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ABSTRACT 

We present optical ages for quartz and K-feldspar grains extracted from sedimentary deposits 

above and below Youngest Toba Tuff (YTT) at two localities in the Middle Son Valley (MSV), Madhya 

Pradesh, India.  These ash deposits have been the focus of past palaeoenvironmental investigations that 

aim to understand the effects of the ~74 ka Toba super-eruption on ecosystems and human populations in 

northern India.  Age estimates from both quartz and feldspar grains post-date the Toba eruption and 

single-grain age distributions suggest that YTT ash-bearing sediments in the MSV are mainly composed 

of a mixture of recently sun-exposed, flood-transported grains and older grains from slumped river bank 

deposits.  This study highlights the hazards of using YTT ash as an isochronous marker horizon in the 

MSV, and illustrates the need to independently assess the time of final deposition of reworked volcanic 

ash beds in sedimentary sequences used in stratigraphic correlations and palaeoenvironmental 

reconstructions. 
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1. Introduction 

Alluvial deposits in the Middle Son Valley (MSV) contain volcanic ash (Youngest Toba Tuff, 

YTT) and a rich archaeological record in the form of Palaeolithic, Mesolithic and Neolithic artefacts 

(Sharma and Clark, 1983; Williams et al., 2006) (Fig. 1).  The MSV has been the site of archaeological, 

geological, and palaeoenvironmental investigations that aim to reconstruct regional climate changes in the 

Late Pleistocene (e.g., Williams et al., 2006), and to understand the effect of the 73.88 ± 0.32 ka Toba 

volcanic super-eruption (Storey et al., 2012) on ecosystems and human populations in northern India 

(Jones and Pal, 2005; Williams et al., 2009; Haslam and Petraglia, 2010; Williams et al., 2010).  To this 

end, ash deposits geochemically associated with the YTT (Fig. S1) have been used as chronostratigraphic 

markers to help correlate the stratigraphies of the Son and neighbouring Belan Valleys (Williams et al., 

2006), as well as the Middle Son Basin and the Central Narmada Basin (Acharyya and Basu, 1993).  

Carbon isotope compositions of pedogenic carbonates sampled above and below the ash in the MSV have 

been used to infer changes in C3 and C4 biomass before and after the Toba eruption (Williams et al., 

2009).   

The MSV alluvium has been divided into five stratigraphic formations that comprise terraces 

ranging in height from ~5 m to 35 m above the level of the Son River bed.  These formations include 

(from oldest to youngest) the Sihawal, Khunteli, Patpara, Baghor (lower coarse member, and upper fine 

member) and Khetaunhi Formations, and are associated with specific Palaeolithic artefact and fossil 

assemblages (Williams and Royce, 1982; Sharma and Clark, 1983; Williams et al., 2006).  Volcanic ash 

is preserved at two localities: one near the confluence of the Rehi and Son rivers, close to the village of 

Ghoghara (referred to here as the Ghoghara main section), and one ~25 km downstream (east) of this, on 

the south bank of the river in the Khunteli Formation type-section (Williams et al., 2006) (Fig. 1).   

There are conflicting reports regarding the stratigraphic position of the YTT.  Williams and 

Royce (1982) reported the YTT as part of the coarse member of the Baghor Formation, whereas Williams 

and Clarke (1995) put the YTT below the Baghor Formation. Jones and Pal (2005) and Jones (2010) 
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believed the YTT accumulated sometime after deposition of the Patpara Formation, and Williams et al. 

(2006) reported the YTT as part of a newly discovered formation—the Khunteli Formation—and 

hypothesized that the Khunteli Formation is actually older than the Patpara Formation.  Gatti et al. (2011) 

suggested that these inconsistencies are partly due to an underlying assumption that the stratigraphic 

position of the YTT ash is laterally continuous and that accumulation of the ash has not been disturbed 

during vertical accumulation of the valley alluvium.  They present a model of river sedimentation in a 

low-to-medium sinuosity meandering channel that accounts for the laterally discontinuous ash layers 

observed at both the Ghoghara main section and the Khunteli Formation type-section.  The 

lithostratigraphy of these two ash exposures is described further below. 

1.1 Ghoghara main section 

The Ghoghara main section is one of eight geological sections near the Rehi-Son confluence that 

were examined in this study during the 2009 field season and have been described and interpreted by 

Gatti et al. (2011).  The base of all of these sections exposes fining-upward cross-bedded sands and 

gravels that have been interpreted to represent point-bar or counter-bar formation by a laterally migrating 

channel, followed by deposition of near-channel overbank sands (Gatti et al., 2011).  The overbank sands 

are overlain by clay that is interpreted to represent a distal, low-energy, shallow-water depositional 

environment on a floodplain (Gatti et al., 2011).  The YTT ash that overlies the clay is thought to have 

been preserved within a low-energy niche that was later rapidly buried by sediment, such as an oxbow 

lake or pond on the floodplain (Gatti et al., 2011).  Four sites preserving YTT ash, including the 

Ghoghara main section, are shown in Figure 2.  Sedimentological evidence of reworking of the primary 

ash is present in the form of gradational horizontal contacts and intermixing with the host silt and sand 

(Fig. 2B), and the fact that the ash-rich units are thicker than ~4–10 cm, which is the expected thickness 

of primary ash in the region (Gatti and Oppenheimer, 2013).   

The Ghoghara main section is a step trench that exposes ~11 m (vertical thickness) of generally 

fining-upward fluvial gravels, sands and silts, with a white (10YR 8/1, 10YR 8/2) YTT ash-rich unit 
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appearing between 6 and 7 m below the ground surface (Fig. 1B, Table 1).  This ash-rich unit is cohesive 

and breaks apart in blocks, some of which can still be seen partially buried in colluvium at the foot of the 

exposure.  The lowermost 4 cm of the ash (previously dated by Mark et al., 2013) is exceptionally white 

(10YR 8/1), contains sharp upper and lower contacts, and is thought to be a primary ash-fall layer (Gatti 

et al., 2011; Matthews et al., 2012).  Biotite crystals from this layer have been 
40

Ar/
39

Ar dated by Mark et 

al. (2013) to 72.7 ± 4.1 ka (weighted mean age ± 1σ for 15 multi-grain aliquots) and 95.1 ± 15.3 ka 

(isochron fit ± 1σ for the same 15 aliquots); both estimates are statistically consistent at 2σ with the 

astronomically calibrated 
40

Ar/
39

Ar age of 73.88 ± 0.32 ka for the YTT event (Storey et al., 2012).  The 

ash layer at the Ghoghara main section is the only one to have been dated directly.  Its use, therefore, as a 

time-marker horizon cannot be safely extended to other occurrences of YTT ash in the MSV, or further 

afield, without independent verification that the ash is in situ at all locations and has not been reworked 

since initial deposition. 

Each sedimentary unit within the Ghoghara main section has been assigned a lithofacies code 

using the code scheme of Miall (2006) (Fig. 1), and the description and interpretation of all facies is 

shown in Table 1.  The fining-upward sands and gravels at the base of the sequence (Sp) are interpreted to 

represent dune formation and migration within the river channel under progressively lower energy flow 

conditions due to lateral migration of the river channel.  These sands grade into silty fine-medium sand 

(Sm) and clayey silt (Fsm) that likely record overbank deposition followed by low energy deposition of 

fines in an abandoned channel, pond, or oxbow lake on a floodplain.  The ash (YTT) and ash-rich silt 

(Fma) are indicative of ash deposition and preservation within the same low-energy waterbody.  The 

overlying, alternating layers of fine and medium silty sand (Sma) and silt with pedogenic features (P) 

represent deposition of overbank sands and floodplain silts followed by soil development on the 

floodplain.  The facies analysis of the sediments in the Ghoghara main section is consistent with the 

interpretations of Gatti et al. (2011).   
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1.2 Khunteli Formation type-section 

A step trench was excavated at the Khunteli Formation type-section that exposes ~20 m (vertical 

thickness) of fluvial sands, gravels and silts (Fig. 1C, Table 1).  The base of the trench exposes crudely 

bedded gravels (Gm) and cross-bedded sands and gravels (Sp) that likely record bar and bedform 

deposition within a channel.  These sediments are overlain by ash-rich sandy silts (Fma) that were likely 

deposited under low-energy or waning flood conditions in a distal environment on the floodplain.  The 

YTT ash-rich silt is laterally discontinuous and may have been deposited within a hollow or abandoned 

channel.  No other ash exposures have been found within 100 m either side of this section, or within the 

cliff exposures on the north side of the Son River directly opposite Khunteli.  The ash-rich silt is overlain 

by cross-bedded sands (Sp) that likely record overbank deposition in an environment slightly more 

proximal to the channel.  This sand grades into sandy silt with pedogenic features (P) indicative of the 

deposition of floodplain fines in a distal environment, followed by soil formation.  A sand-matrix 

supported pebble-cobble gravel unit (Gm), not previously described by Gatti et al. (2011), caps the 

sedimentary sequence and this may be the remnant of a former high-energy river channel deposit that 

records accelerated flow just prior to incision of the MSV alluvium.   

