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Transport Critical Current Density in Fe-Sheathed
Nano-SiC Doped MgB2 Wires

Shi X. Dou, Joseph Horvat, Saeid Soltanian, Xiao L. Wang, Meng J. Qin, Shi H. Zhou, Hua K. Liu, and
Paul G. Munroe

Abstract—The nano-SiC doped MgB2/Fe wires were fabri-
cated using a powder-in-tube method and an in-situ reaction
process. The depression of with increasing SiC doping level
remained rather small due to the counterbalanced effect of Si
and C co-doping. The high level SiC co-doping allowed creation
of the intra-grain defects and nano-inclusions, which act as
effective pinning centers, resulting in a substantial enhancement
in the ( ) performance. The transport for all the wires is
comparable to the magnetic at higher fields despite the low
density of the samples and percolative nature of current. The
transport for the 10wt% SiC doped MgB2/Fe reached 660A
at 5K and 4.5T ( = 133 000A/cm2) and 540A at 20K and
2T ( = 108 000A/cm2). The transport for the 10wt% SiC
doped MgB2 wire is more than an order of magnitude higher
than for the state-the-art Fe-sheathed MgB2 wire reported to date
at 5K and 10T and 20K and 5T respectively. There is a plenty of
room for further improvement in as the density of the current
samples is only 50%.

Index Terms—Critical current, magnesium diboride, nano-par-
ticle doping, silicon carbide.

I. INTRODUCTION

I T HAS BEEN established that Fe sheath is suitable for fab-
rication of MgB wires using a powder-in-tube method [1],

[2]. Extensive research efforts have been made to improve the
of Fe-sheathed MgBwires [1]–[5]. However, the perfor-

mance in high fields and temperatures above 20K remains unsat-
isfactory for many applications due to the poor pinning ability of
this material. Attempts to enhance flux pinning have resulted in
an encouraging improvement in irreversibility fields and

by oxygen alloying in MgB thin films [6] and by proton
irradiation of MgB powder [7]. However, these techniques are
not readily available for introducing effective pinning centers
into MgB wires. Chemical doping has been commonly used
to introduce flux pinning centers into a superconductor for en-
hancing critical current density. Unfortunately, chemical doping
of MgB reported so far is limited to addition, rather than sub-
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stitution of the elements. The additives alone appear to be inef-
fective for improving pinning at high temperatures [8]–[10].

Recently, we found that chemical doping with nano-particle
SiC into MgB can significantly enhance in high fields with
only slight reduction in up to the doping level of 40% of B
[11]. This finding clearly demonstrated that co-substitution of
SiC for B in MgB induced intra-grain defects and high den-
sity of nano-inclusions as effective pinning centers, responsible
for the improved performance of in wide range of tem-
peratures [12]. However, all the results reported thus far have
been limited to magnetic measurements. As the materials are far
from optimum and the sample density was only 50% of theoret-
ical value the current in such a porous material is highly per-
colative. The major concern is whether the material can carry
large transport . In this work, we focus our study on the trans-
port current and its field dependence for the nanometer-size SiC
doped MgB wires. Our results reveal that the nanometer size
SiC doped MgB/Fe wires can carry higher transportand
in the magnetic fields ever reported for any form of MgB. SiC
doped MgB is very promising for many applications, as this
chemical doping is a readily achievable and economically vi-
able process to introduce effective flux pinning.

II. EXPERIMENTAL DETAILS

A standard powder-in-tube method was used for the Fe clad
MgB tape [2]. Powders of magnesium (99%) and amorphous
boron (99%) were well mixed with 0 and 10wt% of SiC nano-
particle powder (size of 10 nm to 20 nm) and thoroughly ground.
The pure Fe tube had an outside diameter (OD) of 10 mm, a
wall thickness of 1 mm, and was 10 cm long with one end of
the tube sealed. The mixed powder was filled in to the tube and
the remaining end was crimped by hand. The composite was
drawn to a 1.4 mm diameter wire 2 meters long. Several short
samples 2 cm in length were cut from the wire. These pieces
were then sintered in a tube furnace over a temperature range
from 800–850 C for 10 min to 30 min. This was followed by
furnace cooling to room temperature. A high purity argon gas
flow was maintained throughout the sintering process.

