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Abstract 

A Bayesian inversion technique to determine the location and strength of trace gas emissions 

from a point source in open air is presented. It was tested using atmospheric measurements of N2O 

and CO2 released at known rates from a source located within an array of eight evenly spaced 

sampling points on a 20 m radius circle. The analysis requires knowledge of concentration 

enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of 

concentration in the dispersion plume. The influence of varying background concentrations of ~1% 

for N2O and ~10% for CO2 was removed by subtracting upwind concentrations from those downwind 

of the source to yield only concentration enhancements. Continuous measurements of turbulent wind 

and temperature statistics were used to model the dispersion plume. The analysis localized the source 

to within 0.8 m of the true position and the emission rates were determined to better than 3% 

accuracy. This technique will be useful in assurance monitoring for geological storage of CO2 and for 

applications requiring knowledge of the location and rate of fugitive emissions.  

1 Introduction 

Carbon capture and storage (CCS) in an emerging technology for reducing CO2 emissions to the 

atmosphere [1]. Because of the associated energy and carbon costs in CCS, even a small rate of 

leakage from geological storage over a prolonged period could result in more CO2 being emitted in 

the long-term than would otherwise occur [1-3]. Reliable monitoring techniques must therefore be 

developed to locate and quantify leakages in order to fix leaks, confirm the long-term benefit of CCS 

to mitigating climate change and to underpin credits needed for carbon pricing schemes.  
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Many techniques are available for monitoring geologically stored CO2 above and below ground 

[4] but direct atmospheric measurements of leakage have the advantage of focusing on the key 

purpose of CCS. A concise review of inversion analyses of concentration data to recover source 

strength and location is given by Shankar Rao [5]. Bayesian methods have been used extensively in 

large-scale atmospheric modeling, and have also been advocated and used for inversions on smaller 

scales with data captured over short periods in steady winds. A comprehensive summary of Bayesian 

inversion and its advantages is given by Yee and Flesch [6], with numerous other expansive studies 

undertaken [7-11]. Of particular importance are the abilities of Bayesian methods to incorporate prior 

information, to independently solve for the probability distribution of individual parameters, to 

quantify uncertainties from measurements and models, and to generalize to quite complex cases [8]. 

Bayesian inversion is conceptually quite distinct from parameter estimation of assumed source 

distributions (e.g.  [12]), although in simple cases, can appear mathematically similar.  

In the current paper, Bayesian model inversion techniques are combined with knowledge of the, 

three-dimensional distribution (shape) of concentration in the dispersion plume to provide both the 

position and strength of a source using concentrations measured at points surrounding a suspected 

source. Unlike previous studies which used tracers with minimally varying backgrounds [6, 7, 9, 10, 

13], this study investigates small, hypothetical CCS leaks [3] which involve increases in CO2 

concentrations of only a few parts per million (ppm) above a typical diurnal range of 370 to 500 ppm 

[14, 15]. The influence of this background variability can be reduced considerably using an array of 

sensors that encircle the suspected leak location. Some sensors will then be upwind of the source 

irrespective of wind direction, thereby allowing the variable background concentration to be 

subtracted from the downwind measurement. Because such leaks are likely to be small and long-term 

[1], monitoring can be performed over long periods, allowing errors in background estimations to 

average away. Hence, perturbations which may be less than the variability of the background can be 

detected. Multiple wind directions are exploited to localize sources and determine their strength 

making the analysis analogous to tomographic imaging. The large data set associated with this long-

term monitoring scheme also facilitates selection of favorable periods, such as day-time, when 

background concentrations are relatively steady. 

