University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Engineering - Papers (Archive) Sciences

2005

Third harmonics due to surface barrier in high-temperature superconductor

X. B. Xu
Nanjing University, China

L. Zhang
Nanjing University, China

X. Leng
Nanjing University, China

Shichao Ding
University of Wollongong, sding@uow.edu.au

Hua-Kun Liu
University of Wollongong, hua@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/engpapers

b Part of the Engineering Commons
https://ro.uow.edu.au/engpapers/168

Recommended Citation

Xu, X. B.; Zhang, L.; Leng, X.; Ding, Shichao; Liu, Hua-Kun; Wang, Xiaolin; Dou, S. X,; Lin, Z. W.; and Zhu, J.
G.: Third harmonics due to surface barrier in high-temperature superconductor 2005.
https://ro.uow.edu.au/engpapers/168

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au


https://ro.uow.edu.au/
https://ro.uow.edu.au/engpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/engpapers?utm_source=ro.uow.edu.au%2Fengpapers%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fengpapers%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
X. B. Xu, L. Zhang, X. Leng, Shichao Ding, Hua-Kun Liu, Xiaolin Wang, S. X. Dou, Z. W. Lin, and J. G. Zhu

This journal article is available at Research Online: https://ro.uow.edu.au/engpapers/168


https://ro.uow.edu.au/engpapers/168

HTML AESETRACT + LINKE

JOURNAL OF APPLIED PHYSICS 97, 10B105 (2005)
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The influence of surface barrier on the third harmonics ac susceptibility (x3) is studied numerically.
The surface barrier is described by a critical current density in surfaces which are higher than the
inside one. The model can act as the critical state one, the flux creep one, or the flux flow one when
temperature (or field) changes. The numerical results based on the model are more close to the
popular experimental data probing the harmonics as a function of temperature (or field). Besides, the
surface barrier will lead to new peaks in the real and imaginary parts of the third harmonics, which
are the finger signature of the surface barrier. Comparison of the peaks with those of the real part
of elemental harmonic shows that they are located at the same temperature where dips in ' caused
by the surface barrier occur, which is in well agreement with experiments. © 2005 American

Institute of Physics. [DOI: 10.1063/1.1851413]

I. INTRODUCTION

Surface barrier is important in understanding irreversible
phenomena of superconductors.*™® Experiments show that
there exists a surface zone with a higher critical current den-
sity j. (larger than the inside one) which may originate from
the surface pinning, the Bean-Livingston barrier, or the geo-
metrical barrier.”™ We have proposed a model to describe
the surface barrier (SB) and studied the influence of SB on
the fundamental ac susceptibility (ACS).® In this paper, we
will study SB’s effects on the third harmonic ACS based on
the same model. Usually ACS is measured as a function of
temperature (or dc field). To understand the observations in
experiments, different models have been proposed.*!"®
However, it is still worthy to discuss if or not only one of
these models can be employed for the whole of an ACS
curve in all temperature regions, because the critical state
model is effective at low temperatures, the flux creep model
at the relatively higher temperatures, and the flux flow model
in the regime near T.. So we proposed a model of power-law
flux velocity whose power n is dependent on temperature
(and field) [see below Eq. (1)]. The n is large at low tem-
peratures. With the increment of temperature, n decreases
and becomes zero at T.. The model is in contrast with the
previous ones (see, for example, Ref. 18 where n= o) whose
power n is independent of temperature (field). Our model
may be more proper to explain the ACS data at different
temperatures.
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Il. MODEL AND SIMULATION

The essential point of our model is that there are two j.
in a sample: the higher one j. in the surface zone and the
lower one jg, inside the bulk. We consider a one-dimensional
case that the sample is infinite in the y and z directions, the
field in the z axis penetrates only along the x axis, which is
suitable not only for the Bean-Livingston barrier and the
surface pinning, but also for the geometrical one of a long (in
the y axis) sample with rectangular cross section (in the x
-z plane, thickness t in the z axis) in perpendicular field.? The
bulk width is d,, whose dimension is millimeters for a bulk
sample and micrometers for a thin film. We note that the
surface width dg is comparable to the penetration depth N for
the Bean-Livingston barrier, but dg is nearly half of the
sample thickness (t/2) for the geometrical barrier. For the
surface pinning barrier, it is also a relatively broad zone. It is
clear that d=2ds+d,. Therefore, we choose ds/d,=0.1 for
different dy, (1 pm-1 mm), and the strength of SB is adjusted
by jeos/Jcop iN the simulation. In fact, although ds/dj, is regu-
lated from 0.1 to 0.001 for j./j,=10-100, there is almost
no difference in the numerical results.

