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Abstract

The recent surge of applications using terrestrial cosmogenic nuclides (TCNs) to calculate

catchment-averaged erosion rates from isotopic concentrations in fluvial sediment, and the

prospect of coupling TCN production functions with numerical surface process models (SPMs),

both necessitate a fast and accurate algorithm for the calculation of topographic shielding. To-

pographic shielding refers to the proportion of the incoming cosmic radiation that is shielded

by the surrounding topography, the scaling factor being defined as the ratio of the unshielded

(total minus shielded) to the total (or maximum) cosmic ray flux (i.e. the flux received by

a horizontal, unobstructed surface). Topography contributes to the reduction of TCN pro-

duction by obstructing a certain proportion of the incoming flux and by modifying the angle

of incidence. Available algorithms calculate the proportion of obstructed radiation by divid-

ing the horizon as seen by the sample (a grid cell in the case of a DEM), into arc segments

(usually of equal length) for which the average obstruction heights expressed as zenith angles

are calculated. The use of these methods is feasible only when dealing with a small number

of isolated samples, since the identification of obstructions when dealing with an entire area

is computationally very intensive. This paper describes a method that uses a relief shadow

modelling technique to identify those areas of a DEM that are under shadow (i.e. shielded),

and thus to account for the obstructed radiation. This method produces results that are very

similar to those obtained using a direct implementation of available methods (maximum dif-

ference between results of ≈ 0.1). The method based on relief shadow modelling is also faster

than a direct implementation of any available method and can be readily implemented in any

GIS system with raster capabilities.

Keywords: Cosmogenic nuclides; Scaling factors; Topographic shielding; Digital Elevation

Models; Surface Process Models.
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Introduction

Terrestrial cosmogenic nuclides (TCNs) are trace amounts of nuclides produced by the in-

teraction of cosmic rays with the surface of the Earth. Several of these nuclides, including

3He, 10Be, 21Ne, 26Al and 36Cl, are now routinely being measured and have been used in

geomorphological studies for the last two decades (e.g., Bierman, 1994; Cockburn and Sum-

merfield, 2004). Initial applications of TCNs focused on measuring in situ cosmogenic nuclide

concentrations (CICs) in order to provide exposure ages of bedrock surfaces and/or erosion

rates. Measurements of CICs in sediments that are leaving a river catchment are now being

used to provide time- and space-averaged catchment erosion rates over hundreds to tens of

thousands of years (with the timescale depending on the half-life of the nuclide) (e.g., Bierman

and Steig, 1996; Granger et al., 1996; Clapp et al., 2000, 2001; Schaller et al., 2001). TCNs

are produced mainly by secondary cosmic ray neutron (spallation) and muon bombardment

of target elements, such as O and Si, in surficial rocks and sediments. The rapid attenuation

of cosmic radiation with depth (approximately 95% is absorbed within the upper 1.8m; Lal,

1991) confines the production of TCNs to the upper few metres of the crust, the production

rate decreasing roughly exponentially with depth. The flux of cosmic radiation increases with

latitude for latitudes between 0◦ and 60◦, and remains invariant for latitudes > 60◦; it also

increases with a decrease in the thickness of penetrated atmosphere (i.e. with altitude), and

therefore the production rate of cosmogenic nuclides at a particular site is mainly a function

of geomagnetic latitude and altitude (Lal, 1991; Dunai, 2000; Stone, 2000).

The TCN production rate at a site is also influenced by the site’s topographic setting, which

can contribute considerably to the reduction of the incoming radiation in areas with an abrupt

topography, such as the bottom of a narrow valley or the sides of a nearly vertical cliff. Topog-

raphy contributes to the reduction of TCN production by (1) shielding a certain proportion of

the incoming radiations and (2) modifying the effective attenuation length by changing the an-

gle of incidence on sloping surfaces (Dunne et al., 1999; Gosse and Phillips, 2001). These two

effects cannot usually be treated independently, their combination resulting in complicated

shielding situations. Identifying obstructions in order to estimate the proportion of shielded

cosmic radiation is only feasible when dealing with individual in situ bedrock samples, since
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this procedure is computationally intensive.

Current applications of TCNs, along with the prospect of coupling TCN production functions

with numerical surface process models (SPMs), both necessitate fast and accurate methods

for calculating the various scaling factors associated with TCN production calculations. This

paper describes a method that uses relief shadow modelling (c.f. Burrough and McDonell,

1998) to calculate the proportion of the incoming cosmic radiation that is shielded by the

surrounding topography for large areas using DEMs. The method is computationally less

intensive than one that is based on identifying obstructions and is readily implementable in

any GIS system with raster capabilities. The method is also suitable for implementation in

SPMs.

