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Abstract

The sodium/potassium pump (Na/K pump) plays an essential role in maintaining cell volume 

and secondary active transport of other solutes by establishing the Na+ and K+ concentration 

gradients across the plasma membrane of animal cells. The recently determined crystal 

structures of the Na/K pump  to atomic resolution provide a new impetus to investigate 

molecular determinants governing the binding of Na+ and K+ ions and conformational 

transitions during the functional cycle. The pump cycle is generally described by the 

alternating access mechanism, in which the pump toggles between different conformational 

states, where ions can bind from either the intracellular or the extracellular side. However, 

important issues concerning the selectivity  of the Na/K pump remain to be addressed. In 

particular, 2 out of the 3 binding sites are shared between Na+ and K+ and it is not clear how 

the protein is able to select K+ over Na+ when it is in the outwardly facing phosphorylated 
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conformation (E2P), and Na+ over K+ when it is in the inwardly facing conformation (E1). In this 

review article, we will first briefly review the recent advancement in understanding the 

microscopic mechanism of K+ selectivity in the Na/K pump at the E2•Pi state and then outline 

the remaining challenges to be addressed about ion selectivity.

Keywords: sodium-potassium pump, P-type ATPase, ion selectivity, molecular simulations, 

electrophysiology, protonation states, pH effects

Introduction

Ion channels and pumps are fascinating biological molecular-scale nano-machineries. They 

mediate the transport of diverse ions across membranes either passively  or actively  and thus 

play an important role for normal cell functions. Malfunction of these channels and pumps 

often causes in the development of pathophysiological conditions. Therefore, they are 

recognised as important therapeutic targets for treating a wide range of diseases. Among 

them, the sodium-potassium pump (Na/K pump), one of the first membrane proteins 

characterised1,2, is a large heterodimeric membrane-bound proteins compromising a catalytic 

α-subunit (~1,000 residues, ~105kDa) and a heavily  glycosylated β-subunit (~300 residues, 

~55 kDa). Na/K pump is energized by  ATP hydrolysis and belongs to the P-type ATPase family 

because a transient phosphorylated intermediate is formed at a conserved Asp  residue during 

catalysis3. For each ATP that is hydrolysed, the Na/K pump  moves three Na+ ions out of and 

two K+ ions into the cell by  alternating two different conformations, E1 and E2, according to the 

“alternative access” scheme4,5 (Figure 1). Under physiological conditions, the extracellular-

facing state E2P preferentially binds two K+ in the presence of a 30-fold greater external 

concentration of Na+ ions, whereas the cytoplasmic-facing state E1 selects three Na+ in the 

presence of a 10-fold higher internal concentration of K+ ions.  Due to this imbalance in cation 

exchange and the activity  of ion-specific channels, an electrical gradient across the plasma 
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membrane is generated and maintained. These combined electrochemical gradients are 

crucial for many basic and specialized cellular functions in animal cells, such as generation of 

the action potentials responsible for excitability, secondary active transport of nutrients and 

other molecules across the plasma membrane, signaling and volume regulation. The Na/K 

pump is the therapeutic target of digitalis (such as digoxin), which have been used in the 

treatment of congestive heart failure for centuries6. 

Very recently, new information on the structure and function of the Na/K pump has emerged 

from high-resolution X-ray crystal structures7,8. In 2007, Morth et al. reported the first crystal 

structure of the Na/K pump from pig (resolution 3.5 Å, PDB id: 3B8E)9 and in 2009, 

Toyoshimaʼs group published another crystal structure of Na/K pump from shark with a 2.4 Å 

resolution (PDB id: 2ZXE)10. Previous studies have established that there are three distinct 

cation-binding sites involved in the functional pumping cycle (Figure 1). Of the three ion-

binding sites, Sites I and II can bind either Na+ or K+ depending on the functional state thus 

they are called shared sites, but Site III exclusively  binds Na+ at the E1 state. Both crystal 

structures captured the so-called E2•Pi state, revealing how the two K+ ions are coordinated at 

the shared sites I and II between transmembrane helices (TM) 4, 5 and 6. It has been 

postulated that sites I and II will rearrange to coordinate two Na+ ions, whereas other residues 

in TM 5, 8 and 9 have been proposed to bind the third Na+ ion at the E1 state (Site III)11. How 

the Na/K pump is able to achieve such variations in ion selectivities with the same shared 

binding sites is a very  intriguing question that has not, so far, been answered. Recently, we 

have been using computations based on atomic models together with electrophysiological 

experiments to shed some new light on the physiochemical principles underlying the ion 

selectivity of the Na/K pump.