1.3 Optical dating 

Optical dating (Huntley et al., 1985; Aitken, 1998) is a numerical dating technique that exploits 

the luminescence properties of minerals (usually quartz or feldspar) to estimate the time since their last 

exposure to sunlight (e.g., the time of sediment deposition and burial).  Naturally-occurring ionizing 

radiation in the form of alpha, beta and gamma radiation from the surrounding sediments, and cosmic rays 

from outer space, causes the redistribution and trapping of electrons in the crystal lattice of buried mineral 

grains.  The calibrated natural OSL or IRSL intensity of a mineral grain—its equivalent dose (De)—is 

used as a measure of the total radiation energy absorbed by that grain since burial.  The De is combined 
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with separate measurements of the environmental dose rate at the sampling location to estimate the burial 

age for the sediment, using the following equation: 

Burial age (ka) = equivalent dose (Gy) / environmental dose rate (Gy/ka)  (1) 

We present optically stimulated luminescence (OSL) ages for single grains of quartz from five 

samples in the MSV: two collected from below YTT ash, two from above the ash, and one from a modern 

sandbar in the Son River channel.  For these same five samples, we also investigated the potential of K-

feldspar (KF) for infrared stimulated luminescence (IRSL) dating using the conventional IRSL50 signal 

(i.e., the IRSL signal measured at 50°C: Wallinga et al., 2000; Blair et al., 2005) and the more recently 

applied post-infrared IRSL (pIRIR225) signal measured at 225°C (after bleaching the sample with infrared 

photons at 50°C: Thomsen et al., 2008; Buylaert et al., 2009).  The latter signal and other elevated 

temperature pIRIR signals (e.g., Li and Li, 2011) suffer much less than the IRSL50 signal from the 

phenomenon of ‘anomalous’ (or athermal) fading, which can give rise to substantial KF age 

underestimates unless an appropriate fading correction is made (e.g., Huntley and Lamothe, 2001).  

Neudorf et al. (2012) presented single-grain OSL and IRSL50 data for one of the below-ash samples 

(GHO-2) and obtained ages much younger than ~74 ka from both minerals.  This unexpected finding 

prompted the optical dating of additional samples, the results of which are reported here for the first time. 

2. Sample collection, preparation and measurement procedures 

Two samples for optical dating were collected from above and below the YTT ash at the 

Ghoghara main section (GHO-2 and GHO-3) and a further pair from the Khunteli type-section (KHUT-1 

and KHUT-4) (Fig. 1).  A modern sample (KHUT-10) was collected from ~20 cm below the surface of a 

sand bar in the Son River channel, ~50 m away from the base of the Khunteli type-section, to check for 

homogeneous bleaching of the OSL, IRSL50 and pIRIR225 signals in sediments transported recently by the 

Son River.  The sand bar is sufficiently distant from the river banks that it is unlikely to contain older, 

partially bleached grains derived directly from slumped river bank material.  All samples were collected 
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by hammering steel tubes, ~5 cm in diameter, into the section face, extracting them, and sealing both ends 

with multiple layers of black plastic.  After the tubes had been extracted, the sample holes were widened 

and a gamma spectrometer detector was inserted for in situ gamma ray measurements.  Bagged samples 

of sediment (~60–200 g) were collected from the walls of the gamma spectrometer detector holes for 

water content measurements, low-level beta counting in the laboratory and high-resolution gamma-ray 

spectrometry (HRGS).  Optical ages were obtained from individual grains of quartz and multi-grain 

aliquots of KF from all samples associated with the YTT ash, as well as from individual grains of KF 

from below-ash sample GHO-2. 

The equivalent doses were measured using a single-aliquot regenerative (SAR) dose procedure 

and the environmental dose rates were estimated from field and laboratory measurements of the external 

beta and gamma contributions, cosmic radiation and the internal dose rate to KF grains (mainly from 
40

K).  

Details of the sample preparation and measurement procedures are given in Supplementary Material, 

together with information on how the environmental dose rates were estimated and the equilibrium status 

of the 
238

U and 
232

Th decay chains as revealed by HRGS. 

3. Results 

All calculated luminescence ages in this paper should be viewed as estimates of the time since the 

sediments bracketing the YTT ash were last exposed to sunlight.  Ideally, attempts to measure the age of 

any deposit should entail the application of as many dating techniques as possible; if the results are 

consistent, then one can conclude that all estimates are likely to approximate the right answer.  We first 

compare the single-grain quartz and single-grain KF results, before considering age estimates for KF 

multi-grain aliquots obtained from two IRSL signals.  This approach is taken because:  1) quartz and 

feldspar have different luminescence properties and bleaching responses; 2) the experimental conditions 

used to measure these two minerals differ in many respects (e.g., stimulation sources, preheat 

temperatures, anomalous fading corrections for KF grains); and 3) the internal dose rates of these 

minerals differ significantly because of the beta dose rate contribution from 
40

K inside KF grains.   
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3.1 Single-grain quartz age estimates 

Single-grain quartz OSL ages for all samples are listed in Table 2 and their associated age 

distributions are plotted in Figures 3A–D.  In this paper, the quartz data are shown as age distributions 

instead of De distributions, which are typically reported for quartz, so that they can be directly compared 

to the fading-corrected age distributions for KF aliquots (see discussion below).  The quartz single-grain 

ages for samples GHO-2, GHO-3, KHUT-1 and KHUT-4 range from less than 20 ka to more than 100 ka, 

and the overdispersion values range from 35 to 45% (Fig. 3).  ‘Overdispersion’ (OD) is the spread in De 

values remaining after all measurement uncertainties have been taken into account (Galbraith et al., 2005; 

Galbraith and Roberts, 2012).  OD values for single-grain and single-aliquot datasets of quartz samples 

known or thought to have been fully bleached at burial and not affected by post-depositional disturbance 

(or by differences in beta dose rate among grains buried at the same time) commonly have OD values of 

~10–20% (Galbraith et al., 2005; Jacobs and Roberts, 2007; Arnold and Roberts, 2009).  The relatively 

high OD values for the samples in this study may be the result of: 1) differences in beta dose received by 

individual grains in their burial environment due to proximity to pore water, calcium carbonate nodules or 

organic matter (e.g., Lian et al., 1995; Murray and Roberts, 1997; Lian and Huntley, 1999); 2) insufficient 

or heterogeneous exposure of some grains to sunlight before burial (e.g., Olley et al., 1999, 2004; Arnold 

et al., 2009); and/or 3) post-depositional intrusion/mixing of younger grains into older deposits or vice 

versa (e.g., Roberts et al., 1998, 1999; Jacobs et al., 2008).  We consider these three potential 

contributions to the OD below.  Grains with unsuitable OSL characteristics were rejected using well-

established and objective criteria (Jacobs et al., 2006) and are assumed to contribute little to the OD 

values reported here. 

The sampled sand units above and below the YTT ash (Fig. 1) are non-cohesive, medium-coarse 

sands that drain freely, contain few carbonate nodules and little organic matter, so pore water, carbonates 

and organic matter can be ruled out as major contributors to the observed dispersion in the quartz ages. 

