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Steve S. Doo, Sarah Hamylton, and Maria Byrne (2012) Reef-scale assessment of intertidal large 

benthic Foraminifera populations on One Tree Island, Great Barrier Reef and their future carbonate 

production potential in a warming ocean.  Zoological Studies 51(8): xxx-xxx.  Populations of large 

benthic foraminiferans (LBFs) that inhabit coral reef platforms are major producers of calcium 

carbonate (CaCO3) in reef ecosystems.  This study documented the population density of living 

intertidal LBF populations at One Tree Reef (OTR), southern Great Barrier Reef, in a community 

dominated by Marginopora vertebralis and Baculogypsina sphaerulata.  Densities of 7.7 × 103 M. 

vertebralis individuals (ind.)/m2 and 4.5 × 105 B. sphaerulata ind./m2 were estimated for these 

populations in May 2011.  We applied remote-sensing technology to determine reef-scale estimates of 

suitable Foraminifera habitats and used these to estimate overall stocks of LBF populations on the 

intertidal algal flat at OTR of ca. 2800 metric tons.  The growth rate of M. vertebralis was determined 

in a laboratory study, and the data were used to calculate the annual CaCO3 production of the reef flat 

by the LBF population.  The response of M. vertebralis to ocean warming was investigated using 3-

week incubations at temperatures ranging from ambient sea surface temperature to +6°C.  There were 

significant decreases in growth and concomitant CaCO3 production in 6°C warmer water, which 

resulted in shell dissolution of M. vertebralis.  These results indicate that climate-driven ocean 

warming projected for the region will result in significant decreases in CaCO3 production in overall 

foraminiferan populations, although species-specific effects should be further investigated.  
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Large benthic foraminiferans (LBFs) are crucial to calcareous sediment production in tropical 

reefs, producing in excess of 1 kg calcium carbonate (CaCO3)/m
2/yr, and at the global scale, 

contributing approximately 4.8% to the carbonate budget (Hallock 1981, Langer et al. 1997, 2008).  

Multiple reef-scale estimates of tropical coral reef carbonate production have noted the contribution of 

the Foraminifera to overall reef calcification (Yamano et al. 2000, Harney and Fletcher III 2003, Hart 

and Kench 2007).  These protists have functionally important ecological and geological roles through 

fixing inorganic carbon (Smith and Wiebe 1977, Lee 2006), by accumulating CaCO3 from their 

calcareous shells which produces sedimentary landforms such as coral cays (Yamano et al. 2000, 

Hohenegger 2006), and in buffering diurnal pH fluctuations in shallow-water environments (Santos et 

al. 2011). 

The population densities of LBFs are controlled by environmental conditions, in particular 

temperature, solar radiation, and desiccation (Fisher 1966, Ross 1972, Severin 1987, Yassini and Jones 

1995).  Previous studies on sortids (e.g., Marginopora vertebralis) and  Calcarinidae (e.g., 

Baculogypsina sphaerulata) indicated significant decreases in photosynthetic efficiency and growth in 

response to prolonged periods of increased temperatures (Reymond et al. 2011, Schmidt et al. 2011, 

Sinutok et al. 2011, Uthicke and Fabricius 2012, Uthicke et al. 2012).  Warming in particular causes 

mortality and bleaching in the dinoflagellate-bearing foraminiferan, M. vertebralis (Uthicke et al. 2012).  

As the ocean warms due to climate change, it is expected that LBF communities will continue to 

experience stress from increased temperatures.  In addition, anthropogenic stressors such as ocean 

acidification and coastal eutrophication (land runoff) are also deleterious to their physiology and 

growth (Osawa et al. 2011, Reymond et al. 2011, Fujita et al. 2011, Uthicke and Fabricius 2012, 

Uthicke et al. 2012).  However, tolerance levels to stressors vary among LBF species with contrasting 

effects among species noted in some comparative studies (Fujita et al. 2011, Hikami et al. 2011, Osawa 

et al. 2011). 