Although Bayes’ theorem can be applied to quite complex cases, this paper will describe the 

simplest and most accurate application where the leak is spatially small and temporally constant. The 

use of Bayes’ theorem to determine the position and strength of emission sources is presented in detail 

elsewhere (e.g. [6, 7]) and only a brief outline is given here. The paper presents results of a small-

scale field experiment designed to test the ability of this approach to determine both the position and 

source strengths of both CO2 and a tracer (N2O), released at known rates over several months under a 

range of meteorological conditions. The potential utility of atmospheric tomography for monitoring 

emissions from CO2 geological storage sites is also discussed. 
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2 Materials and Methods 

2.1 Field Site 

Measurements were made from 1 July to 30 October 2010 at the CSIRO Ginninderra 

Experiment Station near Canberra, Australia. The site, shown in Figure 1, was a flat, recently 

ploughed field surrounded by others used for sheep grazing and cropping. A 6 m high earth-fill dam 

wall was 150 m north-west of the release point. A caravan and shed housing the instrumentation were 

located ~35 m west-north-west of the release point. Average temperature during the four-month 

campaign was 8°C (range -3°C to 25°C). Mean rainfall was 72 mm month
-1

 and north-west winds 

occurred > 60% of the time. 

 

Figure 1: Schematic representation of the experimental site. The numbered yellow dots indicate air intake 

positions, Source 1 is the location of both the CO2 and N2O release from the centre, and Source 2 is where the 

N2O was moved after some time for the blind test. 

2.2 Emission Sources 

Mass flow controllers controlled the simultaneous release of N2O and CO2, piped via 

Dekabon® tubing to a mixing chamber, 0.30 m above ground. N2O was released at 1.070 ± 0.04 g 

min
-1

, the rate required to get at least 10 %-(~30 ppb) enhancement at downwind sampling points in 

most atmospheric conditions. CO2 was released at 56.65 ± 0.8 g min
-1

, chosen to simulate a leak 

barely detectable above background variability in unstable, well-mixed conditions when background 

concentrations approximated a normal distribution with a standard deviation of 3.5 ppm. Figure 1 

shows the two locations of the source during the campaign: Source 1 at the centre of the circle 

(known); and Source 2, which was unknown prior to the inverse analysis. 

2.3 Concentration Measurements 

Figure 1 shows the eight sampling points positioned every 45
o
 on a 20 m radius. Air from 

intakes at 1.5 m above ground was pumped continuously through equal lengths of conjoined 

polyethylene and Dekabon® tubing (to minimize adsorption or migration of atmospheric constituents 

across tube walls) that was insulated and kept ~1 m above the ground to prevent condensation of 

water in the lines. An auxiliary switching manifold that allowed continuous flushing and autonomous 

switching of all 8 sampling lines was used to sample air into a Fourier Transform Infrared (FTIR) 

Spectrometer [16] for analysis of CO2 and N2O mixing ratios. All sampling lines were filtered at 

sampling points and before lines entered instrumentation (AF20-02-C, SMC Pneumatics, Sydney, 

NSW, Australia) then dried using Nafion® membrane and magnesium perchlorate prior to entering 

the FTIR. All 8 lines were analyzed sequentially within a 30 minute period, allowing enough time for 

FTIR precision of 0.025 ppm for CO2 and 0.1 ppb for N2O to be attained, but quick enough to 
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characterize changing atmospheric conditions. Air from radially-opposite intakes was analyzed 

sequentially to minimize the delay between upwind and downwind measurements.  

2.4 Micrometeorology Measurements 

Temperature and the x, y, and z components of the wind vector were measured at 20 Hz using a 

three-dimensional sonic anemometer (Type HS, Gill Instruments Ltd., Lymington, UK) mounted at 

1.42 m. These data provided the Monin-Obukhov stability parameter (MO length, L, [17]), friction 

velocity, u*, mean horizontal wind speed, U, and wind direction, θ. These quantities are required to 

model the shape and direction of the dispersion plume downwind of the source. The MO length 

provides a measure of atmospheric stability that controls horizontal and vertical mixing in the surface 

boundary layer, while friction velocity is a measure of the flux density of momentum to the surface. 

Using these turbulence statistics, the shape of the down-wind concentration plume can be calculated 

by a stochastic Lagrangian method [18, 19]. Because the MO theory for dispersion is unreliable under 

light wind conditions, both FTIR and micrometeorological data were removed when u* ≤ 0.15 m s
-1

 

[20]. 

