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In 1976, scientists monitoring North Carolina’s Belews Lake were perplexed by the sudden 

disappearance of the young-of-the-year age class popular game fish species.  This man-made 

reservoir was fed in part by water from a coal fly-ash settling basin.  By 1977, only three of the 

lake’s 29 resident species remained.  The culprit was determined to be elevated concentrations of 

selenium (Se) in the food web.  Across the country in 1982, federal biologists observed the local 

extinction of most fish populations in California’s Kesterson Reservoir, a wetland area fed by 

agricultural drainage.  They also discovered unnaturally high numbers of dead and deformed bird 

embryos and chicks.  The multiple embryo deformities were sufficiently distinctive to be labeled 

the “Kesterson syndrome” (Skorupa 1998).  Here too, Se was found to be the cause of the 

devastating impacts to the local ecosystem.   

 

Selenium, however, is not a problem of the past.  Selenium contamination of aquatic ecosystems 

remains a significant ecological issue of widespread concern largely because Se is a common by-

product of several core economic activities: coal-fired generation of electricity; refining of crude 

oil; mining of coal, phosphate, copper, and uranium; and irrigated agriculture.  As these 



industries are likely to continue and grow into the foreseeable future, the potential for large-

scale, globally-distributed Se contamination of ecological systems is likely to increase. 

 

 

Since the discovery of the adverse environmental impacts of Se, our ability to identify, quantify, 

and limit the ecological risk of Se has grown and continues to expand.  Starting with the work 

done at Belews Lake and Kesterson Reservoir, a significant body of research has grown 

regarding the transport, transformation, and effects of Se in the aquatic environment.  We now 

know that:  Se is distributed globally in organic-rich marine sedimentary rocks; most forms of 

dissolved Se can be transformed and incorporated into food webs; organic forms of Se are the 

most bioavailable; the primary route of exposure to Se in consumer animals is via the food web 

rather than directly from water; and maternal transfer of Se to embryos causes reproductive 

impairment in egg-laying vertebrates.  Although many questions remain, the knowledge we have 

accumulated during the past three decades allows us to assess, predict, and potentially prevent 

the ecological effects of Se with some confidence.  

 



This chapter: 1) provides an overview of the current understanding of Se interactions and 

impacts, with particular reference to the case studies that are summarized in Appendix A; 2) 

synthesizes these findings into a conceptual framework that incorporates Se sources, transport 

and transformation in nature; bioaccumulation and trophic transfer; and effects on ecological 

systems; 3) uses this conceptual framework to identify strategies for assessing potential Se 

problems in the field; and 4) recommends key areas for future research.  These four organizing 

elements are drawn from the “Problem Formulation” step of the USEPA (1992) Ecological Risk 

Assessment Guidelines (Text Box 3-1). This chapter provides both an introduction and a context 

for the more detailed discussions presented in later chapters.   

 

 

What is selenium? 
 

The element Se is in the 4
th

 period of group 16 (chalcogen group) of the periodic table.  It has an 

atomic number of 34 and an atomic mass of 78.96 (Lide 1994).  Selenium is chemically related 

to other members of the chalcogen group, which includes oxygen, sulfur, tellurium and 

polonium.  Selenium is classified as a non-metal, but elemental Se has several different 

allotropes that display either non-metal (red Se, black Se), or borderline metalloid/nonmetal 

behavior (grey Se, a semiconductor) (Lide 1994; McQuarrie and Rock 1991).  Unlike metals or 

transition-metals, which typically form cations in aqueous solution, Se is hydrolyzed in aqueous 

solution to form oxyanions, including selenite (SeO3
-2

) and selenate (SeO4
-2

).  Oxyanions 

typically have increased solubility and mobility with increasing pH, in contrast to metals, which 

show the opposite behavior.   

 

Text Box 3-1  

 

Initiating an ecological risk assessment for selenium:  Problem Formulation  
 
In ecological risk assessments the Problem Formulation step is designed to help define the 
nature and extent of the problem, resources at risk, ecosystem components to be protected and 
need for additional data to complete the assessment (Figure 3-1).  The Problem Formulation 
step is often the most important step in the risk assessment process because it identifies the 
ecosystem attributes to be protected, identifies existing information and data gaps, and provides 
a means for consensus-building between stakeholders for developing an analysis plan.  The 
Problem Formulation step frequently contains four main elements including: (1) a synthesis of 
available information; (2) a conceptual model; (3) assessment endpoints that adequately reflect 
management goals and the ecosystem they represent; and (4) an analysis plan, which provides 
the details on data to be collected for risk management decisions (USEPA 1992; Reinert et al. 
1998).  The conceptual model is intended to identify key features of the ecosystem and 
resources to be protected, the stressors and the adverse effects that may result.  The 
conceptual model helps identify the hypotheses to be tested during the analysis phase of the 
assessment.   
 



