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Despite its relative simplicity, the role of tunneling in the reaction OH + CO → H + CO2 has eluded
the quantitative predictive powers of theoretical reaction dynamics. In this study a one-dimensional
effective barrier to the formation of H + CO2 from the HOCO intermediate is directly extracted from
dissociative photodetachment experiments on HOCO and DOCO. Comparison of this barrier to a
computed minimum-energy barrier shows that tunneling deviates significantly from the calculated
minimum-energy pathway, predicting product internal energy distributions that match those found
in the experiment and tunneling lifetimes short enough to contribute significantly to the overall
reaction. This barrier can be of direct use in kinetic and statistical models and aid in the further
refinement of the potential energy surface and reaction dynamics calculations for this system.
© 2011 American Institute of Physics. [doi:10.1063/1.3589860]

The elementary reaction OH + CO → H + CO2 has been
the subject of extensive theoretical and experimental studies,
yet the detailed dynamics remain poorly understood. This
reaction governs CO/CO2 ratios in hydrocarbon combustion
and the upper atmosphere, and impacts the HOx/NOx/SOx

atmospheric cycles through the destruction of OH radicals.1 It
is one of the simplest complex-forming elementary reactions;
it is strongly exothermic but features a very stable intermedi-
ate, HOCO, and a barrier to activation in the product channel
of roughly similar energy to the reactants.2–4 As a four-atom
system, the OH + CO → HOCO → H + CO2 reaction is
amenable to a broad range of theoretical treatments,2, 5–8 and
several high-level potential energy surfaces (PESs) exist.9–13

The reaction proceeds through the strongly bound cis-HOCO
intermediate14 and shows striking non-Arrhenius behavior.3

The exact height and shape of the barrier to the formation of
H + CO2 are critical to the overall kinetics of the reaction.
However, beyond limited spectroscopic studies15–21 and
measurements of excited state dynamics,22 little experimental
information exists on the isolated HOCO radical, and there is
no quantitative agreement on the nature of the barrier and the
role that tunneling plays in the overall kinetics of the OH +
CO reaction.9, 23–25

Photoelectron-photofragment coincidence (PPC)
spectroscopy26 has been used to directly probe the HOCO
PES governing the dynamics of this reaction, resolving three
processes: detachment to internally excited HOCO radicals
(stable channel), dissociation to H + CO2 (exit channel),
and dissociation to OH + CO (entrance channel).27, 28 All
dissociation to H + CO2 was found to occur below the cal-
culated barrier on the neutral PES, consistent with tunneling
dissociation. Further analysis revealed dissociation to OH +

a)Author to whom correspondence should be addressed. Electronic mail:
rcontinetti@ucsd.edu.

CO with lifetimes less than 9 × 10−13 s, indicating that when
energetically allowed, this process is facile.29 However, these
results were complicated by the presence of strong hot bands
evident in the photoelectron spectra. Recent incorporation of
a cryogenic electrostatic ion beam trap, providing internally
cold anions, allowed for unprecedented insight into these
dynamics, confirming the occurrence of tunneling through the
exit-channel barrier.30 Energy-resolved branching fractions
were measured for the three processes, revealing a range of
internal energy in which tunneling lifetimes to H + CO2 are
similar to the timescale of the experiment indicative of com-
petition between the stable and exit channels. In the present
work these studies are extended to the deuterated DOCO
radical31 and the set of energy-resolved branching fractions
are analyzed in detail in the tunneling regime, enabling the
development and optimization of a realistic one-dimensional
(1D) potential barrier that accurately reproduces the observed
tunneling dynamics and independently predicts the observed
product internal energy distributions.

The PPC spectra for HOCO−(DOCO−) + hν → H(D)
+ CO2 + e− in Fig. 1 provide the primary evidence for the
presence of tunneling in the exit channel. All dissociation to
H + CO2 occurs above the maximum electron kinetic energy
(eKE) limit denoted by horizontal lines and, barring signif-
icant errors in the computed surfaces, is therefore due en-
tirely to tunneling. However, an interesting horizontal feature
is present in both spectra at the high eKE (low energy on the
PES) limit. In dissociative systems PPC spectra generally ex-
hibit diagonal features due to the correlation of energy in the
system to energy along the dissociative coordinate. The tran-
sition from diagonal to horizontal character at the high eKE
limit of both spectra indicates that the tunneling lifetime ap-
proaches the time-of-flight (TOF) of the translational spec-
trometer, 7.8 μs for HOCO and 7.9 μs for DOCO, at these
energies. If a metastable HOCO* neutral travels a significant

0021-9606/2011/134(17)/171106/4/$30.00 © 2011 American Institute of Physics134, 171106-1

Downloaded 18 Nov 2012 to 130.130.37.84. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3589860
http://dx.doi.org/10.1063/1.3589860
http://dx.doi.org/10.1063/1.3589860
mailto: rcontinetti@ucsd.edu


