University of Wollongong Research Online

Faculty of Science - Papers (Archive)

Faculty of Science, Medicine and Health

1-1-2005

Structural re-assignment of the mono- and bis-addition products from the addition reactions of N-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions

Graham E Ball University of New South Wales

Glenn Ashley Burley University of Wollongong

Leila Chaker University of Wollongong

William Hawkins University of Wollongong, wch02@uow.edu.au

James Williams University of Wollongong

See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Ball, Graham E; Burley, Glenn Ashley; Chaker, Leila; Hawkins, William; Williams, James; Keller, Paul A.; and Pyne, Stephen G.: Structural re-assignment of the mono- and bis-addition products from the addition reactions of N-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions 2005, 8572-8574.

https://ro.uow.edu.au/scipapers/3524

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Structural re-assignment of the mono- and bis-addition products from the addition reactions of N-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions

Abstract

The addition of *N*-(diphenylmethylene)glycinate esters ($Ph_2C=NCH_2CO_2R$) to [60]fullerene under Bingel conditions gives [60]fullerenyldihydropyrroles and not methano[60]fullerenyl iminoesters [$C_{60}C(CO_2R)(N=CPh_2)$] as previously reported. Unequivocal evidence for the structure of

 $C_{60}C(CO_2Et)(N=CPh_2)$ was provided by INADEQUATE NMR studies on ¹³C enriched material. New mechanistic details are proposed to account for the formation of [60]fullerenyldihydropyrroles and their reductive ring-opening reactions.

Keywords

Structural, reassignment, mono, bis, addition, products, from, addition, reactions, diphenylmethylene, glycinate, esters, fullerene, under, Bingel, conditions, CMMB

Disciplines

Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Burley, G., Chaker, L., Hawkins, W., Williams, J., Keller, P. A., Pyne, S. G. & Ball, G. (2005). Structural reassignment of the mono- and bis-addition products from the addition reactions of N-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions. The Journal of Organic Chemistry, 70 8572-8574.

Authors

Graham E Ball, Glenn Ashley Burley, Leila Chaker, William Hawkins, James Williams, Paul A. Keller, and Stephen G. Pyne

REVISED

Structural Re-assignment of the Mono- and Bis-addition Products from the Addition Reactions of *N*-(diphenylmethylene)glycinate Esters to [60]fullerene under Bingel Conditions

Graham E. Ball, [†]Glenn A. Burley, [‡]Leila Chaker, [‡]Bill C. Hawkins, [‡]James R.

Williams, [‡] Paul A. Keller, ^{‡*} Stephen G. Pyne^{‡*}

[†]NMR Facility, University of New South Wales, Sydney, New South Wales, 2052, Australia and [‡]Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia

keller@uow.edu.au spyne@uow.edu.au

Abstract

The addition of *N*-(diphenylmethylene)glycinate esters ($Ph_2C=NCH_2CO_2R$) to [60]fullerene under Bingel conditions gives [60]fullerenyldihydropyrroles and not methano[60]fullerenyl iminoesters [$C_{60}C(CO_2R)(N=CPh_2)$] as previously reported. Unequivocal evidence for the structure of $C_{60}C(CO_2Et)(N=CPh_2)$ was provided by INADEQUATE NMR studies on ¹³C enriched material. New mechanistic details are proposed to account for the formation of [60]fullerenyldihydropyrroles and their reductive ring-opening reactions.

Introduction

The reaction of activated methylenes (WCH₂W') with [60]fullerene in the presence of a brominating agent and base is known as the Bingel reaction and commonly yields fused 3-membered ring adducts (methano[60]fullerenes, $C_{60}CW(W')$).^{1,2} In a recent paper we reported that the addition of *N*-(diphenylmethylene)glycinate esters **2a-d** to [60]fullerene under Bingel conditions gave methano[60]fullerenyl iminoesters **1a-d**, and that tethered bis-*N*-(diphenylmethylene)glycinate esters, derived from *meta-* and *para-*benzenedimethanol scaffolds, gave the corresponding bis-methano[60]fullerenyl iminoesters **2**.³⁻⁶ The structures of compounds **1a-d** were based upon the observation of a single sp³ fullerene resonance (between δ 82-83) in the ¹³C NMR spectra (4:6

CDCl₃:CS₂) of these compounds at 75 or 100 MHz, which implied to us that these molecules had C_S symmetry.