Despite the functional importance of LBFs in coral reef ecosystems, the extent to which 

carbonate production of living communities of benthic Foraminifera will be influenced by rising ocean 

temperatures at the overall reef scale is not well understood.  Most studies have focused on the ecology 



and population density of subtidal foraminiferans (e.g., Hallock 1981, Fujita et al. 2000, Hohenegger 

2006), with only a few studies reporting on intertidal communities (Severin 1987, Yamano et al. 2000, 

Fujita et al. 2009).  In many of those studies, reef-scale estimates were not possible due to spatial 

restrictions on the available LBF population datasets.  The intertidal algal reef flat at One Tree Reef 

(OTR), southern Great Barrier Reef (GBR) provides extensive habitat for populations of common 

LBFs (M. vertebralis and B. sphaerulata), and we investigated these populations to estimate their 

density and the total amount of CaCO3 stored.  We classified ground-truthed remote sensing satellite 

images to upscale field data to the entire algal flat habitat at OTR, and by doing so, were able to 

estimate the total habitat of LBFs. 

In consideration of the importance of temperature as a key factor affecting the persistence and 

resilience of benthic foraminiferan populations (Yassini and Jones 1995, Uthicke et al. 2012), we 

investigated the effects of increased temperatures on M. vertebralis to assess potential impacts of future 

ocean warming on this ecologically important species.  In eastern Australia, the sea surface temperature 

(SST) has increased 0.2-1°C since 1970 and is projected to increase further by up to 6.4°C above 

current levels by 2100 (A1F1 scenario, IPCC 2007).  We exposed M. vertebralis to thermal treatments 

ranging from the current ambient SST to scenarios that exceeded daytime low tidal temperatures (ca. 

+6°C).  To support this analysis, the current thermal regime experienced by intertidal foraminiferan 

populations at OTR was determined using an in situ monitoring system for several months prior to the 

temperature experiments to understand the recent thermal history of M. vertebralis at OTR.  These data 

were also used to relate our thermal treatments to in situ environmental conditions.  Upper levels of 

warming (30 and 32°C) are commensurate with upper IPCC projections for SSTs by ca. 2100 (IPCC 

2007).  The growth response of M. vertebralis was used in conjunction with remote sensing imagery to 

estimate the potential effects of ocean warming on the overall carbonate production across the entire 

reef flat at OTR.  These results provide an important baseline measurement of foraminiferan 

populations that will facilitate future assessments of changes in species density and assemblages in 

response to changing ocean conditions due to anthropogenic effects. 

 

 

MATERIALS AND METHODS 

 

Study site, sample collection, and population density 

 



 OTR (23°30'30"S, 152°5'30"E) is a high-latitude reef in the southern GBR with a coral cay 

(One Tree I., OTI) and a large lagoon enclosed by a reef crest characterized by an extensive algal flat 

habitat (Barbosa et al. 2010).  Filamentous and turf macroalgae were hand-collected using a 7.6-cm-

diameter core.  Samples (n = 15) were collected in May 2011 during low tide at random-spaced 

locations along the algal flat (Figs. 1A, 2).  Live M. vertebralis (> 1 mm) and B. sphaerulata (> 0.5 mm) 

were separated by species and visually inspected for pseudopodial projections and color using a 

dissecting microscope (Fig. 1B, C).  The 2 species of M. vertebralis and B. sphaerulata were selected 

for this study due to their high density in this reef flat environment.  Additional minor species found in 

our samples included Amphistigina sp. and Peneroplis sp.  Isolated B. sphaerulata individuals (ind.) 

were counted in subsamples (~0.5 g) of the core samples, while all M. vertebralis specimens were 

isolated.  Samples were then dried, counted, and weighed to determine a mean replicate weight. 

 To characterize the thermal regime experienced by the foraminiferan community on the OTR 

flat, temperature data (air and SSTs) and photosynthetically active radiation (PAR) were obtained from 

the reef monitoring system, Integrated Marine Observing System (IMOS: 23.49787S, 152.05275E; 

http://data.aims.gov.au/aimsrtds/map.xhtml?) from 15 Feb. to 10 May 2011 encompassing the period 

up to the date of sampling (Fig. 3).  Air and PAR data were collected from the OTI relay station, and 

surface water temperatures were acquired from 1 m in depth. 