Transport current was measured using pulse DC method. A
pulse of the current was obtained by discharging a capacitor
through the sample, coil of thick copper wire and noninductive
resistor connected in series. The current was measured via the
voltage drop on the noninductive resistor of 0.01 Ohm. The cur-
rent reached its maximum value (700A) within 1ms. The voltage
developed on the sample was measured simultaneously with the
current, using a 2-channel digital oscilloscope. Because both

1051-8223/03$17.00 © 2003 IEEE
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Fig. 1. Critical transition temperature(T ) measured using magnetic
susceptibility versus temperature for pure MgBand 10wt% SiC doped
MgB /Fe wires.

channels of the oscilloscope had the same ground, the signal
from the voltage taps was first fed to a transformer preampli-
fier (SR554). This decoupled the voltage taps from the resistor
used for measuring the current, thereby avoiding creation of
the ground loops and parasitic voltages in the system, as well
as of an additional current path in parallel to the sample. The
transformer amplified the voltage 100 times, improving the sen-
sitivity of the experiment. Magnetic field was produced by a
12T superconducting magnet. Sample mounting allowed for ori-
enting the field either perpendicular to the wire, or parallel to it.
In the later case, the field was also parallel to the current passing
through the sample. The sample was placed into a continuous
flow helium cryostat, allowing the control of temperature better
than 0.1K.

The magnetization of samples was measured over a tempera-
ture range of 5 to 30 K using a Physical Property Measurement
System (PPMS, Quantum Design) with a sweep rate of mag-
netic field of 50 Oe/s and amplitude up to 8.5T. Samples are in
the form of bars cut from the pellets which were processed under
the same conditions as the wires. All the samples had the same
size of 0.56 2.17 3.73 mm . A magnetic was derived
from the height of the magnetization loop using Bean’s model.

III. RESULTS AND DISCUSSION

Fig. 1 shows the transition temperature for the doped
and undoped samples determined by ac susceptibility mea-
surements. The obtained as the onset of magnetic screening
for the undoped sample was 37.6K. For the 10wt% SiC doped
sample, the decreased only for 0.7K. In contrast, thewas
depressed by almost 7K for 10% C substitution for B in MgB
[13]. This suggests that the higher tolerance ofof MgB to
SiC doping is attributable to the counterbalance effect of the
co-doping by C and Si. This is because the average size of C
(0.077 nm) and Si (0.11 nm) atoms is close to that of B (0.097
nm). As reported previously, the 10wt% SiC doped sample
consists of major phase with MgBstructure and minority
phases: MgSi and MgO which occupied about 10% to 15%
volume fraction.

Fig. 2. I–V curve for nondoped MgB/Fe wire.I = 665A at 24K and 1.1T.

Fig. 3. TransportJ � H dependence at 5 K, 10 K and 20 K for the pure
MgB /Fe and 10wt% SiC doped MgB/Fe wires.

Fig. 2 shows a typical – characteristic for the MgB/Fe
wire. It is noted that the self-field of the current pulse induced
a voltage in the voltage taps, which gave a background voltage.
It was easy to distinguish the voltage created by the super-
conductor on this background, because the voltage developed
very abruptly when the current reached the value of. It is
interesting to note that the total current that the wire can carry
reached 665A at 24K and 1.1T. The transportfor the 10wt%
SiC doped MgB/Fe reached 660A at 5K and 4.5T and 540A
at 20K and 2T. Due to the limitation of our power source all the

measurements were limited to the maximum 700A.
Fig. 3 shows the curves for the undoped and the

10wt% SiC-doped MgB samples at 5K, 10K, and 20K. It is
noted that all the for 10wt% SiC doped MgB/Fe wire
are significantly higher than the undoped sample at higher
fields. The transport for the 10wt% doped MgB/Fe reached
133 000A/cm at 5K and 4.5T and 108 000A/cmat 20K and
2T. The transport for the 10wt% SiC doped MgBwire
increased by a factor of 6 at 5K and 9T, and 20K and 5T
respectively, compared to the undoped wire. These results
indicate that SiC doping strongly enhanced the flux pinning of
MgB in magnetic fields. The enhancement of pinning by SiC
doping is also evident from the pinning force density versus
magnetic filed as shown in Fig. 4. The volume pinning force
density of 5.5 GN/m at 20K is comparable to that of NbTi at
4.2K. Although the maximum pinning force density only has a
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Fig. 4. Pinning force density versus magnetic filed for the undoped and 10wt%
SiC doped MgB/Fe wires.

