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Observation of nondegenerate cavity modes for a distorted cavity modes for a
distorted polystyrene microsphere

Abstract

Nondegenerate azimuthal morphology-dependent resonances are observed for a distorted, fluorescently
labeled polystyrene microsphere levitated in a quadrupole ion trap. Modeling the individual resonances by
using perturbation theory allows a determination of quadrupole and octupole distortion parameters. The
particle’s shape changes slowly over the course of the measurement and eventually becomes spherical.
The morphological changes are facilitated by laser heating of the particle above the polystyrene glass
transition temperature. We demonstrate a method of transforming a trapped particle to a sphere and
rendering its azimuthal modes degenerate.

Keywords
GeoQuest

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Trevitt, A. J., Wearne, P. J., Bieske, E. J. & Schuder, M. D. (2006). Observation of nondegenerate cavity
modes for a distorted cavity modes for a distorted polystyrene microsphere. Optics Letters, 31 (14),
2211-2213.

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/1439


https://ro.uow.edu.au/smhpapers/1439

July 15, 2006 / Vol. 31, No. 14 / OPTICS LETTERS 2211

Observation of nondegenerate cavity modes for a
distorted polystyrene microsphere

Adam J. Trevitt, Philip J. Wearne, and Evan J. Bieske
School of Chemistry, The University of Melbourne, 3010, Parkville, Victoria, Australia

Michael D. Schuder
Department of Chemistry, Carroll College, Waukesha, Wisconsin 53186

Received February 16, 2006; revised April 12, 2006; accepted April 23, 2006; posted April 26, 2006 (Doc. ID 68154)

Nondegenerate azimuthal morphology-dependent resonances are observed for a distorted, fluorescently la-
beled polystyrene microsphere levitated in a quadrupole ion trap. Modeling the individual resonances by
using perturbation theory allows a determination of quadrupole and octupole distortion parameters. The
particle’s shape changes slowly over the course of the measurement and eventually becomes spherical. The
morphological changes are facilitated by laser heating of the particle above the polystyrene glass transition
temperature. We demonstrate a method of transforming a trapped particle to a sphere and rendering its
azimuthal modes degenerate. © 2006 Optical Society of America

OCIS codes: 290.4020, 290.5850, 300.2530.

It is well known that a microsphere can act as a
three-dimensional optical cavity exhibiting morphol-
ogy dependent resonances (MDRs) or whispering gal-
lery modes.”™ The MDRs of a dielectric sphere,
which are distinguished by polarization (TE or TM),
mode order », and angular momentum number [,
have 2/+1 azimuthal degeneracy. The degeneracy is
removed when the sphere is distorted to an ellipsoid
so that for a given polarization, v, and [, the system
exhibits (I+1) distinct azimuthal modes (labeled m
=[, [-1,...,0). Optical effects resulting from shape
distortion have been reported for droplets generated
by a vibrating orifice where periodic distortions from
sphericity occur on millisecond time scales.>® In this
Letter, we study the slow morphological changes of a
single fluorescent polystyrene microparticle confined
in a quadrupole ion trap (QIT). The shape param-
eters for the particle are extracted by modeling the
splitting and shifting of nondegenerate azimuthal
MDRs by using the perturbation theory developed by
Lai et al.

We report here a case in which nondegenerate azi-
muthal MDRs are spectrally resolved and assigned,
thus providing an opportunity to test and apply cur-
rent theoretical descriptions of distorted microsphere
MDRs.” Furthermore, this work demonstrates that
laser-induced melting can transform a trapped poly-
styrene particle into a sphere and render its azi-
muthal modes degenerate.