Recognition of the non-metallic behavior of Se is one of the keys to a better understanding of its 

geochemical behavior, but biologically mediated reactions dominate in ecosystems where Se 

effects can be beneficial and detrimental (Text Box 3-2).  Speciation and biotransformation are 

widely recognized as playing important roles in determining Se’s fate and effects in the 

environment. Given the richness of biochemical pathways through which Se may be 

metabolized, it is important to understand the Se biotransformations that may occur in organisms 

and how they relate to bioavailability, nutrition, and toxicity.  

 

Selenium biogeochemistry and the mechanism of entry into living cells is complex (Stadtman 

1974, 1996).  Se occurs in chemical forms that are analogous to forms of sulfur (S) (Sunde 1997; 

Fan et al. 1997, 2002; Moroder 2005; Kryukov et al. 2003; Suzuki and Ogra 2002; Unrine et al. 

2007).  Chief among these are elemental Se (Se
0
), selenide (Se

-2
), selenite (SeO3), and selenate 

(SeO4), as well as methylated forms Sex(CH3)x. Selenate and selenite can be taken up by plants 

and converted to organic forms.  These organic forms are usually analogues to S-containing 

biomolecules, especially amino acids. This conversion occurs through either nonspecific isosteric 

substitution for S in amino acids (selenocysteine or selenomethionine), or through co-

translational conjugation of selenophosphate (SePO
3-

) to serine mediated by selenocysteine 

tRNA and selenocysteine synthase. In the latter case, selenocysteine is incorporated into 

genetically encoded selenoproteins (i.e., those proteins whose encoding DNA sequences have a 

UGA codon and a selenocysteine insertion sequence). In addition, some other metabolites, such 

as seleno-sugars, are known to occur. 

 

Many enzymes and other proteins have been identified and characterized that require Se for their 

activity (selenoproteins).  In 1973 the first functional selenoproteins were identified:  glutathione 

peroxidase in mammals (Flohé et al. 1973; Rotruck et al. 1973) and formate dehydrogenase and 

glycine reductase in bacteria (Andreesen and Ljungdahl 1973; Turner and Stadtman 1973).  

Glutathione peroxidases are part of a large family of proteins that serve a variety of antioxidant 

and other functions that vary among species and specific tissues (Pappas et al. 2008). These 

discoveries confirmed Se as an essential nutrient and indicated a role in defense against oxidative 

injury.  It was another decade before a second mammalian selenoprotein was identified as 

selenoprotein P (SelP) (Motsenbocker and Tappel 1982). Selenoprotein P is now one of the most 

well documented selenoproteins. The gene sequence for SelP is highly conserved in bacteria, 

mammals and fish (Tujebajeva et al. 2000).  The amino acid sequence is rich in selenocysteine, 

histidine, and cysteine residues, suggesting a function in metal binding/chelation. In fact, SelP 

has been found to complex with Hg, Ag, Cd, Zn, and Ni (Yoneda and Suzuki 1997a,b; Sasaku 

and Suzuki 1998; Yan and Barrett 1998; Mostert et al. 1998; Mostert 2000), which supports 

earlier reports of Se-detoxifying the effects of Hg, and Cd in humans and marine mammals 

(Kosta et al. 1975; Hodson et al. 1984; Pelletier 1985; Osman et al. 1998). 

While the glutathione peroxidases and selenoprotein P are among the best known selenoproteins, 

there are many others.  It is now known that the human genome contains 25 genes that encode 

for selenoproteins (Kryukov et al. 2003).  Selenocysteine is genetically encoded by the UGA 

codon when it occurs with a selenocysteine insertion sequence (SECIS) in the 3’ un-translated 

region of the DNA sequence (Sunde 1997).     