Biswas et al. (2013) also measured 4 quartz samples collected from sedimentary sequences at Ghoghara 
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(Rehi in their paper) and Khunteli and reported single-grain OD values of 33–45%, which they attributed 

to beta dose heterogeneity due to spatial variations in 
40

K concentration.  For our samples, some of the 

spread in single-grain OSL ages may also be due to grain-to-grain differences in beta dose rates from 
40

K, 

but it cannot explain all of the observed OD using the 
40

K values in Table S7 and the model proposed by 

Mayya et al. (2006).  The latter assumes that 
40

K ‘hotspots’ result from KF grains scattered randomly in 

low abundance among quartz grains, with all grains having a median diameter of 200 µm; these narrow 

constraints (and others in their model) are not true for our samples, or those of Biswas et al. (2013), but an 

appropriate model would require detailed information about the mineralogical composition of each 

sample and the spatial distribution of radioactive elements within it. 

OSL measurements of a modern sample (KHUT-10) suggest that quartz grains transported by the 

Son River can become well bleached before burial (Fig. 4A).  The quartz single-grain weighted mean De 

was calculated to be –0.02 ± 0.14 Gy, suggesting that the source traps for the OSL signal had been 

sufficiently emptied by sunlight before burial in most quartz grains.  This implies that other transport and 

depositional processes may be required to explain the high OD values in our ancient samples.  

The geomorphic and sedimentary context of our sites suggests that sediment mixing is primarily 

responsible for the dispersion of single-grain OSL ages in our samples, and perhaps also those reported by 

Biswas et al. (2013) who did not address this possibility.  Mixing may have occurred between pre-

existing (pre-Toba) river bank deposits, which have been periodically eroded during floods along the Son 

River, and younger flood-transported grains.  In the MSV, the monsoon season causes the Son River to 

rise, leading to active erosion of the river banks.  Slumped river bank deposits are frequently washed into 

the channel by rising waters (S. C. Jones 2011, pers. comm.) (Fig. 5).  The sampled fluvial, overbank and 

floodplain sediments in the Ghoghara and Khunteli sedimentary sequences may have been deposited 

close enough to the river banks to receive a significant contribution of sediment from older deposits.  If 

these older deposits were not transported a significant distance (e.g., river bank sediments that slumped 

into the channel only a short distance upstream of the sampled sections), then they may have been 

bleached incompletely before re-deposition, adding scatter to single-grain age distributions.  
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Using the Finite Mixture Model (FMM) described by Roberts et al. (2000) and Galbraith and 

Roberts (2012), one can estimate the fewest number of discrete components needed to fit any distribution 

of mixed-age grains in sediment mixtures.  The FMM has been tested using synthetic mixtures of 

laboratory-dosed grains combined in known proportions (Roberts et al., 2000; Jacobs et al., 2006), and 

can be used to estimate the number of components in a distribution, as well as their age, for any specified 

OD.  Here, the FMM was applied to the single-grain quartz age distributions following the approach of 

David et al. (2007) and Jacobs et al. (2008), where the optimal number of components for each sample, 

the age of each component and the proportion of grains in each component were determined using the 

maximum log likelihood and Bayes Information Criterion (Galbraith and Roberts, 2012).  The optimum 

number of components and OD value for each component were based on the largest maximum log 

likelihood value and the smallest Bayes Information Criterion following Jacobs et al. (2008).  Each quartz 

age distribution was best fitted by three components using OD values of between 10 and 20% (Figs 3A–

D).  The ages of these components, and the proportion of grains represented by each component, are listed 

in Table 2.   

The ages of the components represented by the largest proportion of grains in samples GHO-3, 

GHO-2, KHUT-4 and KHUT-1 are ~44, ~36, ~43 and ~39 ka, respectively; these are the second oldest 

components in each of the samples.  The oldest components in GHO-2, GHO-3 and KHUT-4 have ages 

statistically consistent (at 1σ) with the time of the Toba event, whereas the oldest component in KHUT-1 

is slightly younger (~62 ka).  Overall, the vast majority of quartz grains from all samples appear to be 

younger than 74 ka, with the FMM component ages indicating that 75–97% were last exposed to sunlight 

sometime between ~30 and ~70 ka.  A minor component (15% of grains or less) of younger FMM ages 

may reflect the presence of intrusive grains that have been emplaced by plant roots penetrating the cliff 

face.   

If the youngest FMM components indicate the presence of intrusive grains (emplaced by plant 

roots), then the quartz OSL ages associated with the main FMM components suggest that final deposition 
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of the sand units bracketing the YTT ash at the Ghoghara main section and the Khunteli type-section 

occurred sometime between ~36 and ~44 ka (Table 2). 

3.2 Single-grain KF age estimates 

Neudorf et al. (2012) obtained De values for 952 individual feldspar grains (180-212 µm) from a 

KF-rich extract from sample GHO-2.  Fading tests were conducted on all grains and the age estimate of 

each grain was corrected for its own measured fading rate using the model of Huntley and Lamothe 

(2001).  Measured fading rate uncertainties have been propagated through to the KF grain age 

uncertainties.  Full details on fading test procedures can be found in Neudorf et al. (2012) and are 

summarised in the Supplementary Material of this article.  Fading-corrected IRSL50 ages could be 

determined for 467 of these grains, and the age distribution is reproduced here in Figure 3E.   

As with the quartz single-grain distribution, the spread in KF single-grain ages in sample GHO-2 

is thought to be mainly due to mixing of potentially well-bleached, fluvially transported sediments with 

older grains derived from slumping of river bank deposits sometime after the YTT event (Neudorf et al., 

2012).  Other potential sources of spread, such as grain-to-grain variations in fading rates and internal 
40

K 

contents appear to contribute little to the KF single-grain OD (Neudorf et al., 2012), and IRSL50 De 

estimates from KF grains collected from the modern sample (KHUT-10) suggest that KF grains 

transported in the Son River can be well bleached (Fig. 4B).  The KF grain age distribution is 

overdispersed by 37.3 ± 1.5%, which is similar to the OD values obtained for the single-grain OSL age 

distributions of the four quartz samples (Figs 3A–D).  This outcome argues against external 
40

K hotspots 

being chiefly responsible for the spread in quartz single-grain OSL ages, as KF grains have a substantial 

internal dose rate that dilutes the influence of any external variations in beta dose rate.   

Like the quartz distribution, the KF single-grain age distribution of GHO-2 is also best fitted with 

three components using the FMM.  Components 1 and 2 are similar in age to those of the quartz 

distribution, giving us confidence in our single-grain dating procedures.  Seventeen percent of the grains 

constitute a 16 ± 1 ka component, 52% constitute a 30 ± 1 ka component, and 31% of the grains constitute 
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a 45 ± 2 ka component (Fig. 3E).  However, the oldest FMM age component (~45 ka) is noticeably 

younger than that of the quartz age distribution of the same sample (~70 ka) (compare Figs 3A and E), 

while the youngest component (~16 ka) is similar in age to that of the quartz distribution (~12 ka), but 

contains a higher proportion of grains (~17% versus ~3%).  Approximately 11% of the single-grain KF 

ages in the GHO-2 distribution are consistent (at 2σ) with the time of the YTT event, but these were too 

few in number to be identified as a discrete age component by the FMM.   

The reason for the absence of a ~70 ka component in the KF age distribution is unclear.  Feathers 

and Tunnicliffe (2011) measured individual KF grains from a series of samples from southwestern British 

Columbia, Canada, and noted that some of the oldest grains from each sample were rejected because the 

natural signal did not intersect the dose-response curve.  Of the 1149 KF grains measured for sample 

GHO-2, only two were rejected as a result of the natural signal failing to intersect the dose-response 

curve, so this does not explain the apparent paucity of ‘old’ grains in the KF age distribution.  Another 

possibility is that the ~70 ka quartz grain population was derived from a sediment layer that contained 

few KF grains.  Because KF grains are more susceptible to weathering than quartz (Nesbitt et al., 1997), 

sufficiently old sediment units in the MSV may contain a paucity of KF grains relative to quartz grains.  