This review article is based on the talk presented at BioPhysChem2011 - the joint RACI 

Physical Chemistry Division and Australian Society for Biophysics annual meeting - held at 
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Wollongong, Australia in Dec 2011. In this article, we will briefly review recent work on the 

molecular mechanism of ion selectivity in Na/K pump, including two of our papers12,13 and then 

outline the outstanding questions that remain to be addressed. Readers are referred to Ref. 

12,13 and references therein for more details. 

Protonation States of Key Acidic Residues in the K+ Binding Sites

Both Na/K pump crystal structures reveal that the K+ binding sites at the E2•Pi state 

superimpose surprisingly  well with the binding sites of the sarcoplasmic reticulum Ca2+ pump 

(SERCA) in the corresponding Ca2+-free state9,10. The occluded K+ ions are well coordinated 

by acidic and polar side-chains and some main-chain carbonyls. Four particularly important 

residues contributing acidic side-chains are in direct contact with the cations: Glu334, Glu786, 

Asp811 and Asp815 (the shark Na/K pump  numbering was adopted throughout the text). This 

observation poses an intriguing question as to how these different pumps can recognize and 

transport two different ions (K+ for Na/K pump or H+ for SERCA) with the very similar binding 

sites. Additionally, how these negatively charged binding sites in the Na/K pump at the E2•Pi 

state achieve the required K+ over Na+ selectivity is not well understood. Vrbka et al. have 

shown with both quantum mechanics and classical molecular dynamics simulations that the 

negatively charged species such as formate and acetate prefer Na+ over the slightly larger K+ 

in aqueous solution with a selectivity of ~2 kcal/mol. This has been used to rationalize the 

higher affinity  of Na+ over K+ to protein surfaces14. Furthermore, statistical analyses of the 

high-resolution crystal structures deposited in the PDB show that the average number of 

charged functional groups in the Na+ binding site is ~1.12, in contrast to ~0.70 in the K+ 

binding sites15. These two pieces of evidence seem to be incompatible with the fact the 

crystallographically resolved structures are capable of achieving the K+ selectivity with the 

binding sites formed with four residues expected to bear negative charges. Interestingly, 

equilibrium molecular dynamics simulations with these four titratable residues deprotonated 
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lead to a large distortion of the binding sites (Figure 2B) and thermodynamically, the binding 

sites become Na+ selectively (Table 2 Simulation A, see below for detailed discussion). The 

large structural deviation from X-ray structures can be explained by the very short distance 

between the two negatively charged residues Glu786 and Asp811 in close contact with each 

other (the shortest distance between the oxygen atoms: 2.7 Å in 3B8E and 2.8 Å in 2ZXE), 

which will result in strong electrostatic repulsions. It is worth recalling that at the 2.4 Å 

resolution of the X-ray structure, hydrogen atoms cannot be detected. This motivated us to 

carry  out pKa calculations for these titratable residues to predict their protonation states under 

physiological conditions (Table 1). Our pKa calculations predict that Asp811 is deprotonated 

while Asp815, Glu334 and Glu786 are protonated. With these acidic residues adopting the 

predicted protonation states, the binding sites are stable in the equilibrium simulations with a 

room mean square deviation (RMSD) for the heavy atoms around 0.5-1.0 Å (Figure 2A). 

During the simulations, the protonated Glu786 and the deprotonated Asp811 form a so-called 

strong di-acid hydrogen bond to help stabilize the binding sites16. In reality, this shared proton 

will be delocalized if they  were described with quantum mechanics instead of classical 

molecular mechanics models applied in the current study17. We would like to note that the 

calculated protonation states for all the key acidic residues are in broad agreement with 

previous data obtained for the homologous residues of SERCA in the corresponding functional 

state18-20 (see below for more discussions).

Ion Selectivities in the Na/K pump at the E2•Pi State

Thermodynamical ly, the ion select iv i ty at the binding si tes is defined as 

ΔΔGNa,K = GNa
site −GNa

bulk⎡⎣ ⎤⎦ − GK
site −GK

bulk⎡⎣ ⎤⎦ = ΔGNa,K
site − ΔGNa,K

bulk , w h e r e ΔGsite
Na,K = GNa

site −GK
site⎡⎣ ⎤⎦ a n d 

ΔGbulk
Na,K = GNa

bulk −GK
bulk⎡⎣ ⎤⎦ . By this definition, a binding site is K+ selective when ΔΔGNa,K is positive 
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and Na+ selective when ΔΔGNa,K  is negative. The free energy difference between Na+ and K+   

in bulk water, ΔGbulk
Na,K = GNa

bulk −GK
bulk⎡⎣ ⎤⎦ , is about ~ -17.5 kcal/mol21. All-atom alchemical free 

energy perturbation molecular dynamics simulations (FEP/MD) can be carried out to compute 