171106-2 Johnson et al. J. Chem. Phys. 134, 171106 (2011)

0.0 0.5 1.0 1.5 2.0

Translational Energy Release (ET / eV)

0.0 0.5 1.0 1.5 2.0

Translational Energy Release (ET / eV)

0.0

0.5

1.0

1.5

2.0

 e
–

 K
in

e
ti
c
 E

n
e

rg
y
 (

e
K

E
 / 

e
V

)

0.0

0.5

1.0

1.5

2.0

 e
–

 K
in

e
ti
c
 E

n
e

rg
y
 (

e
K

E
 / 

e
V

)HOCO DOCO

FIG. 1. PPC spectra for HOCO−(DOCO−)→H(D) + CO2 + e−, corrected for the finite acceptance of the neutral particle detector. (See Ref. 37.) Solid
diagonal lines indicate the calculated maximum total kinetic energy available to the system, dashed diagonal lines denote the observed product internal energy
peak, and horizontal lines indicate the maximum eKE expected for above-barrier dissociation of cis-HOCO(DOCO). The signal above the maximum kinetic
energy line is due to a small number of false coincidences and is ignored.

portion of the TOF before dissociating, the measured transla-
tional energy release (ET) is reduced, and thus a discrete ET is
mapped into a band of apparent ET extending from the actual
value to zero. This horizontal feature appears at lower eKE
(higher Eint) in the DOCO spectrum as expected due to the re-
duction in tunneling probability from the larger reduced mass
of D + CO2. The spectra are also shifted below the maximum
total energy release (diagonal lines), indicating that 0.1–0.4
eV of the available energy is stored as internal energy in the
CO2 product.

Energy-resolved branching fractions are determined from
the relative contribution of each product channel at a given en-
ergy to the overall photoelectron spectrum.31 In the region of
competition between the stable channel and the exit channel,
the stable fraction can be used to compute tunneling proba-
bilities. A 1D barrier to dissociation can be optimized to fit
these tunneling probabilities using a quasi-1D model,31 sim-
plified from one outlined by Miller.32 In this model nuclear
motion is assumed to be separable into dissociative and non-
dissociative components and dissociative motion is treated as
a two-body 1D system (H-OCO). All non-dissociative inter-
nal energy resides entirely in OCO and the partitioning of this
energy is controlled by an experimentally determined parame-
ter χ , while only dissociative energy is considered for tunnel-
ing through the barrier. The experimentally derived potential
is composed of a Morse oscillator coupled to a dissociative
potential, and is plotted in Fig. 2 along with a fully relaxed,
zero-point corrected scan of the energy along the OH bond
length using the CCSD/aug-cc-pVTZ level of theory.33

Comparison of the experimental barrier with the com-
puted minimum-energy barrier shows good agreement for
the bound part of the surface and distinct differences for
the dissociative part. The curvature parameter of the Morse
potential gives an OH stretching frequency of 3486 cm−1, in
good agreement with the computed value.31 The zero-point
corrected barrier height is found to be 1.13 eV at 1.44 Å,

displaced to larger rOH by 0.09Å and 0.02 eV higher than the
minimum-energy barrier but significantly wider. Among the
available full PESs,10–13 ZPE-corrected saddle points range
from 0.97 to 1.28 eV, consistent with the model barrier.

The computed minimum energy barrier is not expected
to properly reproduce the tunneling dynamics in the HOCO
system. Calculations show significant geometrical changes as
the system crosses the barrier, particularly in the OCO an-
gle, which changes by nearly 40◦ over a 0.05 Å change in
rOH. Thus, relaxed scans along rOH reflect these geometrical
changes and represent a lower limit, at each bond length, to
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FIG. 2. Model PES for cis-HOCO → H + CO2, shown in black, and calcu-
lated minimum-energy barrier (green crosses). Also included are the relevant
OH (blue) and OD (red) vibrational levels and the range of Ediss where long-
lifetime tunneling is observed for each isotopologue. An example of expected
product internal energy, given by Eint,prod, is also shown.
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FIG. 3. An example 2D slice (rOH,� OCO) at fixed rOC = rCO = 1.18 Å of the
HOCO PES (non-ZP corrected). The computed minimum energy path (solid)
is overlaid and the path of highest tunneling probability (dashed) is shown for
an example value of Ediss.

the barrier through which tunneling occurs. Since H atom
tunneling occurs rapidly compared to the motion of OCO,
tunneling must occur at essentially constant CO2 geometry,
and therefore is nearly perpendicular to the minimum-energy
pathway in the relevant (rOH, � OCO) plane of the surface, ex-
emplified in Fig. 3.