A further possibility is that quartz grains with OSL ages of ~70 ka were situated closest to KF grains and 

were thus exposed to above-average beta dose rates during the period of burial from elevated levels of 

40
K.  The samples with the highest 

40
K concentrations (GHO-2, GHO-3 and KHUT-1; see Table S7) also 

have the highest proportion of quartz grains in the ~70 ka component (~40%; see Table 2), so there is 

some support for this proposition.  If a beta-dose correction is made to the environmental dose rate for 

these grains, then their calculated OSL ages will be younger and no longer statistically consistent with the 

time of the Toba eruption.  In summary, the majority of KF grains in sample GHO-2 appear to have been 

exposed to sunlight sometime after the YTT event, and the same is true also for the quartz grains.   

Mark et al. (2013) obtained 
40

Ar/
39

Ar ages of between ~42 and ~100 ka for 15 multi-grain 

aliquots of biotite recovered from the lowermost 4 cm of ash at the Ghoghara main section.  The weighted 

mean age of ~73 ka prompted the authors to remark that “The OSL ages [for GHO-2] are apparently 
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erroneous and claims that grains have been ‘mixed in slump deposits’ find no stratigraphic support.”  

However, their comment represents a misreading of the sedimentary processes described by Neudorf et al. 

(2012), who suggested that sample GHO-2 included some grains derived from older, local riverbank 

deposits that had slumped into the Son River and were then mixed underwater with younger fluvial 

sediments transported from upstream.  There is no requirement, therefore, for stratigraphic evidence of 

slumping at the Ghoghara section itself, and we elaborate on this matter further below; some other 

inaccuracies by Mark et al. (2013) are discussed by Haslam (2013). 

 

3.3 Signal characteristics and bleaching of the IRSL50 and pIRIR225 signals of small KF 

aliquots 

To confirm our single-grain age estimates, additional age estimates were obtained from small (~3 

mm) KF multi-grain aliquots using the IRSL50 and pIRIR225 signals.  Preheat plateau and dose recovery 

tests suggest that our samples are suitable for IRSL50 and pIRIR225 SAR procedures; IRSL50 and pIRIR225 

signal characteristics, and preheat plateau and dose recovery test results are discussed in detail in the 

Supplementary Material.   

De measurements of quartz and KF grains from KHUT-10 suggest that the OSL and IRSL50 

signals are bleached more readily in the Son River than the pIRIR225 signal (Fig. 4).  The weighted mean 

De values from KF aliquots—calculated using the Central Age Model (CAM) of Galbraith et al. (1999)—

are 1.3 ± 0.2 Gy (n = 24) and 17.0 ± 2.0 Gy (n = 24) for the IRSL50 and pIRIR225 signals, respectively 

(Figs 4C and D).  A weighted mean De of 1.7 ± 0.2 Gy was obtained by Neudorf et al. (2012) from 366 

individual KF grains from sample KHUT-10 using the IRSL50 signal (reproduced here as Fig. 4B), which 

is consistent with multi-grain aliquot estimate. 

Average residual doses were also measured for multi-grain aliquots of sample GHO-3 after 

bleaching them in unfiltered sunlight for 2 days.  These are 0.62 ± 0.05 Gy and 5.51 ± 0.43 Gy for the 
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IRSL50 and pIRIR225 signals, respectively (see Supplementary Material).  These residual doses are 

considerably smaller than the De values for KHUT-10, which was bleached under natural conditions.  In 

addition, variability in the residual doses among sun-bleached aliquots of GHO-3 is also much less than 

among natural aliquots of KHUT-10, spanning a range of <1 Gy for the IRSL50 signal and ~3 Gy for the 

pIRIR225 signal (Fig. S2G).  For KHUT-10, there is a ~7 Gy difference between the largest and smallest 

De values for the IRSL50 signal (Fig. 4C) and a ~75 Gy range for the pIRIR225 signal, which yielded De 

values as high as ~81 Gy (Fig. 4D).  These differences are reflected in the OD values for the dose 

distributions: 18 ± 6% (IRSL50) and 19 ± 6% (pIRIR225) for GHO-3, compared to the respective values of 

92 ± 13% and 64 ± 9% for KHUT-10. 

The order-of-magnitude differences between the average residual doses, and the aliquot-to-

aliquot variability in residual doses, for GHO-3 and KHUT-10 supports previous reports that the pIRIR225 

signal is much less light-sensitive than the IRSL50 signal (Buylaert et al. 2011; Lowick et al, 2012).  It 

also reinforces the findings of Biswas et al. (2013), who bleached one of their Rehi samples using a 

filtered sunlamp and obtained average residual doses of ~5 and ~23 Gy from the IRSL50 and pIRIR300 

signals.  Collectively, these results demonstrate that: 1) not all KF grains are fully bleached in the Son 

River before burial; 2) an extended sun-bleach is not analogous to the bleaching conditions experienced 

by grains transported and deposited in nature; and 3) the pIRIR225 signal is more likely than the IRSL50 

signal to yield age overestimates due to insufficient bleaching.   

The Minimum Age Model (MAM) of Galbraith et al. (1999) is commonly used to estimate the De 

of the population of well-bleached grains in samples that were not bleached homogeneously before burial 

(e.g., Olley et al., 2004; Arnold et al., 2009).  We used the MAM to estimate the IRSL50 and pIRIR225 De 

values of the most fully bleached KF grains in KHUT-10.  Before fitting the data with the model, we 

allowed for De overdispersion among multi-grain aliquots that had been well-bleached at deposition by 

adding (in quadrature) OD values of 20% to each of the De measurement errors (Galbraith et al., 2005; 

Galbraith and Roberts, 2012).  The value of 20% is the maximum expected and is based on the OD values 

of the IRSL50 and pIRIR225 residual dose distributions for sun-bleached aliquots of GHO-3 (Fig. S2G).  
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The resulting MAM IRSL50 and pIRIR225 De values for KHUT-10 are 0.4 ± 0.1 Gy (IRSL50) and 6.6 ± 1.1 

Gy (pIRIR225), which are concordant with the average IRSL50 and pIRIR225 residual doses for the sun-

bleached aliquots of GHO-3 (0.6 and 5.5 Gy, respectively).  Thus, we consider that the MAM estimates of 

De correspond to the residual doses of well-bleached grains and that larger De values likely represent 

incompletely bleached grains. Note that the residual doses measured from GHO-3 or KHUT-10 have not 

been corrected for fading here.   

3.4 IRSL50 and pIRIR225 KF aliquot age estimates 

IRSL50 and pIRIR225 De values have been determined for samples GHO-2, GHO-3, KHUT-1 and 

KHUT-4 (24 aliquots of each).  In all cases, the average recycling ratios are statistically consistent with 

unity, suggesting that sensitivity changes between consecutive SAR cycles have been corrected for, and 

the average recuperation values are also acceptably small (2% or less) (Table S2).  The De value of each 

aliquot was corrected for its own measured fading rate using the model of Huntley and Lamothe (2001) 

(Supplementary Material), and residual doses of 0.4 ± 0.1 Gy (IRSL50) and 6.6 ± 1.1 Gy (pIRIR225) were 

subtracted from each fading-corrected De estimate.  The resulting single-aliquot age distributions are 

shown in Figures 6A–D.  The ages determined using the pIRIR225 signal fall mostly in the 40–80 ka time 

interval (and are overdispersed by 3-22%), whereas the majority of the IRSL50 ages are 20–40 ka (with 

OD values of 14–20%).  After correcting for anomalous fading, therefore, the IRSL50 ages are typically 

half as old as those determined using the IRSL225 signal.  On the basis of observations made in the 

previous section, we attribute this mainly to inadequate bleaching of the pIRIR225 source traps.   

