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Tungsten Disulfide Nanotubes for Lithium Storage
G. X. Wang,z Steve Bewlay, Jane Yao, H. K. Liu, and S. X. Dou

Institute for Superconducting and Electronic Materials, University of Wollongong,
New South Wales 2522, Australia

WS2 nanotubes were synthesized by sintering amorphous WS3 at high temperature under flowing hydrogen. High-resolution
transmission electron microscopy observation revealed that the as-prepared WS2 nanotubes have an open end with an inner hollow
core of about 4.6 nm. We studied the lithium intercalation behavior of WS2 nanotubes. The WS2 nanotubes demonstrated a stable
cyclability in a wide voltage range~0.1-3.1 Vvs. Li/Li 1). The nanotubes could provide a new class of electrode materials for
lithium-ion batteries.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1788591# All rights reserved.

Manuscript submitted January 30, 2004; revised manuscript received March 13, 2004. Available electronically September 7, 2004.

Since the discovery of WS2 and MoS2 nanotubes by Tenne and
co-workers,1-4 extensive investigations have been done on the syn-
thesis and physical and structural characterization of metal dichal-
cogenide nanotubes. Tenneet al. synthesized WS2 nanotubes by
treating tungsten films in an atmosphere of hydrogen sulfide and
fullerene-like MoS2 nanotubes by gas-phase reaction between MoO3

thin-films and H2S at high temperature.1,4 Raoet al. employed hy-
drogen treatment of amorphous MoS3 and WS3 to produce MoS2
and WS2 nanotubes with a high rate of yield.5 These nanotubes have
an average outer diameter of about 25 nm. MoS2 and WS2 nano-
tubes have also been synthesized by chemical transportation using
iodine as the transport agent,6-8 by the activation method~acid treat-
ment following by sonication!,9 and by template synthesis.10 The
yield of nanotubes usually is in the range of 15-20% by these ap-
proaches. Numerous new transition metal disulfide nanotubes such
as TiS2 , NbS2 , and TaS2 have also been prepared.11,12

The one-dimensional~1D! nanotube materials have various po-
tential applications ranging from quantum computers to nanoscale
biomedical sensors.13,14 Carbon nanotubes have been proposed for
hydrogen storage15 and for applications related to lithium-ion bat-
teries and fuel cells.16 Thin films of fullerene-like MoS2 nanopar-
ticles have ultralow friction and wear.17 It has been reported that
MoS2 nanotubes have a moderate hydrogen storage capacity18 and
MoS22xIy nanotubes have demonstrated a reversible lithium interca-
lation capacity of 385 mAh/g.19 Lithium-ion batteries are the most
advanced power sources for modern portable electronic devices. The
development of next generation lithium-ion batteries with high en-
ergy relies on new electrode materials.20 Here we report, for the first
time, the lithium intercalation properties of WS2 nanotubes in
lithium-ion cells.

Experimental

WS2 nanotubes were synthesized by high-temperature treatment
of amorphous WS3 in hydrogen. Amorphous WS3 was obtained by
decomposition of (NH4)2WS4 at low temperature under flowing ar-
gon. The starting (NH4)2WS4 powders were purchased from Sigma-
Aldrich Chemical. The yield of WS2 nanotubes is high, more than
80%. The as-prepared WS2 nanotubes were studied using 300 kV
JEOL JEM-3000F transmission electron microscope~TEM! with
field emission. The electrochemical properties of WS2 nanotubes
were measured via coin cell testing. The WS2 nanotube electrodes
were made by dispersing 84 wt % active materials, 8 wt % carbon
black, and 8 wt % polyvinylidene fluoride~PVDF! binder in dim-
ethyl phthalate solvent to form a homogeneous slurry. The slurry
was then spread on a copper foil. The coated electrodes were dried
in a vacuum oven at 120°C for 12 h and then pressed to enhance the
contact between the active materials and the conductive carbons.
The CR2032 coin cells were assembled in an argon-filled glove box

~Mbraun, Unilab, Germany! using lithium metal foil as the counter
electrode. The electrolyte was 1 M LiPF6 in a mixture of ethylene
carbonate~EC! and dimethyl carbonate~DMC! ~1:1 by volume, pro-
vided by Merck KgaA, Germany!. The cells were galvanostatically
discharged and charged in the voltage range of 0.01-3 V. Cyclic
voltammetry~CV! measurements were performed on WS2 nanotube
electrodes using an EG&G scanning potentiostat~model 362! at a
scanning rate of 0.1 mV/s.