2.5 Data Analysis: Bayesian Tomography 

Estimating the position and strength of the source from a sensor network is an ill-posed inverse 

problem, which does not have a unique solution because of noise in the data and inadequacies in the 

dispersion model. As discussed in detail by Keats et al. [7] and by Yee and Flesch [6], the most 

probable solution may be determined using Bayes’ Theorem to determine probability distributions for 

the locations and source strengths of fugitive emissions given experimental data, D, (background-

subtracted concentrations, meteorological data and a dispersion model) and prior information (likely 

number of sources and their approximate location). The Bayesian method has the advantage of being 

able to handle a wide range of assumptions in its applications. In the current study, the simplest case 

is adopted.  

For the simplest case of a single, continuous and steady source, Bayes’ Theorem states [6, 7]  

 ( ) ( )0 0 0 0

0 0

| , ,  ( , , )
, , |

( )

P D s x y P s x y
P s x y D

P D
=  (1)

 

where P(s,x0,y0 | D) is the posterior probability of a source with strength s located at (x0 , y0) given the 

data D; P(D | s,x0,y0) is the likelihood of D given s, x0 and y0, and P(s,x0,y0) is the prior probability of 

s, x0 and y0 that is assigned before data are obtained. The normalizing factor, P(D) is the evidence. It is 

not needed in our application but could be used to test the plausibility of competing models, e.g. a 

point vs. line source.  

The likelihood can be calculated if the probability distribution of errors in the data is known. 

In this application, the prior captures the preexisting knowledge that the source is most likely located 
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within the sensor array. Both the prior and the likelihood can be expressed analytically and a function 

can be formed for the posterior probability, P(s,x0,y0 | D).  

2.5.1 Plume Functions 

A Lagrangian stochastic (LS) model [18], as implemented in the WindTrax software 

(Thunder Beach Scientific, Nanaimo, Canada), was used to calculate plume shapes for the range of 

stability classes encountered during the field campaign. Run in forward mode, 10
5
 ‘particles’ were 

released and their unique paths tracked to develop a plume shape for each stability class. Model 

concentrations were sampled at a height of 1.5 m, every 0.5 m over a 50 m x 50 m grid.  

The computed plume shapes calculated using the LS model are noisy because of the finite 

number of particles released. They are also time-consuming to calculate and it was computationally 

more efficient to fit the following interpolation function, based on the theoretical cross-wind 

integrated function described by Hsieh et al. [21], to the 2-dimensional plume shapes at 1.5 m 

calculated using the LS model: 

  (2) 

where x and y are distances downwind and crosswind of the source at (x0, y0) respectively, s is the 

source strength, and the parameters a, b, c, d, α, β, γ, ζ were calculated separately for each defined 

stability class. Plume functions can be rotated to lie along the wind direction using a standard rotation 

matrix applied to the displacement vector of the argument of the plume equation. This enabled the 

measured wind direction for any particular period to be utilized in calculations. 

2.5.2 Background Concentrations 

A two-stage iteration was used to calculate background concentrations. The first iteration 

used measurements on the upwind air intake of the opposing member of the pair most closely aligned 

with the wind direction. This value was subtracted from measurements of concentration in the 

downwind intake and used with the inverse analysis to give the first estimate of the location and 

strength of the source. These results, combined with appropriate wind direction and modeled plumes, 

were used to identify those air intakes unaffected by the release. The identified unaffected air intake 

measurements were averaged to provide a second estimate of background concentration and an 

improved estimate of source position and strength. This second iteration enabled extraction of up to 7 

perturbations within each 30 minute measurement period, dependent on stability conditions.  