Proteins that contain selenoaminoacids that are non-specifically incorporated into proteins during 

translation (i.e., not endcoded by a UGA codon and a SECIS) are known as Se-containing 



proteins. Selenomethionine, the Se-containing analog of methionine, can be non-specifically 

incorporated into peptides because methionyl-tRNA acylase, the enzyme that charges methionyl-

tRNA, does not discriminate between methionine and selenomethionine to any great extent 

(Moroder 2005).  A few studies have suggested or demonstrated non-specific charging of 

cisteinyl-tRNA with selenocysteine, which could be detrimental for proteins that require cysteine 

for their structure and function (Garifullina et al. 2008; Muller et al. 1998; Unrine et al. 2007; 

Wilhelmsen et al. 1985).  Analytical identification and quantification of selenocysteine is 

difficult; which makes it hard to demonstrate nonspecific incorporation into proteins based on 

analytical data alone (Unrine et al. 2007). 

 



 

Sources of selenium entering aquatic environments 
 
Selenium is widely distributed globally and is cycled through environmental compartments via 

both natural and anthropogenic processes (Haygarth 1994; Nriagu 1989).   Ancient organic-rich 

depositional marine basins are linked to the contemporary global distribution of Se source rocks 

(Presser et al. 2004a).  Figure 3-1 shows a global distribution of phosphate deposits (o) overlain 

Text Box 3-2 

 

Selenium  essentiality and toxicity 
 

Swedish chemist Jöns Jacob Berzelius is credited with discovering Se in 1818 as a by-product of 
sulfuric acid production.  Berzelius hypothesized that symptoms of toxicity presented by workers in 
his sulfuric acid factory were due to an impurity present in the pyrite ore used as a production 
feedstock.  Ultimately Berzelius demonstrated that this impurity was an unknown chemical 
element and named it Se from selene, the ancient Greek word meaning moon (Lide 1994; Wisniak 
2000).   
 
In the western US during the 1930s, Se was identified as the toxic factor of alkali disease in cattle 
and livestock (Trelease and Beath 1949; Anderson et al. 1961).  The U.S Department of 
Agriculture conducted both controlled experiments and broad geographic surveys of soil and plant 
Se to assess the toxic hazards and risks associated with environmental Se.  Open-range forage 
plants included Se accumulator plants of the genus Astragalus growing on the Pierre Shale that 
contained Se concentrations of up to 10,000 mg/kg dw (Trelease and Beath 1949; Anderson et al. 
1961).  Yang et al. (1983) described an endemic Se intoxication discovered in 1961 in Enshi 
County, Hubei Province of China.  Selenium from a stony coal entered the soil by weathering and 
was available from alkaline soils for uptake by crops.   
 
In 1957, Se was identified as an essential trace element (or micronutrient) in mammals (Schwarz 
and Foltz 1957).  Proteins containing Se were found to be essential components of certain 
bacterial and mammalian enzyme systems (e.g., glutathione peroxidase) (Stadtman 1974).  
Several Se deficiency disorders were identified, including white muscle disease in sheep and 
mulberry heart disease in pigs (Muth et al. 1958).  In the early 1970s, Chinese researchers 
identified the first major human Se deficiency disease as a childhood cardiomyopathy (Keshan 
disease; Chinese Medical Association 1979).  Thus, Se deficiency as well as toxicity can cause 
adverse effects in animals.   
 
One of the most important features of Se ecotoxicology is the very narrow margin between 
nutritionally optimal and potentially toxic dietary exposures for vertebrate animals (Venugopal and 
Luckey 1978; Wilber 1980; NRC 1989; USDOI 1998).  Selenium is less toxic to most plants and 
invertebrates than to vertebrates.  Among vertebrates, reproductive toxicity is one of the most 
sensitive endpoints and egg-laying vertebrates have the lowest thresholds of toxicity (USDOI 
1998).  The most dramatic effects of Se toxicity are extinction of local fish populations and 
teratogenesis in birds and fish (see Appendix A).  Other effects from Se include mortality, mass 
wasting in adults, reduced juvenile growth, and immune-suppression (Skorupa 1998). 
 



onto that of productive petroleum (a continuum of oil, gas and coal) basins (+) to generate a 

global plot of organic-carbon enriched sedimentary basins (adapted from Fig 11-5 in Presser et 

al. 2004a).  The depositional history of these basins and the importance of paleo-latitudinal 

setting in influencing the composition of the deposits indicate that bioaccumulation may be the 

primary mechanism of Se enrichment in ancient sediments (Presser 1994; Presser et al. 2004a).   