ΔGsite
Na,K = GNa

site −GK
site⎡⎣ ⎤⎦ , the relative free energy difference between K+ and Na+ at the cation 

binding sites. Such a theoretical approach is based on the assumption that ion selectivity  in 

the Na/K pump can be understood on the basis of thermodynamic binding equilibrium, leaving 

out kinetic considerations (see below). The FEP/MD simulations showed that the shared 

cation binding sites (Site I and II) at the E2•Pi state are indeed K+ selective (Table 2 Simulation 

B) when the key acidic residues adopt the predicted protonation states (i.e. Asp811 

deprotonated and Glu334, Glu786 and Asp815 protonated). The calculated relative free 

energies compare well with available experimental estimates22. 

Of particular interest, the calculated relative free energies for K+ to Na+, ΔΔGNa,K , reveal that 

ion selectivity is extremely sensitive to the protonation states of those four acidic side chains. 

When all four acidic residues are deprotonated, a large distortion from the X-ray structure 

(Figure 1B) was observed and the binding of Na+ over K+ to sites I and II is considerably  more 

favorable (Table 2 Simulation A). Additional FEP/MD calculations have been carried out to 

investigate the effects of protonation states of residues Glu334 (Table 2 Simulation C), Glu786 

(Table 2 Simulation D) and Asp815 (Table 2 Simulation E). In all three cases, substantial 

selectivities for K+ are compromised when any of these residues becomes deprotonated. This 

reinforces the conclusion from pKa calculations that those acidic side chains must be 

protonated to yield structural stable K+ selective binding sites in the Na/K pump  at the E2•Pi 

state.

Impact of External pH on K+ Selectivity
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The suggestions that protonation of acidic side chains involved in the shared binding sites I 

and II are specifically implicated in the selectivity  of the cation binding sites of the Na/K pump 

is both novel and provocative. The computational analyses predict that the K+ selectivity  at the 

shared sites will be affected by extracellular pH. Increasing the extracellular pH should 

increase the probability  of deprotonation of the key acidic residues and thus undermine the 

ability  of the shared sites to select K+ over Na+ (Table 2 Simulations A, C, D, and E). To 

experimentally test this prediction, two-electrode voltage clamp  experiments were performed 

to study the function of the Na/K pump expressed in Xenopus oocytes at different extracellular 

pHs. Physiologically, the outward-facing state that selects K+ over Na+ is actually E2P, that is, 

the state that precedes E2·Pi in the forward pump  cycle (Figure 1). All the calculations, in 

contrast, are based on the E2·Pi state captured by the crystal structures, though both states 

are expected to select K+ over Na+ with a similar mechanism. 

To evaluate the impact of external pH on K+ selectivity, we measured the concentration of 

extracellular K+ that half-maximally  activates the Na/K pump current (K0.5) at pHs 7.6 and 9.6 

(Figure 3). Figure 3A shows results of a titration experiment performed in an oocyte bathed by 

125 mM external Na+. From these measurements, we can fit the Hill equation as a function of 

extracellular K+ concentration to extract the dissociation constant K0.5 at each voltage. Figure 

3B summarises that the results in several oocytes either in the presence (filled symbols) or 

absence of external Na+ (open symbols, Na+ was replaced with the inert cation N-methyl-D-

glucamine (NMG)). A  reduction in the apparent affinity (inverse of K0.5) for external K+ was 

observed in both cases when the external pH was increased, indicating that an increase in pH 

impaired the ability  of K+ to compete with Na+ for the shared sites. K0.5 was smaller in the 

absence of external Na+ than in its presence owing to the lack of competition from Na+.  The 

apparent affinity for external K+ at positive voltages in the presence of Na+ was reduced to 

about 25-30% when the external pH was increased from 7.6 to 9.6 (filled symbols). This 
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corresponds to an effective free energy change in ΔΔGNa,K of ~ -0.8 kcal/mol (i.e. the K+ 

selectivity decreases by the amount of 0.8 kcal/mol). This observation can be rationalised that 

the probability  of the protonated state of the carboxylate side chains decreases slightly  when 

the binding sites are exposed to high extracellular pH in the outwardly open state, resulting in 

a small decrease in the apparent K+ selectivity. 

