ii) approximately 30% of STEC
isolates possessed eae, particularly isolates from younger ani-
mals, (iii) eae and ehxA occurred more frequently together
than individually, especially in younger animals, and (iv) wean-
ing calves and preweaned calves possessed STEC with stx1

predominantly. However, most eae-positive STEC strains iso-
lated from healthy and diarrheagenic cattle in different regions
of the world possess stx1 (28, 31, 33, 34, 48) and our finding that
55.9% of eae-positive STEC isolates possess stx1 is in keeping
with these observations.

A serologically diverse collection (15 serotypes) of eae-pos-
itive, stx-deficient E. coli strains was isolated in this study. The
majority of these were isolated from the feces of calves, were
enterohemolytic on BVCC agar, and possessed ehxA (Table 4).
The most prevalent serotypes were O111:H� (18 isolates from
nine animals) followed by serotype O177:H11 (13 isolates from
six animals). Although we have not determined adherence
phenotype(s) or looked for the presence of the EAF plasmid
for each of these eae-positive stx-deficient E. coli, these isolates
are likely to represent atypical EPEC cells because they (i) do
not possess serotypes representative of typical EPEC, (ii) were
recovered from an animal reservoir (typical EPEC cells do not
have an animal reservoir), and (iii) possess ehxA, a marker for
the EHEC plasmid (9, 45). eae-positive, stx-deficient E. coli
strains recently isolated from healthy cattle in Japan do not
possess the bfp locus, possess the ehxA gene, and belong to a
wide range of serotypes (28). Although a role for eae-positive
E. coli as the causes of diarrhea and other gastrointestinal
afflictions in humans is gaining momentum (see reference 45
and references therein), it is clear that healthy young cattle and

diarrheagenic calves and cattle represent an important source
of these potential pathogens.

Despite O111:H� STEC being the most common cause of
HUS in Australia, reports of its isolation from Australian cattle
are extremely rare (15). Extensive epidemiological investiga-
tions of STEC in the feces of healthy cattle and sheep in
Australia failed to identify O111 STEC (11, 12, 13, 20). The
only report of the isolation of the O111 serogroup to date has
been from bovine diagnostic fecal samples from a 6-year-old
cow with profuse watery diarrhea and a calf with a history of ill
thrift and diarrhea (21). All 18 O111:H� isolates (from nine
calves) and all eight O111:H11 isolates (from three calves)
from our current study possessed eae with ehxA but did not
contain stx genes. It is possible that the source of the O111
STEC serogroup that infects humans in Australia is sick cattle
and that phage-borne genes transfer into these EPEC cells,
converting them to STEC. O111 STEC cells that are shed by
sick cattle may colonize healthy cattle that are sent to slaughter
for human consumption. Alternatively, healthy cattle may
carry O111 EPEC with the same outcome.

Although we suspect that healthy calves and diarrheagenic
cattle and calves represent true reservoirs of O111 STEC in
Australia, evidence for this remains limited (21). However,
studies of diarrheagenic calves in Germany (48), Scotland (44),
the United States (19, 23), and Canada (42) have all reported
the isolation of O111 STEC (mostly with serotype O111:H�).
Attempts to detect O111 STEC in the longitudinal studies of a
cohort of beef calves and their dams in Scotland using a com-
bination of immunomagnetic capture coupled with PCR and
DNA hybridization assays failed (38), suggesting that O111
STEC cells are uncommon or shed sporadically. However, it is
clear that diagnostic bovine feces represent a reservoir for
O111 E. coli that possess eae and ehxA. Further work is re-
quired to examine if healthy slaughter-age cattle commonly
carry these O111 EPEC cells.

O111 and O157 STEC cells are uncommonly isolated from
the feces of Australian cattle compared to other STEC sero-

TABLE 4. Virulence gene profiles of EPEC serotypes isolated from diagnostic fecal samples

Serotype
No. of isolates
(No. of cattle

colonized)

Virulence
factor profile

Culture method (no. of isolates)

Calf/cow/unknownaDirect Enrichment

eae ehxA SMAC agar BVCC agar SMAC agar BVCC agar

O2:H� 1 (1) � � 1 Cow
O28:H� 1 (1) � � 1 Cow
O41:H2 1 (1) � � 1 Cow
O98:H� 3 (2) � � 1 1 1 Calf/unknown
O103:H2 1 (1) � � 1 Calf
O111:H� 18 (9) � � 11 7 Calf
O111:H11 8 (3) � � 5 3 Calf
O118:H� 1 (1) � � 1 Calf
O177:H11 13 (6) � � 8 5 Calf/cow
ONT:H2 1 (1) � � 1 Calf
ONT:H7 1 (1) � � 1 Calf
ONT:H11 2 (2) � � 2 Calf
ONT:H25 3 (3) � � 2 1 Calf
OR:H� 4 (2) � � 3 1 Calf
OR:H28 1 (1) � � 1 Calf