2.5.3 Calculating the Likelihood, P(D|s, x0, y0) 

Suppose f (x, y, x0, y0, θ, L) is a function (equation (2)) giving the mixing ratio, for a unit 

source strength, at position (x, y), when the source is at (x0, y0), the wind direction is θ and the Monin-

Obukhov length is L. This function can be used to predict the concentration at each sensor, given the 

( ) ( )
( )

( )202
0

0 0

( )
( )

( ) ( )

0 0 0 0

0

 
, , , , , ,

b x xd
y y

x x c x xa s
f x y x y s f x x y y s e

x x

β

ζ γ

α

+ −
− − −

− −= − − =
−
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measured values of θ and L and multiplying by the source strength, s. For the i
th
 measurement, if the 

error distribution is Gaussian with a standard deviation, σi, the probability, Pi, for measuring the 

observed concentration, c (xi, yi, θi, Li), is [22]  

 

( )( )20 0

2

, , ,  ( , , , , , ) 

2

i i i i i i i i

i

i

c x y L s f x y x y L

P e

θ θ

σ

−
−

∝  (3) 

The probability of the N measurements is P = П Pi. If σi, is constant, then we define 

 ( )( )22

0 02

1
, , ,  ( , , , , , ) 

2

N

i i i i i i i i

i

c x y L s f x y x y Lχ θ θ
σ

= −∑  (4) 

the likelihood becomes  

 
2

 iP P e χ−=Π ∝  (5) 

2.5.4 Estimating the Prior, P(s, x0, y0)  

The prior expresses what is known before any experimental data are obtained. It decreases in 

importance as the number of experimental measurements increases. It is assumed that the source is 

located somewhere inside our array of sensors, and is spatially small and weak. If s, x0, and y0 are 

statistically independent of each other, 

 ( ) ( ) ( )0 0 0 0, , ( )P s x y P s P x P y=  (6) 

By assumption, the probability of finding the source in the area within the sensor array is 

finite, and drops quickly to zero outside this area. P(x0) and P(y0) can be taken to be Gaussian around 

(x0, y0) such that, 

  (7) 

where xi is the x coordinate of sensor i, and w is a constant indicating the prior uncertainty in the 

location, set to 20 m for this experiment. A similar equation can be written for P(y0). 

Since the probability of a scaled variable is being considered, the most agnostic prior that can 

be adopted is commonly known as Jeffreys’ prior [23, 24]:  

 ( ) 1
P s

s
∝  (8) 

This prior suits this problem well because it favours small leaks, the target of this technique. The 

model will produce a poor fit if the actual leak is large or variable, indicating the prior may have to be 

generalised. A complete Bayesian analysis would use several competing models for source and plume 

geometry to determine their posterior probability. Here the focus is on the simple situation of one 

plausible model. 

( )
( )20

2
8

2
0

ix x

w

i

P x e

−
−

=∑
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2.5.5 Marginalization 

Marginalization is an important step in the analysis which allows independent calculation of 

either location or source strength. Marginalization involves integrating the probability distribution 

over a subset of unknown variables in order to calculate a probability that is a function only of the 

remaining variable(s). The probability distribution for location is calculated by elimination of the 

source strength: 

 ( )0 0 0 0( , | ) , , |  
u

l

s

s
P x y D P s x y D ds= ∫  (9) 

where su and sl are upper and lower limits of the range of plausible values of source strength 

respectively. The source strength probability distribution is calculated similarly: 

 ( )0 0

0 0
0 0 0 0( | ) , , |

u u

l l

x y

x y
P s D P s x y D dy dx= ∫ ∫  (10) 

where x0u
, x0l

, y0u
 and y0l

 are the upper and lower limits of the range of plausible values of the source 

location coordinates. The integrand of the above integrals has the form 

 ( )
2

0 0 0 0

1
( , , | ) ,

( )
P s x y D g x y e

sP D

χ−=  (11) 

where g(x0, y0) is a product of equation (7) for both x0 and y0, P(D) is the evidence, and χ2
 is a 

function of s, x0 and y0 (equation (4)). This function contains N terms in χ2
 alone, each with 

exponential functions meaning that integrations had to be performed numerically. Determination of 

the most likely values and uncertainties of s, x0 and y0 were done by inspection of the probability 

distributions of each variable, which were calculated and plotted over the integral domain using 

Wolfram Mathematica software (Wolfram Research, Inc., Champaign, USA). 