Both sets of experiments demonstrate that external K+ competes less well with external Na+ 

for the shared sites I and II when the extracellular pH is increased, as predicted by our 

computations. This observation is also consistent with previous studies23-27. It was noted as 

early as 1980s by  Skou and co-workers24 that the abundant extracellular protons increase the 

apparent affinity for K+ and a decrease in protons increased the apparent affinity for Na+. 

However, to the best of our knowledge, all the previous studies have attributed such a pH-

dependence phenomenon to either the relative stability of the E1 and E2 conformational states 

or the concentrations of ions at the access channel at different pHs27. Although the current 

available data cannot rule out such a rationalisation, our computational and 

electrophysiological studies suggest a more direct effect of extracellular pH on the electrostatic 

environment of the cation binding sites by modulating the protonation states of key acidic 

residues.

The Flexibility of the Cation Binding Sites

In the equilibrium simulations, it is observed that the acidic side chains have a root-mean-

square fluctuation (RMSF) in the order of 0.5 to 1.0 Å. This atomic positional fluctuation is 

larger than the atomic radii difference between Na+ and K+ (~0.38 Å)28. This challenges the so-

called classical “snug-fit” mechanism in the field of permeation and ion channels29, solely 

relying on the ability  of the binding site to retain its local conformation very precisely to provide 

a good geometric fit for K+, but not for the slightly smaller Na+28,30. Furthermore, it has been 
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shown that external K+ can be substituted equally well with other monovalent metal ions (e.g. 

Li+ and Cs+) and even organic cations of much larger size (e.g. formamidinium+ (Form) and 

acetamidium+ (Acet)) in the Na/K pump expressed in Xenopus oocytes13 (Figure 4B). Most 

surprisingly, Form and Acet can act as external K+ surrogates and induce K+-like outward 

currents in the Na/K pump cycle (~70% or ~80%, respectively, of K+ induced outward currents, 

Figure 3B in Ref. 13 and Figure 4). The large outward currents observed with Form/Acet 

suggest that two organic ions, in replacement for K+, might be exchanged for three Na+ ions, 

thus preserving the normal 3:2 stoichiometry  of the pump. These observations motivated us to 

carry  out molecular dynamics simulations of the putative occluded states with two bound Acet 

in order to structurally  rationalise the experimental results. A  series of configurations were 

generated with two Acet molecules docked into the K+ sites of the X-ray structure 2ZXE with 

random orientations. One plausible orientation was chosen arbitrarily to perform 20 ns MD 

simulations to assess the magnitude of structural distortion induced by the organic cation 

within the binding sites. Figure 4C shows the final snapshots after simulations, compared with 

the corresponding structure with two bound K+ ions after a comparable 20ns MD simulation 

(Figure 4D). The RMSD of nonhydrogen atoms of the key residues participating in the 

coordination average from the MD trajectories is on the order of 1.5 Å, showing that the 

binding sites are minimally  disturbed by the bound organic cations. Similar interaction patterns 

were observed in the Acet occluded and K+ occluded states. We conclude that the shared 

binding sites I and II in the Na/K pump is relatively  flexible and it can adapt to accommodate 

larger organic ions (e.g. Form and Acet). This view is also in broad accord with previous 

studies of ion selectivities for other membrane proteins15,28,30-32. 

Effects of Site-directed Mutagenesis

The conclusion that in the E2·Pi state, Glu334, Glu786 and Asp815 are protonated and neutral 

while Asp811 is deprotonated and negatively charged suggests that the K+ over Na+ selectivity 
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should be strongly  perturbed by the mutation D811N, but not by the charge-conserving 

mutations E334Q, E786Q and D815N. This is qualitatively  consistent with previous 

mutagenesis studies reported in the literature, although the quantitative effects of such 

mutants may be complicated by possible major changes in conformational equilibrium that we 

cannot address in this type of calculations. The mutants E334Q33 and E786Q34 are able to 

transport K+. In contrast, the D811N mutant is severely  impaired and produces no pump 

currents34. The mutant D815N presents complex functional effects. Nevertheless, it is reported 

both the neutralising D815N mutant the charge conservative mutant D815E have a reduced K+ 

apparent affinity34. 