 

Fig. 1.  (A) Algal flat habitat at One Tree Reef.  (B) Pseudopodial projections of Marginopora 

vertebralis (white arrow); (C) algal symbionts of M. vertebralis (white arrow; photo credit: S. Eggins); 

(D) small M. vertebralis attached to algae (arrow); and (E) large specimens in nearby sediment 

depressions.  Living Baculogypsina sphaerulata was found ubiquitously among both macroalgae and 

on the surface of sediment depressions.  Scale bars (B, C), 1 mm; (D, E), 1 cm. 

 

 



Remote sensing 

 

The area of the algal flat habitat of living Foraminifera at OTR was estimated by performing a 

maximum-likelihood supervised classification on a Worldview-2 satellite image acquired on 9 Dec. 

2009 (at a resolution of 1 m) (Fig. 2).  Prior to classification, the image was corrected for the effects of 

the atmosphere and water column on light transfer (Lyzenga 1987, Cooley et al. 2002).  For the 

atmospheric correction, the Fast-Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) algorithm was employed within ENVI 4.5 (Exelis Visual Information Solutions, Boulder, 

CO, USA) FLAASH provides a physics-based derivation of atmospheric properties, including the 

surface pressure, water vapor column, and aerosol and cloud overburdens. This was incorporated into a 

correction matrix for the purpose of inverting “radiance at the detector” measurements into “radiance at 

the water surface” values (Cooley et al. 2002).  The water-column correction followed a methodology 

which assumed that vertical radiative transfer through the water column could be approximated to a 

logarithmic decrease in radiation with depth (Lyzenga 1987).  Individual waveband data were log-

transformed and regressed against each other to calculate a depth-invariant index for each band pair.  

This was calculated for multiple waveband pairs to generate a series of depth-invariant bands on which 

statistical image classification could be performed. 



 

Fig. 2.  Satellite image acquired with Worldview-2 sensor on 9 December 2009.  Remote sensing data 

were classified and validated using a ground-truthed field dataset.  Red color indicates areas identified 

as algal flat. 

 

To ground reference the satellite image and validate the image classification, 350 snapshots of 

30 s of oblique underwater video footage were collected from a boat over a wide range of reef system 

coverage at OTR.  Each video footage record was viewed in turn, and the percent cover of individual 

benthic components was estimated.  Of the 350 records collected, 50 were used as training areas to 

calibrate the classification algorithm, and the remaining 300 were used to assess the overall accuracy of 

the output map. 

 

Temperature-growth experiment 

 

 Impacts of temperature on M. vertebralis growth were investigated on specimens haphazardly 

collected from algal flats and acclimated for 2 d in aquaria at ambient (26°C) temperature.  Six 

specimens were then haphazardly placed into replicate borosilicate glass vials (20 mL) with 7 sub-



replicate vials per treatment replicate.  The vials were placed in temperature-controlled water baths set 

to 26°C (ambient controls) and 3 near-future warming treatments at 28, 30, and 32°C in 0.5-µm-filtered 

lagoon seawater (FSW) collected at high tide.  Specimens were incubated in the experimental 

treatments for 21 d, and experimental FSW at the designated temperature was changed every 3 d.  The 

protists were carefully monitored for color changes that may have indicated thermal bleaching in 

response to the treatments.  Growth was determined using digital images of individual M. vertebralis 

taken at the start and end of the 3-wk treatment using ImageJ (National Institute of Health, Bethesda, 

MD, USA), and the percentage surface area growth per day was calculated.  For each replicate, growth 

of the 6 specimens was pooled to determine a replicate mean surface area change for the analysis.  

Growth data were analyzed by a one-way analysis of variance (ANOVA) with temperature as a fixed 

factor.  Assumptions of the ANOVA (normality and homoscedasticity of the data) were met as 

respectively tested with Shapiro-Wilk’s W and Levene’s tests. 