Results and Discussion

More recently we have examined the ¹³C NMR spectra (4:6 CDCl₃:CS₂) of the compounds assigned structure **1a** and **1b** at higher field (150 MHz) which showed two sp³ fullerene resonances separated by 0.02-0.03 ppm (3 - 4.5 Hz) in this chemical shift region. When pure CDCl₃ was employed as the solvent then these resonances were resolved by 16 Hz. This prompted us to re-examine our initial NMR and structural assignments and to perform INADEQUATE NMR experiments to unequivocally determine the structure of **4b**. We report here that the products of these reactions are indeed [60]fullerenyldihydropyrroles (**4a-d**, Scheme 1).

Scheme 1

The ¹³C NMR spectrum of **4b** at 150 MHz showed the presence of 28 full- and 2 halfintensity sp² resonances (C-52 and C-60, Figure 1, Table 2) along with two sp³ fullerene resonances (δ 82.71 and 82.73 for C-1 and C-9, not necessarily respectively, Figure 1) separated by 0.02 ppm indicating the fullerenyl sp³ carbons lie in the plane of symmetry ruling out the possibility of a cyclopropyl ring (methano[60]fullerene). Likewise the ¹³C NMR spectrum of **4a** at 150 MHz also showed two closely resolved sp³ fullerene resonances at δ 82.76 and 82.73. Further diagnostic evidence was a strong HMBC correlation between the *ortho*-protons of the phenyl rings (Figure 2) of **4b** and the dihydropyrrole sp³ carbon resonance (C_β) at 95.9 ppm (Table 1). Furthermore, no correlations were observed to any downfield resonance attributable to the imine group (at 159.7 ppm). Such a correlation would have been expected for **1b** but not for **4b**. The HMBC experiments on **4a** also showed the same correlations (Figure 2, Table 1).

Figure 1. Schlegel diagram of 4b (ester and phenyl groups omitted for clarity).

Figure 2.

Table 1. HMBC correlations

Compound	$H_{\alpha}(ppm)$	$C_{\beta}(ppm)$
4b , R = Et	8.10	95.85
4a , R = ^t Bu	8.05	96.63

In order to unequivocally assign all the carbons in the fullerene cage 2D-INADEQUATE and ¹³C NMR experiments were conducted on **4b** using 10% ¹³C enriched fullerene. Fullerenyl resonances were distinguished from non-fullerenyl resonances by the presence of ¹³C-¹³C coupled satellites situated on either side of a central resonance peak. Assignment of the carbon sphere was achieved on the basis of one-bonded ¹³C-¹³C connectivities and examination of the carbon-carbon coupling (¹*J*_{CC}) values knowing typical values for C(sp²)-C(sp³) bonds (~48 Hz), the longer 5,6 ring-fused bonds (54-57 Hz) and the shorter 6,6 ring-fused bonds (65-71 Hz).⁷⁻⁹ This analysis facilitated the unambiguous characterisation of the entire fullerene sphere as shown in Figure 1 and Table 2.