Results and Discussion

Amorphous WS3 powders were first synthesized by decompos-
ing ammonium tetrathiotungstate@(NH4)2WS4# at low temperature.
WS2 nanotubes were then prepared by sintering the as-obtained
amorphous WS3 at high temperature under flowing hydrogen. The
two reaction steps involved are

~NH4!2WS4 ——→ WS3 1 H2S 1 NH3 @1#

WS3 1 H2 ——→ WS2 1 H2S @2#

The yield of WS2 nanotubes is high, more than 80%. X-ray dif-
fraction~XRD! was performed on the intermediate product WS3 and
the final product WS2 , which confirmed the amorphous nature of
WS3 and the hexagonal phase of WS2 . The WS2 nanotubes were
studied using JEOL-3000F transmission electron microscope with
field emission. Figure 1a shows a TEM image of the as-prepared
WS2 nanotubes. The nanotubes in Fig. 1a have open tips, and some
of them have a nearly rectangular tip shape. This is in contrast to a
previous report,5 which demonstrated a closed tip. The outer diam-
eters of these WS2 tubes are about 30-40 nm with a wall thickness
of 15 nm. The hollow core of the nanotubes is about 4.6 nm, which
is indicated in Fig. 1a. These WS2 nanotubes are also short in length
~a few hundred nanometers!, straight, and well dispersed. Some
nest-shell nanoclusters are also presented in Fig. 1a. Figure 1b
shows a more magnified TEM image of WS2 nanotubes, which
demonstrates that nanotubes stick together to form bundles. The

z E-mail: gwang@uow.edu.au Figure 1. TEM images of WS2 nanotubes.
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outer diameter of the WS2 nanotubes in Fig. 1b is about 25 nm.
High-resolution TEM images of WS2 nanotubes are shown in Fig. 2.
Figure 2a shows the tip of a straight WS2 nanotube with an outer
diameter of;20 nm. This nanotube has a nonspherical open tip and
a clear-cut outside wall. Figure 2b shows the tip of another WS2
nanotube, which has an onionlike cluster structure. A more magni-
fied HRTEM image of a WS2 nanotube is shown in Fig. 2c. The
interlayer spacing is about 0.6 nm, corresponding to the~002! plane.

The electrochemical properties of WS2 nanotubes were measured
via coin cell testing. Figure 3a and b shows the cyclic voltammo-
grams ~CVs! of a WS2 nanotube electrode in the first scanning
cycle, the second and the third scanning cycles, respectively. In the
first scanning cycle~Fig. 3a!, the broad cathodic peak starts from 1.0
V and is centered at 0.5 V; whereas the anodic peak is located at
2.42 V. In the second scanning cycle, the cathodic peak at 0.5 V has
disappeared, while instead, a new cathodic peak appears at 1.85 V.
From the second cycle, the CV curves remain consistent and main-
tain a pair of redox peaks, representing the lithium intercalation
plateau at;1.85 V and the lithium deintercalation plateau at
;2.42 V.

The discharge/charge profiles of WS2 nanotube electrode in the
first and second cycles are presented in Fig. 4a and b. In the first
cycle, the WS2 nanotube electrode delivered a lithium insertion ca-
pacity of about 915 mAh/g, corresponding to 8.6 mol lithium per
mole WS2 nanotubes. This is much higher than for WS2 powders
~assuming the layered WS2 host can accommodate the insertion of 1
mol Li1 per mol WS2

21!. The high lithium insertion capacity of
WS2 nanotubes could be ascribed to their 1D structure. The HRTEM
analysis has identified that WS2 nanotubes have open ends and a
hollow core of about 4.6 nm in diameter. The individual straight
WS2 nanotubes stick together to form bundles. Some WS2 nanoclus-
ters are also present. Therefore, there are four possibilities for
lithium intercalation in the WS2 nanotube electrode,~i! lithium ions
intercalate into intratubal sites~the hollow core! through the open
end, (i i ) lithium ions intercalate into intertuberal sites~the sites
between individual nanotubes! through diffusion in the bundles,
( i i i ) lithium ions intercalate into WS2 nano clusters and (iv)
lithium ions intercalate into layered WS2 structures, including in

nanotube structures and nanocluster structures. All these four possi-
bilities may contribute to the high lithium insertion capacity of WS2
nanotube electrodes.