The material equation is

v=vo(i/jolifid", (1)

where v is the flux-line velocity, v is a velocity scale, and |
is current density. From Eg. (1) the power law E(j)
=Eq(j/jo™* is obtained, which results in the critical state
model for n— o, the flux creep one for finite n and the flux
flow one for n=0. The flux diffusion equation is

© 2005 American Institute of Physics
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FIG. 1. The harmonics with (jes/jcon=>1) and without (jeos/jeop=1) the
surface barrier as a function of temperature. The dotted lines show the dips

originate from the surface barrier.
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The ac susceptibilities can be calculated by

JB

JB Uo J
X

ot (ugid)™ ox

2
Xn=Xn—iXh= W'L;O Jo M(t)exp(inwt)d(nwt), 3)
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where M is magnetization. The temperature and field depen-
dence of j. and n are, respectively,

o [1+<1)2}—1/2[1_(1>2]5/2 B, .
]C_JCO -I—C TC BO+|B|1 ( )

4
n:noT—°[1—<l> ] B . (5)
T T./ 1By+|B

We note that this n is large at low temperatures but small
at high temperatures, which is very important to assure that
our model works well in various temperature regimes. In the
simulation we let ny=5, vy=1 m/s,”® jy,=5x 108 A/m?,
and By=500 Gs.

For comparison, the critical state model is also calcu-
lated in this paper, where j.=j. or O at the surface and j.
=je Or 0 in the bulk. For the field dependence, we also use
the Kim model j.(B)=]q[Bo/ (Bo+|B|)].

With the finite difference method, the nonlinear diffusion
equation can be numerically solved. And the implicit differ-
ence scheme is used for stability.

Ill. RESULTS AND DISCUSSIONS

The third (x3,x3) and the first (x;,x;) harmonics with
SB (jeos! jcop=>1) and without SB (jos/ jcop=1) are shown in
Fig. 1. If there is no SB, two peaks (we call them primary

J. Appl. Phys. 97, 10B105 (2005)
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FIG. 2. Polar plots of the third and the first harmonics with (js/jeop>1)
and without (jge/jcop=1) the surface barrier. (a), (c) The harmonics with
temperature power law n. (b) the third harmonics with constant n.

peaks) appear in both the y; [Fig. 1(b), curve a] and x; [Fig.
1(c), curve a], respectively, which is similar to the previous
results.?>* Accordingly, x; and x} [Fig. 1(a), curve a] have
no dips.16 We can see that the new feature occurs when SB is
considered. The most important one is that additional and
smaller negative peaks come out in x5 and xj, respectively.
When SB becomes stronger, two or more small peaks appear.
Besides, because SB can hold back the entrance of the flux
lines and only at higher temperatures the flux lines can pen-
etrate into the sample, the peaks shift to higher temperatures
with the increasing barrier strength. On the other hand, the
primary peaks are not monotonically increasing with j.os/ j con
though they are all in some measure larger than the ones
without SB. When j.¢/ jcon>> 20, the heights of the two pri-
mary peaks reverse. This is similar to the sign reversal effect
predicted in Ref. 17, where the third harmonics (both the real
and the imaginary parts) change sign in transition from the
geometrical barrier to the bulk pinning. What happened at
the temperature where the additional peaks occur in the third
harmonics? By comparing Fig. 1, one can easily see that the
corresponding dips in y; just take place at the same tempera-
ture where the y; peaks occur, as indicated by the dotted
lines. The dips in x; indeed have been observed by ACS and
Hall array measurements.’>*® Therefore, we conclude that
the additional and smaller negative peaks arise from SB.
As mentioned above, the velocity v of the flux lines (the
material equation) changes with temperature and field be-
cause n is dependent on T and B. For the ACS curves in Fig.
1, at low temperatures where v is very small, the critical state
model (v=0) is proper, where increasing temperature flux
lines move more and more faster, flux creep model goes into
effect, and near T, the flux lines will flow and the linear
material equation should be taken into account. Therefore the
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ACS curves are, in fact, calculated by the critical state, the
flux creep, and the flux flow models as temperature goes up.
This is very different from the reported results, where either
the critical state model or the flux creep one was used for the
whole of a y(T) curve.'®%

Shown in Fig. 2 are the polar plots x7—x; and x5— x3. It
is seen that the results in Figs. 2(a) and 2(c) are also different
from the reports in Refs. 4 and 18. The cardiodids which
traverse in clockwise sense upon decreasing temperature are
distorted. In fact, the distortion results from SB and the al-
teration of the flux creep velocity due to temperature. To
confirm this understanding, we calculated the plots x5 —x3 in
terms of the so-called whole critical state model (n is infi-
nite) which is suitable at any temperatures, including T=T,
where n=0 [see Fig. 2(b)]. It is noted that these cardiodids
are quite similar to the reports.**®

IV. SUMMARY

In summary, we have used a model to study the influence
of SB on the third and the first harmonics of ACS. The model
can act as the critical state one, the flux creep one, or the flux
flow one when temperature (or field) changes, which is more
close to the usual situation in experiments. Simulation shows
that SB has its own characteristic peaks (or dips) in the third
harmonics, which can be considered as a finger signature of
SB. By comparing the peaks with those in the real part of
elemental harmonic, we find that the peaks are at the same
temperature where dips in y’ caused by the SB occur, which
coincides with experiments.
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