We also carried out the FEP/MD simulations to study the effects of site-directed mutagenesis 

at the key acidic residues on the K+ over Na+ selectivity (Table 2, Simulation F, G and H) in 

isolation from other major functiona effects. The snapshots at the end of 10 ns equilibrium 

simulations for the mutants are compared with the crystal structure (Figure 5). In the D815N 

mutant (Table 2 Simulation F), the effects introduced by the mutation on K+ selectivity is rather 

limited. This might be due to the fact that the carboxylate oxygens do not participate in direct 

coordination of Site I (Figure 5A) and that the perturbation introduced by D815N is rather small 

compared to the wild-type simulation (Table 2 Simulation B) and the X-ray structure (2ZXE). In 

the E334Q (simulation G) and E786Q (simulation H), the K+ selectivity  at both Sites I and II are 

considerably lost or become slightly  Na+ selective. As observed Figure 5B and C, the 

distortions introduced by  the E334Q and E786Q are much more visible. It is worth pointing out 

that such FEP/MD based ion selectivity calculations do not provide any information on the 

apparent affinity instead reportes the relative free energy difference between K+ and Na+, thus 

comparison with experimental data is not always straightforward. Furthuremore, rigorously 

speaking, the neutralising mutation is not structurally equivalent to protonation, which 

complicates direct comparison.
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Comparison with SERCA

Structural understanding of the Na/K pump mechanism is rather limited because few crystal 

structures are available. No structures of the crucial E1 state have been published to date.  In 

comparison, more than 20 crystal structures that span more than 10 functional states have 

been reported for SERCA35. Even though the overall sequence similarity between the Na/K 

pump and SERCA is relatively low (~30%), the 3D structural topology adopted by them is very 

similar and the cytoplasmic domains and the ten transmembrane helices (TM1-TM10) are 

superimposable9,10. The structural resemblance of the cation binding pocket of the Na/K pump 

to the SERCA pump  is surprising highly9-11. Although SERCA transports Ca2+ and H+ whereas 

the Na/K pump transports Na+ and K+, considering the high similarity between the 

mechanisms of functions (Figure 1) and the cation binding site residues, comparison between 

these two pumps can help elucidate the molecular mechanism for the Na/K pump especially  in 

the scenarios where little is known.  

The side-chain protonation and mobility of the cation binding sites in SERCA have been 

studied in the literature with a diverse set of techniques including pKa calculations, Fourier 

transform infrared (FTIR) spectroscopy, and molecular dynamics simulations. These 

collectively provide a direct comparison with our recent work. Several groups have carried out 

pKa calculations on the key acidic residues of the cation binding sites of SERCA at the Ca2+-

free state18-20,36. Due to the inherent limitations for these continuum electrostatics or empirical 

function based pKa calculation methods, there is some inconsistency in assigning the exact 

protonation states for those acidic residues with a pKa around 7. Nevertheless, it is generally 

agreed that some of four acidic residues must be protonated at the Ca2+-free state. The pKa 

values for the homologous residues of the Na/K pump and SERCA at the E2·Pi state are in 

broad agreement (Table 1). The involvement of protonation and deprotonation of these 

residues during the functional cycle of SERCA was further probed experimentally by FTIR. The 
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pH dependence of infrared bands in the FTIR difference spectra from the E1 state to the E2 

state has been assigned to the vibrational signature from the C=O double bonds due to 

protonation of acidic side chains36,37. This provided first direct evidence for the protonation of 

carboxyl groups upon Ca2+ release reaching the E2·Pi state and it was concluded that these 

acidic residues are primary candidates for the proton countertransporting residues for SERCA. 

Very recently, the effects of the protonation states of these residues on the stability of the 

cation binding sites in SERCA were systematically investigated with long time molecular 

dynamics simulations. Eight different combinations of the protonation of four acidic residues, 

Glu309, Glu771, Asp800 and Glu908 (SERCA numbering), were tested. It is found that only 

Asp800 as charged is most likely at the E2·Pi state and protonation of the three other acidic 

residues plays an important role in stabilising the binding pocket38.  These three lines of 

evidence (pKa calculations, FTIR and molecular dynamics simulations) ubiquitously indicate 

that three out of four acidic residues in SERCA are likely to be protonated at the E2·Pi state. 

These data further support the proposed protonation scheme for the Na/K pump at the E2·Pi 

state: Glu334, Glu786 and Asp815 are mostly likely  protonated and Asp811 is deprotonated 

under physiological conditions12.