Shielding by obstructions

The total flux of cosmic radiation (FTot) received by an object situated on the surface of a flat

terrain with an unobstructed view of the sky in all directions is given by (Dunne et al., 1999):

FTot =
∫ 2π

φ=0

∫ π/2

θ=0
I0 sinm(θ) cos(θ)dθdφ (1)

where I0 is the intensity of the incident cosmic radiation, φ and θ are the azimuth and el-

evation angles respectively (θ is measured up from the horizontal; Figure 1A), and m is an

experimentally determined constant (m = 2.3 is assumed in most studies; Nishiizumi et al.,

1989). Integrating with θ = 0 as the lower limit we obtain:

FMax =
2πI0

m + 1
(2)

where FMax is the maximum cosmic flux received by an object (P ) with an unshielded exposure

(Figure 1A). For a rectangular obstruction, with height sin(θ0) and width sin(∆φ) (Figure 1B),

the amount of shielded radiation can be calculated by placing the correct limits on the integrals

in (1). Doing so yields:

FShield =
∆φI0

m + 1
sinm+1(θ0) (3)
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To account for the obstructed radiation, a topographic shielding factor (CT ) can be calculated

as the ratio of the remaining cosmogenic flux (FMax − FShield) to the maximum flux (FMax).

For n rectangular obstructions, CT is given by (Dunne et al., 1999):

CT = 1− 1
2π

n∑

i=1

∆φi sinm+1(θi) (4)

Equation (4) is only valid for horizontal target surfaces and is well suited for the calculation

of the shielding factor when dealing with only individual in situ bedrock samples for which

the average azimuth and elevation angles can be directly estimated in the field or calculated

from a DEM of the study area (in which case for practical reasons ∆φ = constant). Using a

DEM, the value of CT at a given cell is obtained by delineating its viewshed and extracting the

average elevation angles for every ∆φ bin. This procedure requires calculating the position, in

spherical polar coordinates, of all the DEM cells relative to the given cell and identifying all

those cells that form the horizon (i.e. finding the maximum θ for every φ). When calculating

CT for the entire study area and not just for a small number of cells the procedure becomes

computationally very intensive. Assuming that the horizon will coincide with the surrounding

ridges, a reduction in computing time can be achieved by identifying and eliminating all the

non-ridge cells (c.f. O’Callaghan and Mark, 1984; Jenson and Domingue, 1988; Quinn et al.,

1991; Freeman, 1991; Tarboton, 1997) and using only the remaining when delineating the

viewsheds. In this way the number of cells that need to be queried is reduced but is still high

when dealing with large DEMs and complex topographies. Instead of delineating viewsheds,

a further simplified and faster approach calculates the spherical polar coordinates for all the

surrounding cells, sorts them into ∆φ bins, and extracts the maximum elevation angle for each

bin, on the assumption that this angle is an accurate estimate of the height of the obstruction.

Even though this version is much easier to implement, the assumption it is based on only

holds for very small ∆φ angles and therefore no real reduction in computing time is achieved.

Relief shadow modeling

Relief shadow modelling or hill shading (Burrough and McDonell, 1998) is a technique that has

been widely used in the geosciences to improve the visual qualities of maps depicting three
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dimensional information (Horn, 1981; Ding, 1992), for reducing shadow effects in remotely

sensed images (Liang et al., 2001), and also in modelling insolation (Kumar et al., 1997). The

principle of shadow modelling is based on a model of a three dimensional surface, made of

an ideal material, that receives radiation from a point source situated at ∞. The position of

this source, relative to the irradiated surface, along with the slope gradient and aspect of each

of the DEM cells determines how much radiation each cell receives (Figure 2). A cell that

does not receive any radiation from a given source due to its gradient and aspect is said to

be in self-shadow with respect to that source. Whether a cell receives any radiation is also

determined by the configuration of the surrounding topography, as larger features might block

the incoming radiation from others. A cell that is blocked from the radiation source by other

cells is said to be in cast-shadow with respect to that source. Assuming that we are dealing

with cosmic radiation, we can calculate the proportion of obstructed radiation by modelling

self- and cast-shadows for a range of azimuth (φ) and elevation angle (θ) pairs.

Self-shadows

The intensity of the cosmic radiation received from a point source by a terrain element (in our

case a DEM cell) depends on the angle of incidence (δS) of the radiation, which is a function

the azimuth (φS) and elevation angle (θS) of the source, and the slope gradient (β) and aspect

(α) of the terrain element (Figure 2). Using the spherical law of cosines, δS is given by:

δS = arccos [sin(θS) cos(β) + cos(θS) sin(β) cos(φS − α)] (5)

When δS > 90◦ the cell does not receive any radiation from that particular source (S), i.e. it

is in self-shadow with respect to the source. The calculation of δ is straight forward and is

not computationally intensive since there are only three sets of calculations that have to be

performed for every DEM cell (i.e. calculating β, α, and δ).