Using the model barrier the internal energy in the CO2

products resulting from tunneling can be estimated and com-
pared to the experimental values. Significant vibrational exci-
tation in the CO2 product is expected due to the difference be-
tween the tunneling geometry and the equilibrium CO2 geom-
etry. Thus, the energy at the outer limit of the tunneling path
gives an estimate of the internal energy in the CO2 fragment.
The difference between the calculated and experimentally de-
rived barriers in the repulsive region is ∼0.2–0.3 eV, arising
from the un-relaxed nature of the OCO fragment during tun-
neling. Comparison of this expectation with the average inter-
nal energy from the coincidence spectra of 0.2 eV for HOCO
and 0.3 eV for DOCO shows close agreement. A second in-
dependent confirmation involves the energy partitioning fac-
tor χ relating total internal energy to internal energy in the
bond-breaking coordinate. While the quasi-1D model implic-
itly requires vibrational adiabaticity, this is not enforced in the
extraction procedure. This implies that the CO2 fragment in-
ternal energy, once dissociation is complete, should equal the
non-dissociative energy component, Eint – Ediss, which also
ranges from 0.1 to 0.3 eV. The agreement of both of these
checks without inclusion of experimental information regard-
ing the product internal energy provides strong evidence that
the model captures most of the important dynamical aspects
of the system. The slight discrepancy in the internal energy
distribution ranges from the model indicate that vibrational
adiabaticity does not strictly hold, with partitioning of energy
between kinetic and internal degrees of freedom as the OCO

HOCO
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FIG. 4. Prediction of tunneling lifetimes as a function of energy in the OH
(red) and OD (blue) stretch (solid lines) compared to those taken from the
theoretically predicted minimum energy barrier (dashed).

equilibrium geometry relaxes suddenly from bent to linear in
the exit channel.

While the model potential is able to reproduce the exper-
imental tunneling rates extremely well, tunneling lifetimes
become too short relative to the time-scale of the measure-
ment to determine the fraction of stable radicals near the top
of the barrier. Given the 1D approximation used here, the
possibility that the actual barrier and tunneling rates deviate
from the model at the top of the barrier cannot be ruled out.
As the tunneling distance approaches zero the tunneling path-
way must approach the minimum energy pathway implying
that the extracted barrier shape should approach the shape of
the minimum-energy barrier at the saddle-point. The failure
to do so could indicate inapplicability of the barrier at these
energies, dynamics beyond those explicitly considered in the
model, or that the minimum-energy barrier fails to capture
the tunneling dynamics at any energy. However, the veracity
of the model barrier is supported by the observation in Fig. 3
that the tunneling pathway and the minimum-energy pathway
intersect near the saddle point, implying little geometric
change as a function of energy for this plane of the PES.

Tunneling lifetimes are computed using the model bar-
rier over its full energy range, shown in Fig. 4 as a function
of energy in the dissociation coordinate. It can be seen that in
the particularly relevant region near the entrance channel en-
ergy of 1.2 eV, the tunneling lifetimes are predicted to be less
than 1 psec, similar to the measured lifetime of the HOCO
→ OH + CO process,29 implying that slight collisional sta-
bilization or temporarily bound complexes could lead to non-
negligible dissociation through this barrier. Even above the
barrier, where dissociation is expected to be facile, frustration
due to curvature of the reaction path may also cause tunnel-
ing above and away from the saddle point energy to become
competitive,34 Tunneling rates for the minimum energy bar-
rier, also in Fig. 4, give a lower limit to the tunneling life-
times and thus can be used in concert with the model lifetimes
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to constrain the rates of processes occurring in this energy
regime of the PES.

The data presented here can be of direct use in more so-
phisticated treatments of the tunneling process34–36 particu-
larly with regard to the role of vibrational energy distribu-
tion in the HOCO* intermediate which is treated crudely in
this model. Additionally, the effect of isomerization to trans-
HOCO acting as a sink for cis-HOCO* that would otherwise
tunnel is not considered. If this process occurs, the actual tun-
neling rates could be significantly higher than those predicted
by the model barrier. The lowest-energy transition state be-
tween cis- and trans-HOCO is reached by out-of-plane tor-
sional motion of the H atom. Excitation of the torsional mode
of HOCO is not expected in photodetachment due to the pla-
narity of both the anion and the neutral and inefficient vibra-
tional redistribution due to the A′′ symmetry of the torsional
mode, so this transition state should be inactive as a mech-
anism for the loss of cis-HOCO*. However, a poorly char-
acterized higher energy planar isomerization transition state
also exists which could result in a reduction in the actual tun-
neling yield if it is found to have low enough energy. Work
on a more detailed transition-state-theory model of the global
kinetics on this surface which can accurately reproduce these
dissociative photodetachment results should help to further il-
luminate the role that tunneling plays in the overall dynamics
of this reaction.

The authors would like to thank Professors Amit Sinha,
John Stanton, and Michael Galperin for helpful discus-
sions and John Stanton for providing the anharmonic vibra-
tional calculations. This work was supported by the United
States Department of Energy under Grant No. DE-FG03–
98ER14879.
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