One the other hand, the high similarity for the cation binding sites between SERCA and the 

Na/K pump also raises a fundamental question: Why is the Na/K pump able to bind K+ and 

many other monovalent cations, including organic ions, whereas SERCA binds only H+ at the 

E2 state? Based on the X-ray structures, it has been argued that even slight rearrangement in 

the side chain orientation might be sufficient to modulate the ion selectivity  of the different 

states of the Na/K pump39. It might be expected that the subtle difference between SERCA 

and the Na/K pump might contribute to the different ion selectivities8. To fully  understand 

different ion selectivities in the P-type ATPase, further work, both computational and 

experimental, will be required.
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Possible Proton Source and Sink

According to our computational studies, protonation of Glu334, Glu786 and Asp815 is 

absolutely required establish the robust K+ selectivity at the shared binding sites in the Na/K 

pump12. Additionally, a recent study by Poulsen et al. concluded from a joint electrophysiology 

and molecular dynamics simulation study that two additional cytoplasmic protons enter and 

stabilise the vacant site III by protonating Asp933 and Glu961 at the E2 state, and return to the 

cytoplasm via a transient aqueous pathway when the K+ ions are released in the E1 state40. 

Altogether, there will be at least five protons explicitly involved in the E2 state. On the other 

hand, it is known that during the functional cycle there is only net transport of Na+ and K+, i.e. 

the Na/K pump  does not actively pump protons. This imposes strict constraints on the possible 

source and sink for the protons implicated in any proposed mechanism including the one 

proposed here12. In close correspondence with the mechanism proposed in Ref. 40 Figure 4, 

one possibility is that all these protons come from and return to the cytoplasmic side to 

maintain the asymmetric stoichiometry. As a result, the binding sites I, II and III composed of 

the deprotonated carboxylates (including Glu334, Glu786, Asp811, Asp815, Asp933 and 

Glu961) will produce a robust Na+ over K+ selectivity at the E1 state28. But alternative 

mechanisms are conceivable. For example, some of the acidic residues coordinating the ions 

might remain protonated at the E1 state and only a subset of protons undergoes such 

transient movements during the pumping cycle. The presence of a few protonated 

carboxylates at the cation binding sites does not necessarily  mean that the binding site is 

unable to achieve Na+ selectivity, as indicated by FEP/MD simulations based on simplified 

reduced models41. Taking together, these two studies suggest the hypothesis that the Na/K 

pump might control the chemistry of ion coordination by modulating the protonation states of 

key residues forming the cation binding sites to achieve the K+ and Na+ selectivities required at 

various stages of the functional cycle12,40. To fully understand the microscopic mechanism of 
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ion selectivity at the shared binding sites and the exclusive Na+ binding sites, it is crucial to 

obtain more structural information about the E1 state. 

Summary and Outlook

It may not be surprising that the underlying mechanism of ion selectivity in the Na/K pump is 

considerably more complex than the mechanisms observed in ion channels since the latter are 

required to support a single type of ion selectivity as they function. The combined results from 

our computations and experiments show that the protonation states of key acidic residues 

have both structural and energetic impacts on the function of the Na/K pump at the E2·Pi 

state. We demonstrated that protonation of Glu334, Glu786 and Asp815 is absolutely required 

both to ensure the structural integrity of binding sites I and II of the Na/K pump in the K+-

loaded E2·Pi state, and to establish the robust selectivity of those sites for K+ over Na+. 

Although the present study was concerned exclusively with the K+ selectivity of the E2·Pi and 

E2P states, these findings beg the question of whether the same physiochemical factors have 

a corresponding role in establishing the Na+ selectivity  at the E1 state. However, without high-

resolution X-ray structures of the Na+-loaded E1 state, it is difficult to definitively determine the 

molecular basis for the Na+ selectivity. Further work will be required to resolve these issues.

In our current study, we adopt the simplest view of conductive-state selectivity starts with the 

assumption that there exist well-defined cation binding sites that can be occupied by either K+ 

or/and Na+, which might be a reasonable approximation for ion pumps since it has to first bind 

the specific ions before conducting them. But conductive-state selectivity can be also a result 

of kinetic factors caused by  free energy  barriers42,43. Furthermore, it is good to recall that ion 

pumps are not designed to keep ions bound in place, but to transport them across membrane. 

Thus, a more complete understanding of conductive-state selectivity  requires the knowledge of 

the entire free energy surface governing the whole functional cycle, with all its free energy 



15

wells and barriers determined. To fully  characterise the free energy landscape with atomic 

details, more detailed structural view of the Na/K pump, in particular, at the E1 state and the 

conformational transitions between different functional states is desperately needed.