To predict changes in weight, a power regression analysis of the diameter and weight of 

individual foraminifers (n = 300) was used to correlate the surface area measured in this study with 

individual CaCO3 weight (Fig. 4A).  To calculate potential reef-scale effects of calcium carbonate 

production, the estimated turnover rate of 1 M. vertebralis/yr of a similar sortid species, Amphisorus 

hemprichii, was used to predict the annual production of this species (Zohary et al. 1980), and an 

estimated turnover rate of 11 B. sphaerulata/yr was also used (Hallock 1981).  All statistical analyses 

were performed using JMP9 (Cary, NC, USA). 

 

 

RESULTS 

 

Population density 

 

 On the intertidal algal flat (Fig. 1A), small M. vertebralis (< 1 cm) individuals were attached to 

macroalgae, while larger conspecifics (> 1 cm) occupied nearby sediment-filled depressions (Fig. 1D, 

E).  Baculogypsina sphaerulata was ubiquitously found among all habitats (Fig. 1D, E).  Counts of M. 

vertebralis in samples indicated a mean population density of 7.7 × 103 ind./m2 (SE = 1.4 × 103 ind./m2, 

n = 15) and an approximate annual CaCO3 production of 71.7 g/m2/yr.  Baculogypsina sphaerulata had 

a mean density of 4.55 × 105 ind./m2 (SE = 1.66 × 105 ind./m2, n = 15) and an average annual CaCO3 



production of ca. 2.86 × 103 g/m2/yr based on the estimated yearly turnover rate of 11 B. sphaerulata/yr 

(Hallock 1981). 

 

Reef-scale assessment 

 

The classification produced a map that was found to be 81% accurate on the basis of the 

accuracy assessment dataset of 300 video footage records.  Based on the remote sensing classification, 

the area of the algal flat habitat at OTR was estimated to be 0.96 km2 (Fig. 2).  Thus, based on the 

available habitat and observed population densities, approximately 73,000 kg of CaCO3 was estimated 

to be stored in living M. vertebralis and 270,000 kg in B. sphaerulata on the OTR algal flat at the time 

of our May 2011 sampling.  Based on estimates of yearly turnover rates of similar species (Amphisorus 

hemprichii, a sortid similar to M. vertebralis (Zohary et al. 1980) and B. sphaerulata (Hallock 1981)), 

an estimated total of 2800 metric tons of CaCO3 is produced yearly by these 2 populations on the OTR 

flat, with B. sphaerulata having a greater contribution (~97%) to CaCO3 production. 

 

Thermal environment of the reef flat 

 

In the austral summer, M. vertebralis regularly experienced subaerial exposure, resulting in 

ambient environmental temperatures of 26-31°C at OTR (Fig. 3A).  During spring and daytime low 

tides, particularly high levels of warming were observed due to radiative effects of sunlight (PAR), as 

evidenced in much higher surface seawater temperatures compared to air temperatures (Fig. 3A, B).  In 

the months prior to the experiments, SSTs (at high tide) ranged 25-29°C.  Thus M. vertebralis 

experienced temperatures 2-4 °C above ambient SSTs in pulses at low tide during this period. 



 

Fig. 3.  Physical parameters at One Tree Reef from in situ sensor data 

(http://data.aims.gov.au/aimsrtds/map.xhtml?) representing (A) surface water (1 m) and air temperature 

collected 15 Feb.~10 May 2011 for characterization of the thermal regime over a tidal cycle, and (B) a 

week-long temporal subset of the surface water and air temperature dataset, encompassing combined 

spring and daytime low tides on the surface water (1 m) temperature.  Photosynthetically active 

radiation (PAR) was high during low tidal height, leading to increased surface water temperatures.  

Gray shading indicates nighttime. 

 

Growth response of M. vertebralis to temperature treatments 

 

There was a significant negative effect of temperature on the growth of M. vertebralis (F3,24 = 

6.21, p = 0.003).  According to Tukey’s post-hoc test, the highest temperature treatment (+6°C) was 

deleterious to growth, resulting in an observed 130% decrease in shell diameter (Fig. 4B).  Using 

regression analyses of the diameter to calculate the shell weight (Fig. 4A), this would indicate that on a 

reef-scale assessment based on remote sensing data, a 140% decrease in calcification would be 

predicted at the highest warming temperature (Fig. 4C). 