As discussed above, we interpret the single-grain quartz and KF age distributions as consisting of 

multiple age components, with the different components reflecting sediment mixing between river-

transported sediment and slumped river bank deposits.  Such multi-component structures are, however, 

concealed in single-aliquot data due to grain-averaging effects, so the FMM cannot be used to resolve 

discrete De or age populations in multi-grain data sets (Arnold and Roberts, 2009; Galbraith and Roberts, 

2012).  In such instances, the time of the most recent bleaching event can be approximated most closely 
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by fitting the age distribution with the MAM, to obtain an age estimate for the population of youngest 

grains.  Nonetheless, we recognize that that MAM age estimates, even for small aliquots containing only 

2–3 grains of K-feldspar, can yield substantial age overestimates (Feathers and Tunnicliffe, 2011). 

The MAM was fitted to each of the multi-grain single-aliquot De distributions, after adding an 

OD value of 5% in quadrature to each De measurement error as an estimate of the OD present in the age 

distribution of single aliquots composed of KF grains that had been well-bleached at deposition and then 

buried for several tens of millennia.  We view a value of 5% as a conservative upper limit, since both the 

IRSL50 and pIRIR225 signals yielded OD values of 0% in dose recovery tests on sample GHO-3 (see 

Supplementary Material).  The calculated MAM ages for the IRSL50 signal fall between the youngest and 

second youngest quartz OSL age component identified by the FMM (Figs 3A–D, Table 2).  We attribute 

the youngest quartz component to intrusive grains emplaced by plant roots penetrating the cliff face, so 

the IRSL50 MAM ages should be compared to the second youngest FMM component, which contains the 

majority of quartz grains (52–75%) in each sample.  This comparison shows that the IRSL50 MAM ages 

are younger than the single-grain OSL ages by 8–15 ka.  It should be borne in mind, however, that the 

multi-grain KF aliquots will include some younger, intrusive grains that will reduce their measured 

ages—for example, sample GHO-2 contains 17% of KF grains with single-grain IRSL50 ages of ~16 ka 

(Fig. 3E).  In addition, Li et al. (2013) have shown mathematically and experimentally that the simple 

dose-subtraction method used here can give rise to De underestimates of up to 15% (for the samples in 

their study), but a shortfall of this magnitude cannot explain all of the difference between the IRSL50 and 

OSL ages for the MSV samples.  Based on the dose recovery tests performed on KF grains from sample 

GHO-3 (see Supplementary Material), we would expect the IRSL50 and pIRIR225 ages for our samples to 

be underestimated by not more than 1–2 ka as a result of using the dose-subtraction method. 

The MAM ages for the pIRIR225 signal are within error of those of the main quartz OSL 

components for the two above-ash samples (GHO-3 and KHUT-4), but they overestimate by ~15 ka the 

main OSL ages of the two below-ash samples, GHO-2 and KHUT-1 (Table 2).  A potential cause of this 

age overestimation is that samples GHO-2 and KHUT-1 were deposited with much larger residual doses, 
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possibly as a result of these samples containing a larger proportion of KF grains derived from older river 

bank deposits that had slumped into the Son River and had been incompletely bleached when re-

deposited.  This scenario is supported by the fact that these two samples were positioned closest to the 

level of the Son River, where bank erosion and slumping during floods in the monsoon season is most 

likely to occur.   

Despite these various uncertainties, however, there is one clear outcome: none of the multi-grain 

single-aliquot MAM ages are as old as the YTT event, even after making corrections for fading.  The two 

below-ash samples have pIRIR225 MAM ages of ~52 ka (GHO-2) and ~54 ka (KHUT-1), and the 

complete age distributions show that only 4 (of 24) aliquots in sample GHO-2, and none in sample 

KHUT-1, have individual ages compatible with 74 ka (Figs 6A and 6C).  One factor that would increase 

the calculated ages is if the long-term water content over the period of sample burial had been much 

higher than we have assumed, and this possibility is explored in the following section. 

3.5 Influence of water content on calculated ages 

Pore water can severely inhibit the absorption of ionizing radiation by sediment grains in nature, 

because its absorption coefficient is much higher than that of quartz or feldspar (Lian et al., 1995; Aitken, 

1998; Lian and Huntley, 1999).  Consequently, it is necessary to adjust the ‘as measured’ environmental 

dose rates in cases where the sedimentary water content is suspected to have changed significantly during 

the burial history of the sample.  The measured (field) water contents were all less than 3% (GHO-2: 

0.3%; GHO-3: 0.9%; KHUT-1: 1.4%; KHUT-4: 2.8%), expressed as the relative mass of water to mass of 

dry sediment, but we calculated the IRSL50 and pIRIR225 ages assuming a long-term, time-averaged water 

content of 5 ± 2% for all samples.  This value is slightly greater than the measured water contents, to take 

into account sample collection during the dry season, the free-draining (not waterlogged) nature of the 

deposits, and the monsoonal climate of the region which has a wet season that lasts for one quarter of the 

year.  Saturated water contents of ~22% have been measured in the laboratory for similar sediments in the 

MSV (Haslam et al., 2011), but even if we assume that our samples were saturated for their entire burial 
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history, the calculated ages increase by only a few millennia (~3-4 ka) (Table 2).  Thus, the IRSL50 and 

pIRIR225 ages calculated using the saturated water contents are still much younger (by >38 and >13 ka, 

respectively) than the expected age of ~74 ka for the YTT ash. 

4. Implications for the time of final deposition of the YTT ash and previous 

palaeoenvironmental reconstructions of Toba’s impact 

All of the quartz and KF ages presented in this study—whether from individual grains of quartz 

and KF using the OSL and IRSL50 signals, respectively, or from multi-grain aliquots of KF using the 

IRSL50 and IRSL225 signals—suggest that final deposition of the sediments bracketing the YTT ash at 

Khunteli and Ghoghara occurred a few tens of thousands of years after the Toba volcanic super-eruption 

(Table 2).  The fact that we obtain post-YTT ages for the below-ash sediments using two different 

minerals, two IR-stimulated signals in KF, and single grains as well as aliquots composed of ~30 grains, 

raises important questions about the time of final deposition of these and other deposits—particularly the 

YTT ash—in the MSV.  We offer two possible explanations for our results. 

First, the YTT ash at Ghoghara and Khunteli may have been reworked by fluvial processes after 

its original emplacement ~74 ka ago, and re-deposited as ash-rich, fluvial silts or as mobile, cohesive 

blocks of ash, several thousand years after the Toba event.  This scenario is illustrated schematically in 

Figs 7A and 7B.  In either of these cases, the lower 4 cm of the YTT ash unit at the Ghoghara main 

section is likely not primary ash, contrary to the suggestions of Gatti et al. (2011), Matthews et al. (2012) 

and Mark et al. (2013).  A second possible explanation is that the YTT ash was deposited soon after the 

volcanic eruption, but that the underlying sediments have since been eroded and replaced by younger, 

inset fluvial sediments (Fig. 7C). These scenarios are not mutually exclusive: for example, the inset 

sediments in Fig. 7C may also contain blocks of primary or reworked Toba ash.  YTT ash and ashy silt 

observed in the field constitutes cohesive sediment units that are underlain by clayey silt and loose sand 

(Ghoghara) or unconsolidated medium- to coarse-grained sands (Khunteli) (Fig. 1).  It is possible that 
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coarser sediment underlying the YTT ash units has been preferentially eroded and replaced by younger, 

inset fluvial sediments (Fig. 7C).   

It is possible that the ash and ashy silt units observed in this study are remobilized cohesive 

blocks of sediment that have been eroded from the cliff face and incorporated in younger fluvial 

sediments in the Son River channel (Fig. 7B).  Modern-day processes give credence to this latter 

possibility, as ash-rich cohesive silt blocks can be seen today partially buried in colluvium and fluvial 

sediments along the banks of the Son River (Fig. 5).  However, aside from some evidence from the gully 

shown in Figs 2A and B (photo 2), there is a paucity of evidence to support the ‘remobilized ash block’ 

hypothesis from these sedimentary exposures.  All observed ash units contain horizontal upper and lower 

contacts, wherever such contacts are visible (Fig. 2B).  There are no sedimentological features within the 

ash units, such as inclined bedding, or sharp irregular contacts with the surrounding sediment that suggest 

the ash has been remobilized as a cohesive block before deposition.  Thus, most field observations are 

most consistent with the suggestion that the ash has been reworked by fluvial processes and re-deposited 

as fluvial silts (Fig. 7A), and/or the non-cohesive underlying sediments have been replaced by younger 

inset fluvial sediments (Fig. 7C).   