It is worth emphasising that any conclusions derived from computational studies of ion 

selectivity depend on the accuracy of underlying computational methods and molecular 

models44,45, both of which are currently under active development. Most of the computational 

studies of ion channels and pumps are based on the non-polarisable force fields, in which the 

polarisation effects are treated in a mean-filed manner46-48. However, the inherent limitations of 

such force fields might prevent it from providing a quantitative description of ion selectivity in 

biological channels and pumps due to lack of charge transfer and induced polarisation 

effects49-52. One particular advancement in the field worth noticing is the development of 

potential functions that explicitly  account for induced polarisation, which has shown improved 

description of electrostatics interactions in heterogeneous environment53-58. On the other hand, 

combined quantum mechanics and molecular mechanics (QM/MM) methods have been 

applied to investigate the coordination properties in potassium channels50, however, due to the 

dramatically increased computational costs, the thermodynamic properties of ion selectivities 

have not been characterised yet with combined QM/MM simulations. Nevertheless, with the 

development of advanced computational models and the continuing progress of computing 

power, it is expected that computer simulations will shed more light on the mechanisms of ion 

selectivities in ion pumps.

To summarise, with joining forces with experimental techniques and computational studies, 

research into understanding the molecular mechanism of the Na/K pump will continue to 

advance and further studies will provide us with detailed mechanistic view about their 

functions.
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Table 1: The predicted pKa values and protonation states of binding sites residues of 
the Na/K pump and SERCA at the E2•Pi state.

NaK Pump
PDB id: 3B8E9

NaK Pump
PDB id: 3B8E9

NaK Pump
PDB id: 3B8E9

NaK Pump
PDB id: 2ZXE10

NaK Pump
PDB id: 2ZXE10

NaK Pump
PDB id: 2ZXE10

NaK Pump
PDB id: 2ZXE10

SERCA
PDB id: 1WPG20

SERCA
PDB id: 1WPG20

Predicted 
Protonation 

States
Methods MCCE

εp=4.0
MCCE
εp=8.0

PROPKA MCCE
εp=4.0

MCCE
εp=8.0

PROPKA FEP/MD MCCE
εp=4.0

Asp811 2.6 4.2 0.9 1.0 2.8 3.7 - Asp800 7.1 Protonated
Asp815 13.1 8.3 6.8 3.0 3.8 5.8 9.4 (10.8)Glu908 >14 Deprotonated
Glu334 >14 12.3 10.9 13.8 8.4 8.3 - Glu309 8.4 Protonated
Glu786 12.9 9.1 9.8 >14 >14 10.7 - Glu771 >14 Protonated

pKa was calculated from the Poisson-Boltzmann equation with Multiple Conformation 
Continuum Electrostatics (MCCE)59,60, the empirical method PROPKA 3.061 and free energy 
perturbation method based on the explicit solvent free energy perturbation molecular dynamics 
simulations (FEP/MD). The corresponding values for the Ca2+ pump in the E2•Pi state were 
taken from Ref. 20 . The K+ ions were included in all the pKa calculations. Two different values 
of the protein dielectric constant (εp=4.0 and 8.0) were used to investigate the sensitivity to this 
parameter. The pKa shift of Asp815 was also calculated with explicit solvent using a FEP/MD 
with or without a combined umbrella sampling potential of mean force method (in parenthesis). 
See Supplementary Information in Ref. 12 for more details.
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Table 2: FEP/MD calculations for the cation binding sites I and II in the wild-type and 
mutant Na/K pump at the E2•Pi state.

ΔΔGNa,K (kcal/mol)ΔΔGNa,K (kcal/mol)

Simulations Key Acidic Residues at the Cation Binding Sites I and IIKey Acidic Residues at the Cation Binding Sites I and IIKey Acidic Residues at the Cation Binding Sites I and IIKey Acidic Residues at the Cation Binding Sites I and II Site I Site II

A E334- E786- D811- D815- -2.5(-1.7) -2.7(-4.5)

B E334 E786 D811- D815 +1.9(+3.0) +4.0(+1.7)

C E334 E786 D811- D815- -1.5 +3.5

D E334- E786 D811- D815 -1.2 -7.7

E E334 E786- D811- D815 -2.9 -3.0

F E334 E786 D811- D815N +3.1 +6.3

G E334Q E786 D811- D815 +0.3 +0.0

H E334 E786Q D811- D815 -0.2 +1.0

Minus symbol “-” denotes deprotonation of the acidic residue (i.e. negatively charged). Unless 
specified otherwise, all calculations are based on the crystal structure PDB id: 2ZXE10; Results 
based on the structure PDB 3B8E9 are given in parentheses for comparison. The simulations 
of mutants (F, G and H) were constructed in silico based on the well-equilibrated wild-type 
configurations (see Supplementary Information in Ref. 12 for more details).
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E1!ATP E1!3Na+!ATP E1P!3Na+!ADP