The QIT used in this study (shown in Fig. 1) is
similar to that reported by Schlemmer et al.® and was
operated in single-phase mode at 250 Hz frequency
and 740 V amplitude. Fluorophore labeled polysty-
rene microspheres (Sigma-Alrich, nominal diameter
2.16 um) were introduced into the QIT by using
matrix-assisted laser desorption—ionization
(MALDI), with 3-hydoxypicolinic acid (3-HPA) as the
absorbing matrix. To prepare a MALDI sample, three
to four drops of an aqueous suspension of the polysty-
rene particles were mixed with three to four drops of
a saturated solution of 3-HPA in an acetonitrile—
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water mixture on a stainless steel sample tip. The
sample was then dried under nitrogen and placed
above the QIT situated in a vacuum chamber. A
single 7 ns laser pulse, third harmonic (A=355 nm)
from a @ switched Nd:YAG laser, irradiated the
sample, ejecting charged particles into the QIT. Usu-
ally the particles carried 1000-1400 elementary posi-
tive charges. By systematically varying the trap driv-
ing voltage and frequency, the particles were ejected
until only one remained. By using He buffer gas
(~100 mTorr) we damped the remaining particle’s
motion so that its oscillation amplitude was
<0.1 mm. Approximately 2 mW from a continuous
wave a 532nm Nd:YVO, laser irradiated the
trapped particle. Scattered or fluorescent light was
collected perpendicular to the incident laser beam by
using a 25 mm diameter F/1 lens and directed
through an edge filter to remove 532 nm light and
then into a spectrometer (with a resolution
~0.03 nm) equipped with a CCD detector interfaced
to a personal computer.

The fluorescence emission spectrum of most
trapped particles was dominated by the MDR’s char-
acteristic of a dielectric sphere and could be modeled
using Mie theory yielding the particle’s radius (a()

and refractive index (m )\).9 However, several particles
exhibited more complex spectra indicating distor-
tions from sphericity. Moreover, the particles ap-
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Fig. 1. View of the experimental configuration.
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Fig. 2. A-D, Fluorescence spectra from a single polysty-

rene particle taken at ~5 min intervals. Spectral changes

are due to the particle’s relaxation from spheroidal to

spherical shape. E is the predicted scattering spectrum for

a sphere with ay=1363 nm and m,=1.549+10,230 nm?/)\2.

peared to gradually relax to a spherical form. For ex-
ample, Fig. 2 shows the consecutive spectra for a
particle recorded at ~5 min intervals where the
emission profile changes significantly over 20 min.
Initially the spectrum displays several broad peaks
tailing off to the blue (spectrum A). After some time
small resolvable peaks become apparent to the blue
of the TEy, and TEg peaks (spectra B and C). These
features are attributable to nondegenerate azimuthal
modes associated with a nonspherical particle. After
20 min, the emission spectrum has become that of a
spherical particle and the MDRs are modeled and la-
beled accordingly. The theoretical Mie scattering
spectrum [Fig. 2(E)] was generated by assuming a
particle ay=1363 nm and m, =1.549+10230 nm?/\2,

Nondegenerate azimuthal MDRs clearly resolved
in traces B and C (Fig. 3) have wavelengths consis-
tent with the particle’s being a prolate spheroid. For
a given [, the various m modes have different effec-
tive path lengths and hence different resonant wave-
lengths. The m =[ mode confined around the spheroid
equator has the shortest wavelength, while the m
=0 mode confined to an ellipse passing through the
poles has the longest wavelength.

To derive information on the particle’s shape we
follow Lai et al.,” who developed expressions for the
MDR frequencies of a distorted dielectric sphere.
They consider a sphere affected by an axially sym-
metric shape perturbation such that the radius is

r(0,¢) = a + Ap\47Y L o(6, ), (1)

where Ay is a weighting term for the Y7, ((6, ¢) spheri-
cal harmonic. The shift of the m modes (dw) with the
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same [ relative to that of a sphere with radius a is
given as

5(.0 AL
F(L,l,m), (2)

w a

where F(L,l,m) is defined as

F(L,l,m)=A(L,l)f(m), (3)
with
A(L,l 2l C(IIL;000)]?| 1 ML+
(’)_\/ﬁ[( ;000)] T | )
mC(llL;m,—m,O)
fm) = =V = it000) ®)

The C(jyjs;mimoms) are Clebsch—Gordan coeffi-
cients.

For odd L distortions, F(L,l,m) is zero and the m
modes remain degenerate.’ The lowest-order pertur-
bation to remove the degeneracy is a quadrupole dis-
tortion Y5 (6, ¢), which for />1 results in m-mode
shifts described by

m=1 0
[ [T TTTTTTIT 1
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mERR
C
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Fig. 3. Expanded sections of spectra B and C from Fig. 1.
Nondegenerate azimuthal MDRs are labeled. The m=I[
mode has the shortest wavelength and the m =0 mode the
longest, consistent with a prolate spheroidal particle.
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Fig. 4. Measured fractional frequency shifts for the TEy,
and TE;9 m modes in spectra B and C (points). Lines rep-
resent frequency shifts calculated by using Eq. (8) and the
fitted Ay and A4 values in Table 1.
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Table 1. Fitted Values of Quadrupole (A;) and Octupole (A,) Distortion Parameters®
Spectrum l a+3 Ay+0.2 A4£0.3 rp:3 rex3
B 20 1362 18.0 -2.6 1395 1339
19 1362 17.8 -2.7 1394 1339
C 20 1362 12.0 -1.8 1384 1347
19 1362 11.8 -2.1 1382 1347

“The fitted values are expressed in nanometers for TE g and TE,, m modes in Spectra B and C. The spheroid’s polar and equatorial radii

(r, and r, in nanometers) are also listed.