The single-grain quartz OSL ages suggest that most grains in the alluvial sediments bracketing 

the ash were last exposed to sunlight sometime between ~30 and ~70 ka.  The latter could conservatively 

be viewed as an upper limit, because if these grains had experienced enhanced beta dose rates from 
40

K 

hotspots then their calculated ages would be younger.  The OSL age distributions suggest that samples 

bracketing the YTT ash at Ghoghara and Khunteli are composed of a mixture of recently sun-exposed 

flood-transported grains and older grains from slumped river bank deposits, with possibly some intrusive 

grains emplaced by plant roots penetrating the cliff face.  The main FMM component in each of the 

single-grain OSL age distributions corresponds to a depositional age of between ~36 and ~44 ka (Table 2) 

and the single-grain IRSL50 age distribution of sample GHO-2 consists of 31% of KF grains with ages of 

~45 ka and a further 52% with ages of ~30 ka (Fig. 4E).  The multi-grain MAM ages range from 22–32 

ka (IRSL50) to 42–54 ka (pIRIR225).  If we accept these optical ages as reliable estimates of the time of 
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deposition of the samples in this study, then the ash-bearing units can be tentatively correlated with the 

lower coarse member of the Baghor Formation or with the uppermost sediments of the Patpara Formation, 

as defined by the stratigraphic model of Williams et al. (2006).   

We note that the post-Toba ages obtained in this study do not necessarily conflict with the 

40
Ar/

39
Ar age obtained for the basal YTT ash unit at the Ghoghara main section (Mark et al., 2013) or 

with the OSL and pIRIR300 ages reported for sediments collected at Ghoghara (referred to as Rehi in their 

paper) and Khunteli (Biswas et al., 2013).  The biotite crystals chemically characterized as YTT by 

Matthews et al. (2012) and dated to ~73 ka by Mark et al. (2013) were extracted from the lowermost 4 cm 

of ash at Ghoghara considered to be a primary air-fall layer by Gatti et al. (2011).  Even if we accept that 

these crystals were erupted by the YTT event, this does not exclude the possibility that they could have 

been reworked after initial deposition in the MSV, as this would not have affected the chemical 

composition of the biotite.  Biswas et al. (2013) obtained stratigraphically inverted pIRIR300 ages of ~100 

and ~60 ka for the ‘ash layers’ at both Ghoghara and Khunteli, which they attributed to the recent 

downward percolation of radionuclides.  However, thorium is geochemically immobile in most terrestrial 

environments (Olley et al., 1996, 1997) and the potassium associated with KF grains and volcanic glass is 

intrinsic to the crystal structure.  Moreover, the samples dated by Biswas et al. (2013) were collected from 

25–200 cm above the base of the ash unit, so they are unlikely to consist entirely of in situ air-fall tephra, 

if such primary ash has indeed been preserved.  We interpret the inverted pIRIR300 ages of Biswas et al. 

(2013) as indicating reworking of YTT ash, and speculate that the two lowest samples are closest in age 

to the Toba eruption because they contain the highest proportion of minerals (e.g., glass, biotite) 

associated with this event.   

Biswas et al. (2013) also reported quartz OSL ages for sediments above and below the YTT ash 

unit.  They dated the overlying sediments at Ghoghara to 40 ± 5 ka—based on the weighted mean of 51 

single-grain De values—which is compatible with the main FMM component ages of the above-ash 

samples at Ghoghara (44 ± 3 ka) and Khunteli (43 ± 3 ka).  Their weighted mean ages for quartz grains 

collected from beneath the YTT ash unit at Khunteli (61 ± 7 ka) and Rehi (70 ± 9 ka) are consistent with 
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our OSL ages for the oldest FMM component (~40% of the grains) in the below-ash samples at Khunteli 

(62 ± 5 ka) and Ghoghara (70 ± 5 ka), and with their pIRIR300 ages for the lowermost ash samples at 

Khunteli (66 ± 7 ka) and Ghoghara (61 ± 7 ka); the latter should be considered as maximum estimates as 

they were corrected for fading but not for the residual dose.  They also obtained one older age (83 ± 9 ka) 

for quartz grains underlying the ash at Ghoghara, but we cannot discount the possibility that those below-

ash sediments are in primary context as the exact location (geological section) that they sampled is not 

recorded.  Indeed, we consider it highly unlikely that pre-Toba deposits have been reworked along the 

entire length of the MSV; pockets of in situ sediment will likely be preserved in protected locations. 

These results have implications for palaeoenvironmental reconstructions that have been made 

from pedogenic carbonates sampled from sediments above, below and within YTT ash at excavated 

sections at the Rehi-Son confluence and in the Khunteli Formation type-section (Williams et al., 2009).  

The carbon isotope compositions of carbonate nodules and root casts were used to determine whether the 

vegetation growing in the soils was dominantly following the C4 pathway of photosynthesis, such as 

grasses that grow in strong sunlight, or the C3 cycle of carbon fixation, such as trees, shrubs and grasses 

growing in shaded forests (Williams et al., 2009).  Based on this evidence, it was proposed that C3 forest 

was replaced by wooded to open C4 grassland in north-central India after the Toba eruption (Williams et 

al., 2009).   

The optical ages obtained in this study, and those reported previously by Neudorf et al. (2012) 

and Biswas et al. (2013), suggest that most of the ash-bearing sediments at the Rehi-Son confluence and 

at the Khunteli Formation type-section were last deposited many millennia after the YTT event—up to 

several tens of millennia at some of the key locations used for palaeoenvironmental reconstructions.  

Given the abundant evidence for reworking and re-deposition of sediments and YTT ash in the MSV, it 

would be hazardous to assume that ash-bearing sediments can be used as an isochronous marker of the 

YTT event.  Remnant pockets of pre-Toba sediment and YTT ash in primary context are likely to be 

preserved at some sheltered locations, but the depositional ages would need to be established at each site 

by direct dating.  Any soils, pedogenic carbonate nodules, and root casts associated with reworked 
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deposits would have formed subsequent to the time of final sediment deposition, so they should not be 

considered reliable proxies of environmental conditions prevailing before and after the Toba eruption in 

the absence of independent control on the age of the sedimentary deposits from which the carbonates have 

been sampled and/or the time of formation of the carbonates themselves.  

Toba ash has been identified in many alluvial sequences on the Indian subcontinent (Basu et al., 

1987; Anonymous, 1989, 1990, 1991; Devdas and Meshram, 1991; Acharyya and Basu, 1993; Tiwari and 

Bhai, 1997; Petraglia et al., 2007), but few studies provide evidence that the time of deposition of the ash 

equates to the time of the volcanic eruption in question.  One such study examined a rhyolitic volcanic 

ash bed preserved in an alluvial sequence containing Acheulian artefacts near the village of Bori in the 

Kukdi Valley, Pune District (Horn et al., 1993).  The ash was dated by K-Ar and fission track methods, 

which suggested it was erupted 0.54–0.64 Ma ago.  A thermoluminescence (TL) age of just 23.4 ± 2.4 ka 

was obtained from glass shards in the ash and this was interpreted to represent secondary reworking of the 

tephra and optical annealing of its light-sensitive TL signals long after the original eruption (Horn et al., 

1993).  Re-deposition of the Bori ash has since been confirmed by the pIRIR300 age of 27 ± 3 ka obtained 

by Biswas et al. (2013), who also reported reworking at another ash locality near Bori.  These cautionary 

findings, coupled with the results presented in this study, highlight the importance of resolving the 

depositional age of volcanic ash deposits before they are used as chronostratigraphic markers in 

sedimentary sequences. 