Carbon				
Number	δ (ppm)	(Carbon number) ¹ JC-C/Hz		
1* [#] ^	82.71	(2) 43.4		
2,5	153.06	(1) 43.4, (3) 57.1, (6) 72.4		
3,4	145.02	(2) 57.1, (15) 67.6		
6,12	134.55	(2) 72.4, (7) 54.2, (13) 57.3		
7,11	136.53	(6) 54.2, (8) 71.3, (22) 57.2		
8,10	148.49	(7) 71.3, (9) 41.5 , (25) 57.5		
9* [#] ^	82.73	(8) 41.5		
13,20	141.71	(6) 57.3, (14) 68.0, (21) 55.6		
14,19	144.73	(13) 68.0, (15) 56.4, (33) 55.5		
15,18	139.08	(3) 67.6, (14) 56.4, (16) 56.4		
16,17	141.69	(15) 56.4, (34) 55.8		
21,30 [#] ^	145.25	∫ (13) 55.6, (22) 55.5, (31) 68.3, <u> </u>		
∟50,54⊃	L145.28	L (32)", (49) ", (51) " J		
22,29	141.20	(7) 57.2, (21) 55.5, (23) 67.7		
23,28	145.35	(22) 67.7, (24) 56.8, (47) 56.5		
24,27	139.61	(23) 56.8, (25) 68.0, (44) 56.1		
25,26	147.49	(8) 57.5, (24) 68.0		
31,40	142.88	(21) 68.3, (32) 56.1, (41) 55.9		
32,39	145.81	(50) ¹ , (31) 56.1, (33) 68.1		
33,38	144.06	(14) 55.5, (32) 68.1, (34) 55.9		
34,37	142.28	(16) 55.8, (33) 55.9, (35) [¶]		
35,36	142.65	(34) ¹ , (51) 56.3		
41,48	146.27	(31) 55.9, (47) 68.0, (49) 56.1		
42,47	144.08	(23) 56.5, (41) 68.0, (43) 56.0		
43,46	142.25	(44) [¶] , (47) 56.0, (57) [¶]		
44,45	141.76	(24) 56.1, (43) [¶]		
49,55	144.96	(50) [¶] , (41) 56.1, (56) 67.5		
51,53	145.67	(50) [¶] , (35) 56.3, (52) 56.4		
52*	146.79	(51) 56.4		
56,59	145.82	(49) 67.5, (57) 55.9, (60) 55.9		
57,58	142.62	(43) [¶] , (56) 55.9		
60*	146.93	(56) 55.9		

Table 2. Chemical shifts (δ), peak assignments, and carbon-carbon coupling constants $({}^{1}J_{CC})$ for the [60]fullerene cage of **4b** (150 MHz, CDCl₃:CS₂)

*denotes half-intensity peaks #denotes peak overlap

^ unable to differentiate

 ${}^{1}J_{C-C}$ values could not be accurately measured

We propose that the [60]fullerenyldihydropyrroles **4a-d** arise from ring-closure of the anionic intermediate A (Scheme 2). Ring-closure would favour formation of a 5membered (dihydropyrrole) ring (4a-d) over the more strained 3-membered (cyclopropane) ring (1a-d).

The regiochemical outcomes from tethered bis-additions to the fullerene cage remain as previously reported,⁶ with symmetry arguments and UV-vis data from all the bissubstituted analogues (5-8) providing evidence for the regiochemical outcome with analysis of their 2D-INADEQUATE spectra unambiguously confirming their regiochemisty (Scheme 3). The symmetry of the bis-substituted fullerenyl adducts are equivalent regardless of whether or not the attachments are via 3 or 5 membered rings, therefore analysis of the ¹³C NMR spectra could not differentiate between the two possible structures. However, re-examination of the HMBC correlations showed bis-substituted fullerenyl corresponding that all adducts were the bis-[60]fullerenyldihydropyrroles (5-8) and not the previously reported bismethano[60]fullerenes. Table 3 summarizes the HMBC correlations observed for each bis-adduct previously reported with the re-assigned structures shown in Scheme 3.

These new structural assignments help explain the difference in regiochemical outcomes between tethered bis-malonate $esters^{10}$ and our bis-N-(diphenylmethylene)glycinate esters, both of which were derived from *meta*- and

para-benzenedimethanol scaffolds and reacted with [60]fullerene under Bingel conditions. These differences in regiochemistry can now be understood in terms of their different reaction mechanisms and the geometry of the intermediate mono-adduct.

Scheme 3

R	Regiochemistry and yield (%)		
	(5) trans-4 (32)	(6) cis-3 (10)	
nor when	(7) trans-3 (37)	(8) trans-4 (10)	

Table 3. HMBC correlations

Compound	$H_{\alpha}^{\ \#}(ppm)$	$C_{\beta}(ppm)$
5	8.04, 7.92	97.06
6	8.21, 8.17	96.02
7	8.25, 8.09*	95.94*
8	8.02, 7.92	96.74

* Due to the poor solubility of this compound in organic solvents it was transesterified to the corresponding ethyl ester to facilitate spectral acquisition. [#] The two phenyl groups on the dihydropyrrole are not equivalent in bis adducts, as the symmetry plane no longer bisects C_{β} .