Algorithms for calculating β and α have been given by Horn (1981), Zevenbergen and Thorne

(1987), Shanoltz et al. (1990), Hickey et al. (1994), and Wood (1996) and have also been re-

viewed by Burrough and McDonell (1998). Implementations of the algorithms for calculating
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β and α are also available in virtually any software application dealing with terrain data, and

will not be discussed here.

Cast-shadows

Cast-shadows are more difficult to detect than self-shadows, since any objects situated between

the radiation source and the terrain element of interest can potentially block the radiation.

Cast-shadows can be detected by identifying those cells that are not visible from a given

radiation source. If the source is situated at ∞, the radiation path vectors incident on the

surface will be parallel for all cells. When φS ∈ {0◦, 90◦, 180◦, 270◦} and θS = 0◦ (i.e. the

source is situated either at the north, east, south, or west, and is in the same plane with the x

and y coordinates of the DEM cells), cast-shadows can be detected by: (1) identifying all the

cells with the same x coordinates (or y, depending on φS), (2) sorting these cells according to

their y (or x) coordinates, in descending or ascending order (again depending on φS), and (3)

detecting whether for a cell with elevation z there are any cells with elevation Z (Z > z), sit-

uated between itself and the source. All the cells for which the third point is true are blocked

from the radiation source and, therefore, are in cast-shadow. For the rest of the cases when

φS 6∈ {0◦, 90◦, 180◦, 270◦} and θS 6= 0◦, the coordinate system has to be rotated so that the

procedure outlined above can be performed. Such a detection method, based on coordinate

rotations, has been proposed by Ding and Sheng (1989), and is outlined here.

For detecting cast-shadows for a radiation source with azimuth φS and elevation angle θS , the

x, y, z coordinate system of the DEM has to be rotated so that the radiation source’s path

vector is in the same plane as x and y and is parallel with either x or y. To achieve this, we

first rotate the x, y, z coordinates around the z axis with an angle equal to φS (Figure 3A).

This results in a new coordinate system, x′, y′, z′, where (Ding and Sheng, 1989):





x′ = x sin(φS) + y cos(φS)

y′ = y sin(φS) + x cos(φS)

z′ = z

(6)

We then rotate the x′, y′, z′ coordinate system around the x′ axis with an angle equal to θS ,
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and obtain the x′′, y′′, z′′ coordinate system (Figure 3B), where (Ding and Sheng, 1989):





x′′ = x′

y′′ = y′ cos(θS) + z′ sin(θS)

z′′ = z′ cos(θS) + y′ sin(θS)

(7)

Combining (6) with (7) we obtain:

z′′ = z cos(θS) + [x cos(φS)− y sin(φS)] sin(θS) (8)

Every DEM cell P(x′′i ,y′′i ,z′′i ) for which there is another cell P(x′′j ,y′′j ,Z′′j ) located between itself

and the radiation source, so that z′′i < Z ′′j , is in cast shadow.

Shielding Factor

For a given azimuth (φS) and elevation angle (θS) we can identify all the DEM cells that are

in shadow and assign them a weight equal to sinm+1(θS) (see above). The procedure can be

repeated for a range of azimuth and elevation angle pairs, and a shielding factor is obtained

from:

C ′
T = 1−

∑w
S=1 WS∑p(φ,θ)

S=1 WS

(9)

where,
∑w

S=1 WS is the sum of the weights associated with every DEM cell, and
∑p(φ,θ)

S=1 WS

is the sum of the weights associated with the azimuth and elevation angle pairs. When the

two sums in (9) are equal, the cell does not receive radiation from any of the (φ, θ) pairs, and

C ′
T = 0. When the numerator of (9) is zero, the cell is not shadowed from any of the (φ, θ)

pairs, and C ′
T = 1. Equation (9), just like (4), only holds for horizontal target surfaces since

it does not account for the effects of slope angle on the effective attenuation length.

Comparison of methods

A high resolution DEM of the Rio Torrente catchment (Sierra Nevada, S. Spain)(Figure 4)

has been used to assess the performance of the two methods described above, by calculating
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the TCN production topographic shielding scaling factor using both equations (4) and (9).

For simplicity we ignore the effects of slope angle on attenuation length when calculating the

shielding factors. Although this effect cannot be treated independently, one can argue that

the results of both methods would be influenced in the same way should the effect of slope

angle on attenuation length be considered and, therefore, by ignoring it we are not introducing

bias in the comparison. The Rio Torrente catchment is characterised by the presence of an

upstream propagating knickzone that separates two geomorphologically distinct regions: an

upper, low relief, high elevation region, and a lower, high relief, low elevation region. The reju-

venated sector of the Rio Torrente is characterised by a narrow and deep valley with very steep

surrounding hillslopes dominated by rock and debris slides. This topographic configuration

results in high topographic shielding that makes the area suitable for testing and comparing

the two methods.