5. Summary 

In this paper, we present new IRSL50, pIRIR225 and OSL ages that suggest that YTT ash in the 

MSV was deposited several tens of thousands of years after the YTT volcanic explosion. The geomorphic 

context of the sample sites, as well as multi-component single-grain OSL and IRSL50 age distributions 

suggest that fluvial sands bracketing the YTT are composed of a mixture of flood-transported grains and 

grains derived from slumping river bank deposits, together with some intrusive grains from plant roots 

penetrating the cliff face.  Single-grain quartz age components associated with flood-transported grains 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
23 

range in age from 36–44 ka placing these deposits within the lower portion of the Baghor Formation or 

the upper portion of the Patpara Formation in the model of alluvial deposition proposed by Williams et al. 

(2006).  If the lowermost 4 cm of the YTT ash unit at Ghoghara is primary ash-fall, as suggested by Gatti 

et al. (2011), then this would imply that the underlying fluvial sands are inset sediments deposited later, 

beneath the relatively cohesive YTT ash unit.  But we cannot exclude the possibility that the ‘primary 

ash’ at Ghoghara is, in fact, YTT ash that has been eroded from some other location and re-deposited.   

The IRSL50 and pIRIR225 signals from KF grains are well-suited to the SAR procedure, however 

fading-corrected pIRIR225 ages are 1.7–2.3 times older than fading-corrected IRSL50 ages, even after 

subtracting an estimate of the residual dose based on measurements of KF grains from a modern sand bar 

in the Son River.  pIRIR225 source traps are less easily bleached than those of the IRSL50 signal in our 

samples, and can be associated with residual doses as high as ~81 Gy.  We cannot rule out the possibility, 

therefore, that the residual dose correction applied to the pIRIR225 ages is insufficient, and that the 

calculated ages appear too old due to inadequate bleaching of the sediments during their last episode of 

subaqueous transport by the Son River.   

Previous palaeoenvironmental reconstructions inferred from the carbon isotope composition of 

pedogenic carbonates sampled below, within and above the YTT ash in the MSV (Williams et al., 2009) 

should be regarded as potentially compromised.  The optical ages presented here suggest that the 

sediments bracketing the YTT at these locations—and, hence, any pedogenic carbonates preserved in 

them—were most likely deposited tens of millennia after the ~74 ka Toba event.  We recommend that 

sedimentary sequences containing volcanic ash beds should be more commonly investigated using optical 

dating methods to assess the final time of deposition of the ash before employing it as a local or regional 

chronostratigraphic marker.  
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Figure Captions 

Figure 1.  (A) The study area. The locations of Palaeolithic, Mesolithic and Neolithic artefacts are 

after Sharma and Clark (1983).  Sedimentary logs for sediments containing YTT ash at Ghoghara (B) and 

Khunteli (C) in the Middle Son Valley, Madhya Pradesh.  A 50 cm stick is used for scale in the photos of 

the YTT ash unit in (B) and (C).  A microphoto of a sample from the whitest (10YR 8/1) part of the YTT 

ash unit at Ghoghara (B) was taken using a digital camera mounted on a Leica MZ16A stereo microscope.   

Figure 2. (A) WorldView-1 50 cm panchromatic imagery of the Rehi-Son confluence showing 

cliff sections where ash was observed in this study.  The sites labelled 1, 2, 3 and 4 in (A) correspond to 

photographs 1, 2, 3 and 4, respectively, in (B).  The lower ~4 cm of ash at the Ghoghara main section 

(photograph 1 in (B)) is thought to be primary ash (Gatti et al., 2011).  The ash-rich units in photographs 

2, 3 and 4 in (B) show evidence of re-working.  The ash-rich unit in photo 2 shows evidence of mixing 

with silts, and the upper 10-20 cm of the sand underlying the ash-rich unit has lost its primary bedding 

and contains sharp discontinuities/fracture planes.  This may record deformation of the sand unit below a 

cohesive ash-rich silt block, which has slumped into the river channel.  The ash-rich units in photos 3 and 

4 have diffusive/gradational contacts with the surrounding sediment (3, 4) indicative of fluvial transport 

and deposition.  The geological hammer is 40 cm long, and the head is ~20 cm wide. 

Figure 3.  Radial plots of single-grain quartz OSL age distributions for samples GHO-2 (A), 

GHO-3 (B), KHUT-1 (C), and KHUT-4 (D).  The IRSL50 KF aliquot fading-corrected ages (open 

triangles) are superimposed on the quartz single-grain age distributions.  (E) Single-grain IRSL50 fading-

corrected ages (black dots) and IRSL50 fading-corrected aliquot ages (open triangles) from sample GHO-2 

(data from Neudorf et al., 2012).  A residual dose of 0.4 ± 0.1 Gy has been subtracted from the IRSL50 

data and the error on the residual dose has been propagated through into the error on the KF ages.  Black 

solid lines are centred on the component ages identified by the Finite Mixture Model (FMM) of Roberts 

et al. (2000) for the quartz and KF single-grain data.  The grey shaded band in each panel is centered on 
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the age calculated for the KF aliquot data using the Minimum Age Model (MAM) (Table 2).  OD values 

are those calculated using CAM. 

Figure 4.  Single-grain quartz (A) and KF (B) De distributions for sample KHUT-10 collected 

from ~20 cm below the surface of a sandbar in the Son River channel.  Multi-grain aliquot De 

distributions for KF grains from the same sample measured using the IRSL50 (C) and the pIRIR225 (D) 

signals.  The grey shaded area should capture 95% of the points if they were statistically consistent (at 2σ) 

with 0 Gy in (A) (Galbraith et al., 1999).  In plots (C) and (D), the grey bands are centered on the 

Minimum Age Model (MAM) estimates of De.  Plots (A), (B) and (C) show that the OSL signal from 

quartz and the IRSL50 signal from KF are generally well bleached, but that the pIRIR225 signal has 

residual doses as high as 81 Gy (D). 

Figure 5. Slumped river bank deposits, including fallen silty ash blocks adjacent to the Son River 

channel near the Ghoghara main section.  During the monsoon season, these deposits are inundated by 

rising river water, washed into the river channel and transported downstream. 

Figure 6.  Radial plots of fading-corrected age distributions for samples GHO-2 (A), GHO-3 (B), 

KHUT-1 (C), and KHUT-4 (D).  Solid circles are aliquots measured using the IRSL50 signal and open 

triangles are aliquots measured using the pIRIR225 signal.  Residual doses of 0.4 ± 0.1 Gy and 6.6 ± 1.1 

Gy have been subtracted from the IRSL50 and pIRIR225 data, respectively, and the uncertainties on the 

residual doses have been propagated through into the uncertainties on the ages. 

Figure 7.  Quartz and KF optical ages imply one of two possible scenarios: 1) the YTT ash 

sampled at Ghoghara and Khunteli has been reworked by fluvial processes and re-deposited either as 

fluvial silts (A) or as mobile, cohesive blocks (B), several thousand years after the Toba event; or 2) the 

YTT ash was deposited soon after the volcanic event ~74 ka ago, but the underlying sediments have since 

been eroded and replaced by younger, inset fluvial sediments (C).  
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A   GHO-2, quartz OD = 45 ± 2% 

 

B   GHO-3, quartz OD = 35 ± 2% 

 

C   KHUT-1, quartz OD = 37 ± 2% 

 
 

D   KHUT-4, quartz OD = 38 ± 3% 

 

E   GHO-2, KF (single-grain)  

      OD = 37.3 ± 1.5% 

 

 

Figure 3 
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Figure 5 
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A  GHO-2 – below ash 

 

B  GHO-3 – above ash 

 
C  KHUT-1 – below ash 

 

D  KHUT4 – above ash 

 
 

 

Figure 6 
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Lithofacies 

Code 

a 
Colour Description 

Interpretation 
Stratigraphic 

position 

Geological 

section 

Palaeosol P 10YR 

5/4 

Silt with modern roots, 

carbonate nodules and the 

occasional pebble and 

cobble 
 

Soil development in 

overbank fines  

Above ash Khunteli 

& 

Ghoghara 

Gravel Gm – Massive or crudely bedded 

sand matrix-supported 

pebble-cobble gravel 

Gravel bar or bedform 

or lag deposit 

Above and 

below ash 

(Khunteli)/ 

Below ash 

(Ghoghara) 
 

Khunteli 

Silty sand 

with 

reworked 

ash 

 

Sma 10YR 

7/4 

Alternating layers of fine 

and medium silty sand 

with reworked ash and the 

occasional carbonate 

rhizolith 
 

Overbank or 

floodplain fines 

Above ash Ghoghara 

Ash-rich 

silt 

(secondary 

ash) 
 

Fma 10YR 

8/2 

Ash-rich silt that is either 

massive or exhibits fine 

cross-lamination and 

ripples 

Abandoned channel / 

pond / oxbow lake 

sediments on a 

floodplain 

Ash Khunteli 

& 

Ghoghara 

Ash 

(primary 

ash?) 