Reductive ring-opening products of compounds **4a-d** with sodium cyanoborohydride, the 1,2-dihydro[60]fullerenylglycinates **12a-d**, are correct as previously published (Scheme 4). However, in light of these recent findings the proposed reaction mechanism requires adjustment. The proposed intermediate **10** (Scheme 4) undergoes ring-opening to give the more conjugated (stable) diphenylmethyleneimine, fullerenyl anion intermediate **11**, rather than the less conjugated $Ph_2CHN=C(fullerenyl)(CO_2R)$ imine, fullerenyl anion intermediate (not shown). Further reduction of the imine moiety of **11** and protonation gives the 1,2-dihydro[60]fullerenylglycinates **12a-d**.

Scheme 4

In conclusion, the addition of *N*-(diphenylmethylene)glycinate esters to [60]fullerene under Bingel conditions gives [60]fullerenyldihydropyrroles and not methano[60]fullerenyl iminoesters as we previously reported. Unequivocal evidence

for the structure of $C_{60}C(CO_2Et)(N=CPh_2)$ was provided by INADEQUATE NMR studies on ¹³C enriched material. New mechanistic details have been proposed to account for the formation of [60]fullerenyldihydropyrroles and their reductive ring-opening reactions.

Acknowledgement

We thank the Australian Research Council (ARC) and the ARC Centre for Nanostructured Electromaterials for financial support and for PhD scholarships to G.A.B and J.R.W.

Supporting Information Available

Copies of the ¹³C, HMBC and INADEQUATE NMR spectra of **4b** and the ¹³C NMR spectrum of the sp³ fullerene region of **4a**. This material is available free of charge via the Internet <u>http://www.pubs.acs.org</u>.

References

- (1) Bingel, C. Chem. Ber. **1993**, 126, 1957-1959.
- (2) Diederich, F.; Isaacs, L.; Philp, D. Chem. Soc. Rev. 1994, 23, 243-255.
- (3) Burley, G. A.; Keller, P. A.; Pyne, S. G.; Ball, G. E. Chem. Commun. 1998, 2539-2540.
- (4) Burley, G. A.; Keller, P. A.; Pyne, S. G.; Ball, G. E. Chem. Commun. 2000, 1717-1718.
- (5) Burley, G. A.; Keller, P. A.; Pyne, S. G.; Ball, G. E. Chem. Commun. 2001, 563-564.
- (6) Burley, G. A.; Keller, P. A.; Pyne, S. G.; Ball, G. E. J. Org. Chem. 2002, 67, 8316-8330.
- (7) Hawkins, J. M.; Loren, S.; Meyer, A.; Nunlist, R. J. Am. Chem. Soc. 1991, 113, 7770-7771.
- (8) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Bunz, U.; Nunlist, R.; Ball, G. E.;
 Ebbesen, T. W.; Tanigaki, K. J. Am. Chem. Soc. 1992, 114, 7954-7955.
- (9) Burley, G. A.; Keller, P. A.; Pyne, S. G.; Ball, G. E. Mag. Res. Chem. 2001, 39, 466-470.
- (10) Nierengarten, J. F.; Habicher, T.; Kessinger, R.; Cardullo, F.; Diederich, F.;
 Gramlich, V.; Gisselbrecht, J. P.; Boudon, C.; Gross, M. *Helv. Chim. Acta* 1997, 80, 2238-2276.

Structural Re-assignment of the Mono- and Bis-addition Products from the Addition Reactions of *N*-(diphenylmethylene)glycinate Esters to [60]fullerene under Bingel Conditions

Graham E. Ball, Glenn A. Burley, Leila Chaker, Bill C. Hawkins, James R. Williams, Paul A. Keller, Stephen G. Pyne