We observed two lithium insertion plateaus at;0.8 and;0.6 V
as well as a slope starting from 0.5 V down to the cutoff voltage of
0.1 V in the first cycle. Dominkoet al.19 attributed the 0.8 V inser-
tion plateau to the reaction between Li1 and interstitial iodine in
MoS22xIy nanotubes and the 0.6 V plateau to lithium insertion in
MoS22xIy bundles. Because our WS2 nanotube sample does not
contain iodine, we attribute both plateaus to lithium insertion in the
WS2 nanotube bundles~either intertubular or intratubular sites!. Sur-
prisingly, we found that the lithium extraction potential is located at
a much higher voltage of 2.3 Vvs. Li/Li 1. From the second cycle,
the discharge plateau is located at 2.0 V.~The discharge plateau at
low potential observed in the first cycle disappeared.! The charge/
discharge plateaus match very well with the anodic and cathodic
peaks in the CV curves~Fig. 3!. The significant difference between
the first discharge and second discharge may be associated with the
physical and structural changes after lithium intercalation into WS2
nanotubes.

The electrochemical behavior of WS2 nanotube is significantly
different from that of crystalline WS2 powders, which was described
in a previous report.22 The lithium insertion capacity was only 0.6
mol Li1 per mole crystalline WS2 . We attribute this difference to
the 1D topology of WS2 nanotubes. The 1D WS2 nanotubes have an
open structure. We suggest that, in the first lithiation process, lithium
ions predominantly intercalate into intratubular and intertubular sites
in WS2 nanotubes. Once these intra- and intertubular sites are satu-

Figure 2. HRTEM images of WS2 nanotubes.

Figure 3. CVs of WS2 nanotube electrode.~a! The first scanning cycle and
~b! the second and the third scanning cycles.
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rated with Li1, lithium ions will then diffuse into WS2 structure to
form LixWS2 intercalation compounds due to the high concentration
of Li1 in these sites. During charging, a fraction of Li1 ions first
deintercalate from the bundles of WS2 nanotubes at low potentials
~observed as the slope in the charging curve!, and then deintercalate
from LixWS2 structures at high potentials~observed as the plateau
on the charging curve!. But the fraction of Li1 ions trapped in the
intra- and intertubular sites induce irreversible capacity. The high
irreversible capacity in the first cycle may also be caused by the
decomposition of electrolyte on the surface of WS2 nanotubes to
form a passivation layer on the electrode. From the second cycle,
lithium inserted into WS2 structure at high potential and then in-
serted into the bundles of WS2 nanotubes at low potential; vice
versa for deintercalation process. So, after the first cycle, the inter-
calation reaction dominates the electrochemical process, which is
evidenced by the plateau at 2.0 V in Fig. 4b. Compared to the charge
capacity, the increased discharge capacity in Fig. 4b may be due to
the use of a Li auxiliary electrode. The low cutting potential in the
discharge probably causes the passivation of lithium on the elec-
trode. It is claimed that the intercalation compound (LixWS2) de-
composed to a mixture of W and Li2S for a high degree of Li
insertion (x . 1) in crystalline WS2 powders.22 Because the CV
measurement does not detect any decomposition reactions, this pro-
cess is unlikely to occur for WS2 nanotubes. Figure 4c shows the
lithium insertion capacityvs. the cycle number. After the first cycle,
the WS2 nanotube electrode exhibited stable cycling behavior in a
wide voltage range of 0.1-3.1 Vvs.Li/Li 1.

Because the WS2 nanotubes demonstrated a high discharge pla-
teau at 2.0 V, they can be used as cathodes with a cutoff voltage of
1.5 V vs. Li/Li 1. When WS2 nanotube electrodes were cycled be-
tween 1.5 and 3.0 V from the second cycle, they had an approximate
capacity of 200 mAh/g. Compared to the other high potential cath-
ode materials such as LiCoO2 ~3.6 V!, the energy density of WS2
nanotubes is relatively lower. Whereas WS2 nanotubes also demon-
strated an interesting electrochemical behavior when cycled at low
potential range. One WS2 nanotube electrode was cycled between
0.1 and 1.5 V, and it showed a capacity of about 350 mAh/g.

Conclusion

We have synthesized and characterized WS2 nanotubes. The
WS2 nanotubes demonstrated a significant different electrochemical
properties compared to the crystalline WS2 powders. The WS2
nanotube electrodes show stable cyclability over a wide voltage
range. Nanotube materials may provide a class of versatile electrode
materials for lithium-ion batteries with improved electrochemical
characteristics.
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Figure 4. ~a! Discharge/charge profiles of WS2 nanotube electrode in the
first cycle. ~b! Discharge/charge profiles of WS2 nanotube electrode in the
second cycle.~c! Discharge capacityvs. cycle number for WS2 nanotube
electrode.
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