Fig. 5. Comparison of the transportJ with magneticJ for the 10wt% SiC
doped MgB /Fe wire, including the best transportJ of a strongly pinned thin
film by Eomet al., [8] and Fe-sheathed MgBtape by Goldacheret al., [3] and
Beneduceet al., [14].

little shift to higher field, the pinning force density for the SiC
doped MgB/Fe wire is clearly greater than for the undoped
wire at field above 1.5T.

Fig. 5 shows the comparison of the transportwith mag-
netic . Although there is quite different voltage standard for
measuring the transport and magnetic , due to steep –
characteristics, is expected to be similar for both methods. It
is noted that the transport is lower than magnetic in low
fields as the transport showed some type of “peak effect.”
The peak effect originates from the interaction between the Fe

Fig. 6. J (H) versus temperature for the 10wt% SiC doped MgBwire at 1T,
2T and 4T.

sheath and superconductor. However, the transportfor the
wires is comparable to or higher than the magneticat higher
fields despite the low density of the samples and percolative na-
ture of current. Fig. 5 also shows a comparison of the transport

for 10wt% SiC doped MgB/Fe wire with the thin film
[6] and the Fe-sheathed MgBtape at 5K and 20K [3], [14] re-
ported previously. We see the for the 10wt% SiC doped wire
is more than an order of magnitude higher than the best transport

reported in Fe–MgBtape at 5K and 8T and 20K and 4T re-
spectively. It is even comparable to the strongly pinned thin film
(magnetic for the thin film) at 20K. This is the best transport

performance ever reported for MgBin any form.
Fig. 6 shows the versus temperature for 10wt% SiC

doped wire at 1T, 2T and 4T. With SiC doping, we can achieve
values from 50 000A/cmto 150 000A/cm in temperature

range between 15K and 25K and field range of 2T to 5T. These
results demonstrate that the nano-SiC doping into MgB/Fe
wire makes a number of applications practical, including MRI,
moderate magnets, magnetic windings for energy storage,
magnetic separators, transformers, levitation, motors and gen-
erators. The SiC substituted MgB/Fe wire is attractive from
the economic point of view. The main cost for making MgB
conductors will be the high purity B. Furthermore, the SiC
doping has already shown a significant benefit by enhancing
flux pinning. It is evident that the future MgBconductors will
be made using a formula of MgBSi C instead of pure MgB.

Fig. 7 is TEM image of Sic-doped MgBshowing a very
high density of dislocations and massive nano-meter size inclu-
sions inside the grains 7(a)). These inclusions are most likely the
Mg Si as this is the major impurity phase picked up by the XRD
analysis. The EDS analyses showed that the grains consisted of
Mg, B, C, Si and O. The presence of oxygen within the grain is
consistent with the results obtained from a thin film with strong
pinning where the ratio of Mg : B : O reached 1.0 : 0.9 : 07 [6].
All the intra-grain defects and the inclusions within the grains
act as effective pinning centers, responsible for the enhanced
flux pinning.

The present study for optimization is only limited by the pro-
cessing conditions, the density of the Fe-sheathed MgBwires
is still very low, only about 1.2 to 1.3 g/cm. Thus, a higher
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Fig. 7. TEM image for the undoped and 10wt% SiC doped MgB/Fe wires.

and better flux pinning enhancement can be achieved if the den-
sity of the samples is further improved.

IV. CONCLUSION

In summary, we have further demonstrated that very high
transport critical current and current density of Fe-sheathed
MgB wires can be achieved by a readily achievable and
economically viable chemical doping with nano-SiC. of
over 100 000A/cm at 5K and 5T and 20K and 2T were
obtained, comparable to NbTi and HTS respectively. The high
performance SiC doped MgBwires will have a great potential
to replace the current market leader, Nb–Ti and HTS for many
practical applications at 5K to 25K up to 5T.
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