YTT  10YR 

8/1 

Massive with sharp 

undulating upper contact 

and sharp planar lower 

contact  

Abandoned channel / 

pond / oxbow lake 

sediments on a 

floodplain 
 

Ash Ghoghara 

Clayey silt Fsm 10YR 

7/6 

Massive yellow clayey silt 

with gradational lower 

contact 

Abandoned channel / 

pond / oxbow lake 

sediments on a 

floodplain 
 

Below ash Ghoghara 

Fine-

medium 

sand 
 

Sm 10YR 

7/4 

Fine-medium silty sand 

with cross-laminae  

Overbank or 

floodplain fines 

Below ash Ghoghara 

Cross-

bedded 

coarse sand 

and gravel 

Sp 10YR 

4/4 

Micaceous coarse sand 

with planar cross-beds and 

gravel lenses 

Sand bars or dunes in 

a channel 

Below ash Khunteli 

& 

Ghoghara 

a The code scheme of Miall, (2006) where P, G, S, and F are symbols for palaeosol, gravel, sand and fine-grain sediments (silt/clay/mud), 

respectively.  m = massive structure, a = contains ash, s = a dominant grain size of silt, and p = planar cross-beds. 

 

  

Table 1. Lithofacies codes (after Miall, 2006), descriptions and interpretations for sediments at the Ghoghara 

main section and the Khunteli Formation type-section. 
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 Ghoghara main section Khunteli type section 

Sample 
GHO-3 

(above ash) 

GHO-2 

(below ash) 

KHUT-4 

(above ash) 

KHUT-1 

(below ash) 

KHUT-10 

(modern sample) 

Single-grain FMM data a 

 Quartz Quartz KF  Quartz Quartz Quartz 

N 
b 

(grains) 286 337 467 129 218 46 

FMM component age 1 (ka) 

FMM component age 2 (ka) 

FMM component age 3 (ka) 

22 ± 2 (8%) 
44 ± 3 (54%) 

68 ± 5 (38%) 

12 ± 2 (3%) 
36 ± 3 (57%) 

70 ± 5 (40%) 

17 ± 1 (17%) 
30 ± 1 (52%) 

45 ± 2 (31%) 

22 ± 3 (15%) 
43 ± 3 (75%) 

88 ± 15 (10%) 

20 ± 3 (8%) 
39 ± 3 (52%) 

62 ± 5 (40%) 

–0.02 ± 0.12 

OD (%) 
c 

35 ± 2 45 ± 2 47 ± 2 38 ± 3 37 ± 2 2.5 ± 0.6 

Total dose rates 
d
 (Gy/ka) 2.10 ± 0.07 1.45 ± 0.06        2.31 ± 0.07 0.85 ± 0.03 2.07 ± 0.07  

IRSL50 multi-grain KF data 

N 
b
 (aliquots) 24 24 24 24  

Average g-value 
e
 (%/decade) 3.1 ± 0.1 3.1 ± 0.1 3.5 ± 0.1 3.2 ± 0.1  

MAM fading-corrected  

De 
f
 (Gy) 

(OD in parantheses) 

88.1 ± 4.9 

(14 ± 2%) 

51.6 ± 3.5 

(20 ± 4%) 

51.5 ± 1.7 

(14 ± 3%) 

93.5 ± 3.3 

(15 ± 3%) 

–0.4 ± 0.1 

(92 ± 13%) 

MAM age (ka) 

(assuming 5 ± 2% water content) 
29.8 ± 1.8 22.3 ± 1.7 30.1 ± 1.2 31.9 ± 1.4  

MAM age (ka) 

(assuming 22 ± 7% water 
content) 

33.6 ± 2.0 24.8 ± 1.8 32.7 ± 1.4 36.0 ± 1.6  

CAM age 
 g

 (ka) 35.2 ± 1.6 30.2 ± 1.8 35.3 ± 1.6 35.3 ± 1.6  

pIRIR225 multi-grain KF data 

N 
b 

(aliquots) 24 24 24 24  

Average g-value 
e
(%/decade) 1.0 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.2 ± 0.1  

MAM fading-corrected  

De 
f
 (Gy) 

(OD in parantheses) 

141.9 ± 5.2 

(16 ± 3%) 

121.1 ± 13.0 

(10 ± 2%) 

72.5 ± 3.7 

(22 ± 3%) 

157.9 ± 3.7 

(3 ± 2%) 

6.6 ± 1.1 

(64 ± 9%) 

MAM age (ka) 

(assuming 5 ± 2% water content) 
47.9 ± 2.1 52.4 ± 5.9 42.4 ± 2.4 53.9 ± 2.0  

MAM age (ka) 

(assuming 22 ± 7% water 

content) 
54.7 ± 2.5 59.2 ± 6.6 47.0 ± 2.7 61.4 ± 2.3  

CAM age 
g
 (ka) 50.7 ± 2.5 53.4 ± 2.6 51.2 ± 3.0 53.8 ± 2.1  

Total dose rates for KF grains
d
 

(Gy/ka) 
2.96 ± 0.08 2.31 ± 0.07 1.71 ± 0.04 2.93 ± 0.08 

 

a Quartz data obtained using the single-grain OSL dating procedures described in Haslam et al. (2011).  Values in parentheses are the percentage of grains in each 

FMM component.  All uncertainties are ± 1σ.  The values shown for modern sample KHUT-10 are the overdispersion in De values and weighted mean 

De, both expressed in Gy.   
b ‘N’ refers to the number of grains/aliquots with reliable De estimates.   
c Overdispersion in De values as defined by Galbraith et al. (2005) and Galbraith and Roberts (2012). 
d External dose rates were calculated from beta counting and in situ gamma spectrometry, using an assumed water content of 5 ± 2%.  An assumed internal dose rate 

of 0.03 ± 0.01 Gy/ka was used for quartz, following Haslam et al. (2011) (see Supp. Mat. for explanation).  Internal dose rates for KF grains and external 

dose rates for all samples are listed in Tables S5 and S6 of Supp. Mat..  
e The weighted mean g-value (normalized to 2 days following Huntley and Lamothe, 2001) of all aliquots. Note that each aliquot was corrected for its own measured 

fading rate, not the mean fading rate listed in this table. 
f The overdispersion in De values is shown in parentheses below each MAM estimate of De.  Residual doses of 0.4 ± 0.1 Gy and 6.6 ± 0.1 Gy have been subtracted 

from the IRSL50 and pIRIR225 fading-corrected MAM De values, respectively, and the uncertainties on the MAM De values include a possible systematic 

error of ± 2% for beta-source calibration.  All uncertainties are ± 1σ. 
g CAM ages calculated assuming a 5 ± 2% water content.  

  

Table 2. Single-grain (quartz and KF) FMM component ages and multi-grain KF IRSL50 and pIRIR225 De values, 
average fading rates and MAM and CAM ages for sediment samples from Ghoghara and Khunteli.  Total dose 
rates are listed for both quartz and KF. 
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Highlights 

 Indian sediments containing Youngest Toba Tuff are dated using optical dating  

 All age estimates post-date the ~74 ka Toba super-eruption  

 The sediments contain fluvial and incompletely bleached slumped river bank deposits 

 The tuff is an unreliable chronostratigraphic marker in palaeoenvironmental studies 
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