E2P

E2P!2K+E2!2K+!PiE2!2K+

E1!ATP

ATP

Pi

H2O

ADP

Na+ K+

Figure 1: The functional cycle of the Na/K pump4,5,7,8. Binding of Na+ to the E1·ATP state from 
intracellular space induce phosphorylation, leading to the formation of the Na+ occluded 
E1P·3Na+·ADP state and a subsequence conformational transition to the E2P state. The E2P 
state has a lower affinity for Na+, leading to exchange of three Na+ for two K+ from the 
extracellular space. Closure of the E2P state leads to E2P dephosphorylation and formation of 
the K+ occluded E2·2K+·Pi state (two crystal structures were determined for this state, PDB id: 
3B8E9 and 2ZXE10). ATP binding leads to the formation of the E1 state and consequent 
release of K+ into the intracellular space and binding of Na+.
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Asp815

Asp811
Glu334

Glu786
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Asn783
Ala330

Val329

Val332
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Wat
Asp815
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Glu334

I
II
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A B

Figure 2: Superposition of the X-ray  structure and snapshots from the simulations based on 
the crystal structure 2ZXE (drawn with thicker lines and ions darker). A. Snapshots taken at 
5ns, 8ns, 11ns, 14ns, 17ns, and 20ns with the protonation states of the binding site residues 
assigned according to the theoretical prediction (Table 1); the average heavy-atom RMSDs are 
(in Å) 0.5 for Glu334, 0.4 for Glu786, 0.8 for Asp811, and 0.8 for Asp815. B. Snapshots taken 
at 5ns, 6ns, 7ns, 8ns, 9ns, and 10ns with the binding site residues deprotonated; The average 
heavy-atom RMSD are (in Å) 1.7 for Glu334, 1.0 for Glu786, 2.2 for Asp811, and 1.5 for 
Asp815. Figure was adapted from Ref. 12.
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A B

Figure 3: Electrophysiological experiments on the Na/K pump  expressed in Xenopus oocytes 
at different extraceullar pHs. A. K+-induced mediated outward pump currents from a single Na
+-loaded oocyte held at -50 mV in the presence of 125 mM Na+ at two different external pHs 
(top, 7.6; bottom, 9.6). Vertical deflections of the current trace represent 50-ms voltage pulses 
(in a compressed timescale) used to obtain the half-maximally activating concentration of K+ 
(from Hill fits to the K+ concentration dependence on outward currents). Application of 10 mM 
ouabain inhibits the K+-induced outward Na/K pump  current. B. Voltage dependence of K0.5 for 
K+ activation of outward pump currents at two extemal pHs (black: 7.6 and red: 9.6), in the 
presence (filled symbols, 125 mM external Na+) and absence (open symbols, 125 mM N-
methyl-D-glucamine (NMG)) of Na+ in the external solution. Data points represent mean and 
standard deviation from five oocytes, for which titration at both pHs was evaluated. Figure was 
taken from Ref. 12
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C

D

Figure 4: Electrophysiological experiments on the Na/K pump  expressed in Xenopus oocytes  
with external surrogate alkali metals (Li+ and Cs+) and organic cations (Acet and Form). A. 
Cation activation of outward currents from a single Na+-loaded oocyte held at -50 mV. Initial 
application of 10 mM K0

+  (in NMG0
+ ) gave an estimate of the maximal outward pump current. 

After K0
+ washout, the oocyte was superfused with other external-cation solutions (Li+, Cs+, 

Acet, and Form). Shown after the break are step  increments in [Form0
+ ] (adjusting NMG0

+ to 
achieve 120 mM) from 0 to 120 mM Form0

+ . Addition of 10 mM K0
+ to the 120 mM Form0

+

solution increased outward current only slightly. B. Voltage dependence of the half-maximal 
constant (K0.5) for activation of outward current in the absence of external Na0+ . Data points are 
means ± SEM of (n) experiments in different oocytes. C. Final configuration following a 20 ns 
equilibrium MD simulation started from a model of the complex with two Acet docked at the K+ 
binding sites. D. Final configuration following a 20 ns equilibrium MD simulation of the 
crystallographic structure with K+ ions bound (PDB id: 2ZXE10). Figure was adapted from Ref 
13.
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Figure 5: Final snapshots at 10 ns equilibrium simulations for the mutants (thin lines) 
superimposed with the crystal structure (thick lines, PDB id: 2ZXE10): A. D815N (Table 2  
Simulation F); B. E334Q (Table 2 Simulation G); C. E786Q (Table 2 Simulation H). Figure was 
adapted from Supplementary Information in Ref 12.
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