3 Results 

3.1 Background Characterization 

Atmospheric N2O concentrations recorded for five weeks prior to N2O release showed that 

the FTIR analyzer (1σ repeatability ~0.1 ppb for N2O) could resolve the low background variability in 

N2O (2.2 ppb short-term, 8 ppb long-term). Variations in N2O concentrations seen in Figure 2 are 

caused by the changing activity of N2O emitting soil bacteria (longer term variation) and emitted N2O 

mixing into a surface boundary of variable depth during the diurnal cycle of atmospheric stability 

(shorter term variation). This same interaction between boundary layer depth with local sinks and 

sources (daytime photosynthesis and nighttime respiration for CO2 respectively) causes background 

CO2 concentrations to vary from 380 – 500 ppm (Figure 2). 

Detection of small, short term increases in concentrations above background levels is required 

as the release plume passes over a sensor. Background concentrations of CO2 vary on similar 

timescales to these perturbations making the Bayesian analysis for CO2 more difficult than for N2O. 
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Examination of the no-release data obtained over several weeks showed that errors in the background-

subtracted concentrations decrease as N
-1/2 

as
 
expected for uncorrelated fluctuations (N is the number 

of measurements). If drifts in the instrument calibration are small or can be measured, the 

combination of averaging and Bayesian model-fitting should allow the effective use of data where the 

concentration perturbations due to sources are well below the instantaneous noise level. 

 

Figure 2: Background variability of N2O (top) and CO2 (bottom). N2O is significantly more stable compared to 

CO2. This high relative stability is caused by weaker sources and sinks of N2O. 

3.2 Atmospheric Tomography 

3.2.1 Simulated Data 

The analysis scheme was first tested using simulated data as input. An array of wind direction 

(θ) and stability conditions (L) was generated at random within suitable ranges and the forward model 

was used to calculate concentrations at all sensor locations from sources at various positions. A noise 

component was added from a normal distribution with µ = 0 ppm and σ = 20 ppm. This procedure 

generated realistic simulated data which were then used as input to the Bayesian inversion. 

Analyses of the simulated datasets showed no systematic errors in the code. The source 

strength was estimated accurately with a precision determined solely by the number of data points 

used. The analyses located the sources to within 1 m, regardless of their position within the sensor 

array (data not shown). This corresponds to an uncertainty of 5% of the radius of the sensor array. 

Results were similar even when the source was placed outside the array (e.g. 30 m, -30 m). 

3.2.2 N2O at Origin 

N2O was released at a rate of 1.070 ± 0.04 g min
-1

 at the centre of the ring of sensors (referred 

to hereafter as the origin) between 12 August and 12 October 2010. This resulted in a ~30 ppb 

increase in mixing ratio at sensors 20 m downwind from the source under well-mixed daytime 

conditions and > 300 ppb under stable, nighttime conditions (Figure 2, Supporting Information).  

Figure 3 shows that the logarithmic posterior probability distribution for the source location 

has a narrow ridge along the prominent north-westerly wind direction (78% of the 1569 measurement 

periods consisted of plumes directed over sensor 3). The peak is taken as the most likely source 

location at (0.0 m, 0.0 m) with peak shape represented by an ellipse with major and minor semi-axes 

of 0.9 m and 0.4 m (2σ) respectively, rotated 60
o
 east of north. Using a smaller dataset (65% of data 

removed) with a more even distribution of wind directions gave a more symmetrical probability 

distribution for the source location, with a narrower peak with major and minor semi-axes 0.1 m each, 

still rotated 60° east of north (Figure 3 in Supporting Information). 
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The accuracy and precision in calculating the source strength increases with more data, 

independent of wind direction. Using the full data set, the source strength was determined (Figure 3) 

to be 1.103 ± 0.06 g min
-1 

(µ ± 2σ), which was within 3.1% of the correct value.  