a Cattle of unknown age.
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types. To increase the opportunity of isolating these sero-
groups, we screened all EC (modified) broths with a multiplex
PCR specific for the rfb (O-antigen encoding) regions of both
these serotypes. Furthermore, SMAC agar was also used to
increase the chances of isolating non-sorbitol-fermenting
STEC such as the O157 serogroup. Although O111 E. coli was
isolated from 10 of 14 samples that were O111 PCR positive,
none of these possessed stx genes. Three of the seven samples
that were positive for the O157 rfb gene yielded O157.
O157:H7 STEC was isolated from the feces of only 1 of 1,692
healthy cattle, and O157:H� was isolated from one feedlot
animal in longitudinal studies of feedlot and pasture beef cattle
(20). Furthermore, O157 STEC cells were rarely detected (1 in
505 fecal samples) in dairy cattle presented for slaughter in
Victoria, Australia (18). These studies reinforce the findings
that O157 and O111 STEC cells are not common inhabitants
of the intestinal flora of most healthy, slaughter-age Australian
cattle. However, O157:H7 STEC cells have been recovered
with higher frequency from calves and weanlings during lon-
gitudinal studies of Australian dairy cattle (11).

In this study, 47 STEC serotypes were detected, including 23
that have not previously been reported (http://www.lugo.usc.es
/ecoli). Of the 24 serotypes previously reported, most had been
isolated from only cattle. These data further support observa-
tions that there is a predilection of STEC serotypes for specific
animal species (12, 13, 20). Of the serotypes most commonly
associated with sheep in Australia (1, 12, 13), such as O5:H�,
O75:H8, O91:H�, O123:H�, and O128:H2, only O5:H� was
isolated in this study.

In our study, 96 of 163 (58.9%) E. coli isolates containing
ehxA also possessed at least one stx gene, suggesting that ehxA
is often associated with STEC (Table 2). Although Beutin et al.
(6) first reported the close association between enterohemoly-
sin and Shiga toxin production and used washed sheep blood to
identify such isolates, Lehmacher et al. (30) developed this
medium further by adding vancomycin, cefixime, and cefsulo-
din, which has the added advantages of inhibiting the growth of
non-E. coli bacteria and enhancing the hemolytic effect. Of the
120 STEC isolates recovered in our study, 81 (67.5%) were
derived from BVCC agar and 17 of 23 (73.9%) serotypes that
have not previously been reported were isolated on BVCC
agar. We have previously shown that BVCC agar can be suc-
cessfully used to isolate serologically diverse STEC from the
feces of cattle and sheep (12, 13, 20, 22). However, our study
shows that BVCC agar is also very effective for the detection of
EPEC. A total of 41 of 43 (95.3%) EPEC isolates cultured on
BVCC agar also contained ehxA, indicating a stronger associ-
ation between ehxA and eae without stx than between ehxA with
stx (Table 2).

The development of molecular biological techniques as well
as immunologically based methods for rapidly diagnosing
STEC in humans, food, and the environment has shown that
non-O157:H7 serotypes are responsible for severe infections in
humans (4, 7, 14, 25, 35). To date, 435 EHEC serotypes have
been reported to cause disease in humans (4; http:/www.lugo
.usc/ecoli, www.microbionet.com.au/vtectable.htm) and it is in-
creasingly recognized that non-O157 STEC cells also play an
important role in the less severe gastrointestinal complications
such as diarrhea and bloody diarrhea (4). Most importantly, 31
previously unreported STEC serotypes were identified in that

study. Non-O157 STEC strains are considered to be of greater
clinical significance as causes of human disease than O157
STEC strains in Spain, Germany, France, Switzerland, Den-
mark, Belgium, Italy, Argentina, Australia, South Africa, and
Chile but not in Canada, the United States, Japan, England, or
Scotland, although the reported prevalence rates for non-O157
STEC cells continue to increase with the application of mo-
lecular and immunological screening methodologies (25, 35;
see also reference 7 and references therein). Despite introduc-
ing nine new antisera against serogroups O174 through O182,
we were unable to determine the serogroup of numerous
STEC isolates with various flagella types, including H2, H11,
H16, H19, H21, H38, H41, and H49 (including several OR
types), and eae-positive, stx-deficient E. coli (flagella types H2,
H4, H7, H11, and H25), suggesting that more STEC and
EPEC serogroups remain to be identified.

The range of serotypes and number of samples containing
STEC and EPEC cells were increased when both direct culture
and enrichment in EC (modified) broth were used on diagnos-
tic bovine fecal samples. Fifty-nine samples (30.9%) were pos-
itive for one or more of the four E. coli virulence factors by
using direct culturing on BVCC agar, and 63 samples (33.0%)
were positive after enrichment in EC (modified) broth and
culturing on BVCC agar. Seven STEC serotypes were detected
only by direct culturing on BVCC agar, and five of these had
not previously been reported. Thirteen serotypes were de-
tected only after enrichment followed by culturing on BVCC
agar, of which six had not previously been reported. Similarly,
direct culturing on SMAC detected seven serotypes which
were not detected elsewhere and four serotypes were detected
only on SMAC agar after enrichment in EC (modified) broth
(Table 3). The use of a dual-culture approach and the use of
SMAC agar as well as BVCC agar were also useful in detecting
multiple serotypes in single samples. Thirteen samples yielded
two STEC serotypes, one sample yielded three STEC sero-
types, and two samples yielded three STEC and one EPEC
serotypes. This type of approach may be useful in determining
the diversity of STEC and EPEC in humans and healthy ani-
mals. However, the identification of multiple STEC serotypes
in clinical specimens may raise questions as to the identity of
the real etiological agent in EHEC infections.
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