 

Fig. 4.  (A) A regression analysis indicated a strong correlation of Marginopora vertebralis diameter 

with shell weight.  (B) Growth results of M. vertebralis in experimental treatments after 3-week 



temperature treatments.  Letters indicate Tukey’s honest significant difference post-hoc test.  (C) 

Estimates of overall CaCO3 decreases due to warming in both M. vertebralis scaled up from a remote 

sensing image of the total habitat. 

 

 

DISCUSSION 

 

Our study adds to the few studies that employed remotely sensed satellite images to scale up in 

situ and laboratory measurements of the intertidal foraminiferan population sizes and further expanded 

laboratory measurements to estimate their functional contribution to carbonate production across the 

entire reef flat under different temperature regimes.  These results provide a baseline assessment for 

future studies on sediment production dynamics of these species at OTR and a basis for regional 

comparisons.  Field studies of subtidal LBF communities of Amphisorus kudakajimensis estimated 

populations of > 1.3 × 106 ind./m2 in the Ryukyu Is., Japan (Fujita et al. 2000), and of 6.0 × 105 ind./m2 

for B. sphaerulata at Kudaka I., Japan (Sakai and Nishihara 1981).  These communities of LBFs were 

similar in local densities to those observed here on the OTR flat. 

Due to the vast area of algal flat habitat suitable for LBFs here at OTR, our estimates of living 

storage of 73,000 kg CaCO3 of M. vertebralis, and 270,000 kg CaCO3 of B. sphaerulta represent a 

large potential for carbonate production on this tropical reef flat.  Although the prominence and 

importance of algal-flat Foraminifera populations at OTR have been known for decades (Davies and 

West 1981), it is likely that both species in this study experience large seasonal fluctuations in 

population related to reproductive cycles (Sakai and Nishihara 1981, Fujita et al. 2000).  In addition, 

previous studies on reef-scale foraminiferan communities observed differences in windward and 

leeward population compositions either due to direct wave effects or indirect macroalgal compositions 

(Fujita et al. 2009, Osawa et al. 2011).  Although we did not distinguish between these areas, an effort 

was made to sample the entire reef flat to obtain an overall mean.  Regardless, monitoring differences 

between the windward and leeward sides of OTR would be helpful in estimating longer-term 

population dynamics in terms of both biological (primary productivity) and geological (sediment 

dynamics) processes. 

The significant growth reductions in M. vertebralis recorded in response to elevated 

temperatures were similar to those reported in previous studies of this species in prolonged (30-d) +5°C 

treatments above ambient conditions (Uthicke et al. 2012).  In addition to the decrease in the 



calcification rate in the Foraminifera in response to increased temperature (e.g., Fujita et al. 2011, 

Uthicke et al. 2012), we also observed shell dissolution in the +6°C treatment.  Although this shrinking 

effect was not previously reported, an earlier study indicated that increased thermal stress reduced the 

calcite crystal width and produced overall negative calcification, i.e., dissolution (Sinuok et al. 2011).  

This sensitivity to warming indicates that M. vertebralis might not cope well with further increases in 

air and sea temperatures, although we did not observe bleaching as seen elsewhere (Uthicke et al. 2012).  

Alternatively, M. vertebralis may migrate to deeper depths with more-suitable habitats.  One cause of 

the reduced calcification we observed is likely decreased photosynthesis/primary productivity as 

documented in previous studies of M. vertebralis in a laboratory-based study and from specimens 

collected at natural CO2 seeps in Papua New Guinea (Uthicke and Fabricius 2012, Uthicke et al. 2012).  

In addition, thermal stress was documented to reduce protein expression in the rate-limiting enzyme, 

RuBisCO (Doo et al. 2012), possibly leading to further changes in pH in the microenvironment of the 

foraminiferan test (Köhler-Rink and Kühl 2000).  This highlights the particular ecological importance 

of the associated algal symbionts to reef primary production and individual foraminifer holobiont 

CaCO3 production. 