 

Figure 3: Probability distributions calculated using the full set of experimental data collected while N2O was 

being released at 1.070 ± 0.04 g min
-1

 from the origin. The location probability distribution (log scale) shows the 

effect of sensor locations and the dominant wind direction on the distribution. The probability distribution for 

source strength, with a peak at 1.103 ± 0.06 g min
-1

, shows excellent accuracy and precision (red curve) 

comparable to the true release (purple bar). 

3.2.3 N2O at Unknown Location 

The N2O source was repositioned to a location initially unknown to the analysis team from 12 

- 30 October while the N2O release rate remained unchanged. Filtering out ~50% of the data to give 

an even distribution of wind directions, the analysis placed the source at (6.2 m, 0.5 m), just 0.8 m 

from the actual location at (6.4 m, 1.3 m), with an uncertainty described by elliptical peak axes (2σ): 

major 3.7 m; minor 1.0 m; rotated 60° east of north (Figure 4, Supporting Information). The error in 

source location is 4% when normalized by the radius of the instrument array. Source strength 

calculated using all available data was 1.12 ± 0.1 g min
-1

, within 4.7% of the correct value. Due to the 

much smaller data set (18 days, 438 measurement periods), results of this analysis were less accurate 

than for release at the origin (61 days, 1569 measurement periods).   

3.2.4 CO2 at Origin 

Release of CO2 occurred between 10 September and 30 October 2010 at a rate of 56.65 ± 0.8 

g min
-1

. Peaks in CO2 concentration during the release period are seen in Figure 4 to be clearly 

discernible, particularly when background concentrations were comparatively stable under well-

mixed atmospheric conditions. These enhancements were just 1% of background concentrations. 

Atmospheric mixing was generally suppressed at night and resulted in high and variable 

concentrations and low u* values. Much of the data for these periods were not used in the analysis. 

 

Figure 4: Raw CO2 mixing ratios from all 8 sampling locations measured over two consecutive nights during 

CO2 release at 56.65 ± 0.8 g min
-1

. Perturbations in concentrations are discernible from background variations 

during well mixed conditions in the daytime and on the night of 18 September. Concentrations vary greatly 

during stable overnight conditions (e.g. on the night of 19 September), making it difficult to discern 

perturbations in the data due to the source.  The inset shows the variation in CO2 mixing ratios measured 

sequentially at each of the 8 inlets (solid line) and the first iteration of background-subtracted values 

(connected dots). The latter are generally < 1ppm except for the sensor downwind of the source. 

Good localization of the source was achieved using the 50 day (1000 measurement periods) 

data set, shown in Figure 5. The distribution in the logarithmic posterior probability plot is similar to 
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that for the N2O source. Using a dataset with ~45% of data removed for even weighting of wind 

directions, the peak of the probability distribution for the source at (-0.5 m, 0.5 m) was within 0.8 m 

(4%) of the true position (0 m, 0 m), with uncertainty described by elliptical peak axes (2σ): major 1.1 

m; minor 0.6 m; rotated 60° east of north. The estimated source strength was 54.9 ± 4 g min
-1

 (µ ± 

2σ), statistically equal to the true value. Compared to results for N2O, the larger errors for CO2 source 

location and strength were due to the smaller concentration perturbations relative to background (CO2 

≈ 1%, N2O ≈ 36%), the smaller number of measurements, and the difference in wind direction data 

caused by different timing of respective releases.  

 

Figure 5: Probability distributions for experimental data collected while CO2 was being released at 56.65 ± 0.8 

g min
-1

 from the origin. The location distribution was calculated using a reduced, more evenly weighted data set, 

while the source strength distribution was calculated using the full data set available for analysis. 