—F2,lm)=-——
0 a a 4

ow AQ AQ V%|:

3m?2
1_l(l+1) - ®

As seen in Fig. 4, the relative m-mode displacements
(dw/w) in spectra B and C display an almost qua-
dratic dependence on m as predicted by Eq. (6). How-
ever, a small additional quartic term is necessary to
fit the data. Thus an additional axial-symmetric
Y, (0, ¢) perturbation was included to extend Eq. (1)
to

r(0,¢) = a + Ag\[47Y 5 (0, @) + A gAY 4 o(6, ), (7)
and Eq. (2) to

5(1) Az A4
—=-—F(©2,l,m)-—F(4,l,m). (8)
w a a
For L=4,
27(12+1-10)1+2)(I-1)
A4,]) = . 5 , 9)
(21 - 1)(21 + 5)(41%2 - 9)
5(612 + 61 — 5)m? 35m*
fim)=1

TSP+ 2 -1-2)  3lP+22-1-2)
(10)

The m-mode frequencies in the TEy, and TEg re-
gions of spectra B and C were fitted to Eq. (8) to give
A, and A, values (Table 1). The value of a was con-
strained by assuming that the particle’s volume re-
mained constant. The fitted and experimental
m-mode displacements are in very good agreement
(Fig. 4).

The foregoing analysis shows that the evolving
emission spectra in Fig. 2 are consistent with the
slow change of a particle’s shape from prolate spher-
oid to sphere. The shape change, presumably driven
by surface tension, suggests that the particle’s tem-
perature exceeded the polystyrene glass transition
temperature (7,), which for bulk material is
~373 K.Y A particle temperature in the 400-450 K
range can be arrived at through estimations of the

heat input due to laser light absorption and heat loss
due to black body radiation and buffer gas cooling.

The final radius of the sphere in Fig. 2(D)
(1363 nm) is somewhat larger than the manufactur-
er’s quoted radius for the polystytrene spheres
(1080 nm). Tellingly, a sphere with a radius of
1361 nm has the same volume as two spheres with a
radius of 1080 nm. Therefore it seems likely that the
emission spectra in Figs. 2(A)-2(D) are the signa-
tures of the final stages of two smaller spheres fusing
into one.

In summary, we have shown that it is possible to
laser melt an isolated microparticle suspended in a
QIT, transforming it into a sphere, and rendering its
azimuthal modes degenerate. The quantitative de-
tails of the spheroidal particle’s shape have been ex-
tracted by assigning and modeling the spectrally re-
solved nondegenerate azimuthal modes.
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References

1. R. K. Chang and A. J. Campillo, eds., Optical Processes
in Microcavities (World Scientific, 1996).

2. K. J. Vahala, Nature 424, 839 (2003).

3. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top.
Quantum Electron. 12, 3 (2006).

4. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top.
Quantum Electron. 12, 15 (2006).

5. G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, Opt.
Lett. 16, 1269 (1991).

6. G. Chen, M. M. Mazumder, Y. R. Chemla, A.
Serpengiizel, R. K. Chang, and S. C. Hill, Opt. Lett. 18,
1993 (1993).

7. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S.
C. Hill, Phys. Rev. A 41, 5187 (1990).

8. S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich,
J. Appl. Phys. 90, 5410 (2001).

9. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo,
P. T. Leung, S. Y. Liu, and K. Young, J. Opt. Soc. Am. B
10, 1955 (1993).

10. D. R. Lide, ed., CRC Handbook of Chemistry and
Physics (CRC, 2004).



	Observation of nondegenerate cavity modes for a distorted cavity modes for a distorted polystyrene microsphere
	Recommended Citation

	Observation of nondegenerate cavity modes for a distorted cavity modes for a distorted polystyrene microsphere
	Abstract
	Keywords
	Disciplines
	Publication Details

	ol-31-14-2211.pdf