Although the 2 species investigated in this study have similar ecological roles on tropical reefs, 

there are likely differences in test diagenesis post-mortem.  Transport of B. sphaerulata into the OTR 

lagoon where its shells accumulate requires less wave energy and wind forcing than advection of the 

larger M. vertebralis (Davies and West 1981).  Due to the high turnover rate of B. sphaerulata (Hallock 

1981), this species is a particularly important component of carbonate lagoon sediments (Scoffin and 

Tudhope 1985), and plays a key role in sediment accumulation over time which supports the formation 

and maintenance of sedimentary landforms (coral sand cays) (Yamano et al. 2000).  Test dissolution 

and decreased growth at higher temperatures would reduce the lagoon sediment supply at OTR where 

foraminiferan shells constitute a significant portion of the lagoon sediments (Davies and West 1981).  

As the CaCO3 shells of LBFs buffer daily diurnal biogeochemical cycles of carbonate sands and pore 

water exchange (Santos et al. 2011), a decrease in Foraminifera production would also impact sediment 

dynamics and the associated fauna.  In addition, a recent local study at OTR highlighted the ecological 

importance of the living fauna such as sea cucumbers, which plays key roles in reef dissolution rates at 

the reef scale by buffering the dissolution of calcareous tests in the acidic holothurian gut (Schneider et 

al. 2011).  Although our study did not test the effects of thermal stress on B. sphaerulata, it is likely 

that there were also significant effects on growth, as seen in other Calcarinadae (Schmidt et al. 2011).  

Overall, decreased calcification by intertidal foraminiferan populations in a warming ocean as indicated 

by our results would likely have a negative effect on future reef health.  With increasing global 



temperatures, reef-scale measurements of population fluxes will be a valuable addition to evaluating 

future responses of tropical reefs to a changing climate. 

As seen in other intertidal invertebrates (Somero 2010), it is likely that the thermal history of 

the Foraminifera will influence their resilience to stress from increased temperatures.  Investigations of 

thermal responses of foraminiferan populations from environmentally distinct areas, such as the 

intertidal LBF population documented in this study, in relation to more-stable subtidal populations may 

identify more-robust species and populations.  In the months prior to our study, M. vertebralis 

experienced warming of 2-4°C above ambient SSTs in pulses at low tide.  This was evident from our 

experimental results, which indicated a degree of resiliency up to +4°C for this species.  Our 

experiments indicated that long-term +6°C treatments were deleterious to M. vertebralis growth, but it 

is currently not known how M. vertebralis will respond in the field with potential recovery from the 

stress provided by the incoming tide.  This warrants further study into possible acclimation (phenotypic 

plasticity) and adaptation (genetic) mechanisms of the response to stress and potential reductions in 

size due to air and ocean warming, as models predict smaller body sizes in animals due to global 

warming (Sheridan and Bickford 2011).  Differences in algal symbionts of M. vertebralis 

(dinoflagellate) and B. sphaerulata (diatom) were also documented in a recent study to be key to the 

resilience in a Calcarindae species of Foraminifera to withstand ocean acidification stress (Hikami et al. 

2011), emphasizing the importance of host-symbiont relationships in Foraminifera. 

As the cnidarian-dinoflagellate symbiosis in corals was documented to vary in terms of thermal 

tolerance (Coffroth and Santos 2005, Wang et al. 2012), further study directed at both host- and 

symbiont-specific responses of benthic Foraminifera to ocean warming would be beneficial to our 

understanding of the mechanistic causes of reduced calcification seen in this and previous studies.  

Remote sensing techniques used in this study provided a useful tool for estimating potential reef-scale 

changes in population densities of these calcifiers.  Establishment of an ongoing program that combines 

repeated acquisition of satellite images with in situ sampling of intertidal populations will be useful for 

future monitoring efforts of habitat fluxes.  As the deleterious effects of ocean warming on invertebrate 

species are becoming increasingly evident (Somero 2010, Byrne 2011), the ability to quantify reef-

scale changes will be crucial for ecological forecasts of both population standing stocks and functional 

turnover. 
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