To minimize the effects of averaging, equation (4) has been evaluated using a relatively small

bin (∆φ = 1◦) and the resulting values for CT are shown in Figure 5A. The method based on

relief shadow modelling has been evaluated using pairs of (φ, θ) with both φ and θ being equal

to 5◦ and the resulting C ′
T values are shown in Figure 5B. The difference between the two

maps is shown in Figure 5C. With a maximum difference of ≈ 0.1, the two methods produce

very similar results, and since both are estimates of a ‘true’ value that is unknown, it is very

difficult to tell which performs better. The differences shown by Figure 5C can be explained

in that the method based on equation (4) estimates average obstruction heights only, whereas

the method based on shadow modelling takes into account every single cell and thus is more

sensitive to the minor changes in landscape characteristics. Furthermore, the number of cells

that are averaged to yield the azimuth angle in equation (4) is not only a function of ∆φ but

also of the distance at which the the obstruction is located from the target cell since the range

of cells encompassed by a given ∆φ increases with distance (Figure 4). Therefore, even with

a small ∆φ there is a possibility of under- or overestimating the size of the obstructions. The

number of computations involved in identifying obstructions is much higher than for mod-

elling shadows and, therefore, the cumulative effect of roundoff errors is also much higher for

CT than it is for C ′
T . In terms of the values obtained ,however, the differences between the

two methods are negligible, and it can be argued that the technique based on relief shadow
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modelling is less prone to introducing bias in the results. In terms of computing time the

calculation of CT necessitated ≈ 46 hours for ∆φ = 1◦ (and ≈ 5 hours for ∆φ = 5◦) using a

P4 class Intel processor whereas C ′
T took only ≈ 15 minutes for ∆φ = 5◦ and ∆θ = 5◦.

Concluding remarks

As shown by Figure 5C the two methods produce very similar results, with differences being

almost negligible. However, the method based on relief shadow modelling is less prone to

under- or overestimating the proportion of obstructed radiation, given that (1) no averaging

occurs, and the extent of shadows is calculated taking into account every single DEM cell and

(2) the relief shadow modelling approach does not treat the target surface as horizontal, but

also takes into account its slope angle and orientation. This method is also computationally

less intensive than a method based solely on identifying obstructions and it is readily imple-

mentable in any GIS system that has raster capabilities. This aspect is very practical since

most often the DEM data used in TCN-related applications are already in a format native

to these GIS systems and, therefore, no additional work is needed to transfer the data into

new packages. Figure 6 shows that the shadow modelling technique produces very similar

results even with a lower number of (φ, θ) pairs. It is, therefore, also suitable for implementa-

tion in numerical surface process models where the efficiency and speed of the algorithms are

important factors.
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Figure captions

1 Total radiation received by an object at P that has (A) an unobstructed view

of the sky in all directions, and (B) part of the view blocked by a rectangular

obstruction of height sin(θ0) and width sin(∆φ). . . . . . . . . . . . . . . . . . 14

2 Illustration of angles used in the detection of self-shadows. See text for details. 15

3 Coordinate system rotations for detecting cast-shadows. . . . . . . . . . . . . . 16

4 Digital elevation model of the northwestern part of the Rio Torrente catchment

(Sierra Nevada, S. Spain), used for comparing the two methods. The DEM has a

resolution of 10 metres and has been obtained by resampling a 3 metre resolution

elevation model produced by digital photogrammetry from aerial photographs.

For a given target surface (P) and bin (∆φ), the number of cells that are

averaged to yield the azimuth angle in equation (4) is less for obstructions

situated closer to the target surface (A) and higher for those situated further

away (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Topographic shielding factor maps from the NW part of the Rio Torrente (Sierra

Nevada, S. Spain) calculated using (A) an implementation of equation (4), with

∆φ = 1◦ and (B) using the relief shadow modelling technique, with both ∆φ

and ∆θ equal to 5◦. (C) Map showing the difference in the values obtained by

the two methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Topographic shielding maps from the NW part of the Rio Torrente produced

using the relief shadow modelling technique with (A1) and (B1) ∆φ = 5◦ and

∆θ = 5◦, (A2) ∆φ = 15◦ and ∆θ = 5◦, and (B2) ∆φ = 45◦ and ∆θ = 10◦.

(A3) and (B3) Maps showing the difference in the values obtained by reducing

the density of (φ, θ) pairs from ∆φ = 5◦ and ∆θ = 5◦ to (A3) ∆φ = 15◦ and

∆θ = 5◦ and (B3) ∆φ = 45◦ and ∆θ = 10◦. . . . . . . . . . . . . . . . . . . . . 19
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