3.2.5 Determining the required number of measurements  

The number of measurements necessary for accurate localization of the source depends 

strongly on having a variety of wind directions, while for source strength, the most important factor is 

having a large number of measurements under a range of stability conditions. The time required for 

convergence depends on the required accuracy of a particular application. Figure 5 in the Supporting 

Information shows convergence to within 5% of the correct source strength with ~1000 measurements 

(at a rate of up to 14 per hour when u* > 0.15 m s
-1

 in our field experiment).  

3.2.6 Importance of characterizing dispersion 

The effect of model errors was tested by creating simulated data with a range of stability 

conditions, but analyzing using only one plume. Results showed that localization remained just as 

accurate, although became less precise, while for source strength, both accuracy and precision were 

affected by up to 30%. This result suggests that errors in dispersion models will provide 

complications, however the method employed here is robust enough to deal with it, producing useful, 

albeit lower quality results.  

4 Discussion  

The tomographic technique used in this study has been shown to determine both source strength 

and location well on a small scale, using high-precision instrumentation to measure concentration 

perturbations. Pumps and tubing were used to sample air for analysis in this field experiment but this 

is unlikely to be practical for applications at larger scales. At these scales, a network of independent 

sensors will need to be deployed, likely lowering the resolution of the technique because of inherent 

inter-sensor variability.  

Simple linear scaling of experimental results combined with Lagrangian stochastic modeling 

under various atmospheric stabilities suggests that for a sensor located 1 km downwind, a point source 
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emission of ~5 kg min
-1

 would be required in all but the most turbulent conditions to increase CO2 

concentrations by the required 1% above background (in the most unstable conditions, the required 

emission rate increases by a factor of ~3). This equates to a detectable emission of 2.6 kt CO2 yr
-1

. 

Enting et al. [3] calculate that for CCS to be beneficial in the long-term, a leak rate below 0.01% per 

year is required. This equates to a leak rate of 1000 t yr
-1

, assuming a modestly-sized industrial 

storage site of 10 Gt. The required measurement time depends on required accuracy, the source 

strength, atmospheric stability, topography and the distances between sources and detectors. 

More complex situations such as multiple sources, or the optimum location of extra detectors, 

can be handled in the Bayesian framework [8, 23]. Complex spatial sources, including multiple point, 

line and area sources [5-7] can be analyzed by the tomographic method by acquiring data from 

enough distinct wind directions for disambiguation. In the current analysis, temporally varying 

sources are not resolved but rather the average rate is calculated. Time resolved rates could be 

calculated by solving for source strengths within time sub-sets of data. More complex terrain will 

introduce more complex dispersion which, as discussed in Section 3.2.6, appears likely to increase the 

uncertainty in source strength, but may affect the determination of location less. Geological storage 

will probably mostly occur in sedimentary basins which often have low relief, so terrain may not be as 

much of a problem as it first seems. In real-world situations, background concentrations may also be 

more variable because of the greater heterogeneity of sources and sinks. 

In addition to measurements of total CO2, natural (
13

CO2, 
14

CO2, CH4,) and man-made (SF6) 

tracers in the geologically stored CO2 will assist in the detection, attribution and quantification of any 

emissions [7, 25, 26]. Atmospheric measurements alone are unlikely to have to bear the entire burden 

of the proof of a leak though. With early knowledge of the approximate location of a leak, additional 

measurements such as soil CO2 flux and concentration measurements could be made to confirm 

predictions from atmospheric measurements.   

Although qualitative short term (~1 week) localization is possible, high accuracy, quantitative 

localization is largely dependent on having data from a variety of wind directions, meaning that long 

term monitoring applications of this technique are ideal as they allow time for the variety of wind 

directions to be collected as well as the detection of perturbations of species in environments with 

highly variable backgrounds (e.g. CO2). Possible areas of application include industrial emission 

verification (see Table 1 in Supporting Information) investigation of GHG emissions from 

groundwater bores, air pollution monitoring, and localizing fugitive emissions from gas wells, coal 

mines, pipelines and other oil and gas operations [27].  
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