 

Figure 3-1 Worldwide distribution of Se-rich geologic formations comprised of organic-carbon enriched 
sedimentary basins. (Adapted from Presser et al. 2004a; 
http://wwwrcamnl.wr.usgs.gov/Selenium/index.html)  

Selenium source rocks in the western United States (Figure 3-2 adapted from Seiler et al. 2003) 

encompass a wide range of marine sedimentary deposits, from shales mildly enriched in organic 

carbon to oil shales strongly enriched in organic matter, biogenic silica, phosphate, and trace 

elements (Presser et al. 2004a).  These fine-grained sedimentary rocks provide enriched, but 

disseminated Se sources as 1) bedrock soils for agricultural development or 2) source sediment 

for alluvial fans (Presser 1994).  The areal extent of these rocks in the 17 western states is: Upper 

Cretaceous, approximately 77 million hectares or 17% of the total land area; and Tertiary 

(mainly Eocene and Miocene), 22 million hectares or 4.6% of the total land area.  Depending on 

their history, Tertiary continental sedimentary deposits may be seleniferous and these deposits 

encompass approximately 94.7 million hectares or 20% of the total land area. 



 
Figure 3-2 Selenium source rocks in the western United States (Adapted from Seiler et al. 2003; 

http://pubs.usgs.gov/pp/pp1655/) 

 

Environmental contamination by Se often is associated with particular local Se-enriched 

geologic formations, as for example the Upper Cretaceous-Paleocene Moreno and Eocene-

Oligocene Kreyenhagen Formations in the Coast Ranges of California, USA (Presser 1994), the 

Permian Phosphoria Formation in southeast Idaho (Presser et al. 2004b), the Cretaceous Mist 

Mountain Formation in Southeastern BC, Canada (Lussier et al. 2003), and the Permian Maokou 

and Wujiaping shales in south-central China (Zhu et al. 2008). Selenium in these deposits may 

be present as organic and inorganic forms (Yudovich and Ketris 2006). Selenium also is 

associated with various sulfide ores of copper, silver, lead and mercury, and uranium (Wang et 

al. 1993).   

 

Selenium is mobilized through a wide array of anthropogenic activities typically involving 

contact of a Se-containing matrix with water.  In some cases, the contamination will be restricted 



to local environments, but in other instances Se can be transported a considerable distance from 

the place of origin. 

 

Selenium in irrigation waters is a significant environmental concern in arid and semi-arid regions 

(Outridge et al. 1999; Seiler et al. 2003).  In areas of seleniferous soils (Figure 3-2), irrigation 

waters can mobilize dissolved Se predominantly in the form of selenate (Seiler et al. 2003). In 

these areas, drainage systems often are installed to prevent root zone water-logging. The 

resulting oxic drainage water has an alkaline pH and contains elevated concentrations of salts, 

nitrogenous compounds, and trace elements including Se (up to 1400 µg Se/L) (Presser and 

Ohlendorf 1987). Such Se-enriched drainage waters have entered aquatic ecosystems and have 

been associated with widespread adverse effects (Appendix A).  

 

Although natural weathering slowly mobilizes Se from host rock sequences, this process is 

greatly accelerated by mining activities which expose the ore and waste rock to oxidation.  

Oxidized Se and associated metals can infiltrate and leach into the surrounding soils, surface 

water, and groundwater. Selenium release is of particular concern in coal, phosphate, and 

uranium mines (Ramirez and Rogers 2002; Presser et al. 2004a,b; Muscatello et al. 2006). Open-

pit coal (Dreher and Finkelman 1992; Lussier et al. 2003) and phosphate mines (Hamilton and 

Buhl 2004) are a significant source of Se because large volumes of rock overlying the target ore 

seams are left behind in surface waste rock dumps. Selenium is dispersed throughout these 

deposits, but may achieve its highest concentrations in waste-shale zones that occur between the 

ore zones.  In regions where mountaintop mining for coal is practiced, these fresh rock wastes 

are deposited as “valley fill”, providing ideal conditions for both leaching and direct transport of 

Se-enriched waters into regional ponds, reservoirs, lakes, and rivers (Appendix A). 

 

Selenium release from coal burning for power generation is a major anthropogenic source to the 

environment either directly during combustion (Wen and Carignan 2007) or indirectly from 

disposal of solid combustion waste (coal fly ash) (Cherry and Guthrie 1977; Johnson 2009).  

Burning coal oxidizes the organic matter and creates residual wastes, both particulate “fly ash” 

and larger molten “bottom ash”. The fly ash is of particular concern because of its high surface 

area to volume ratio, which facilitates adsorption of mobile trace elements (Jankowski et al. 

2006).  The resulting Se concentration in waste products may be 4 to10 times greater than the 

parent feed coal (Fernández-Turiel et al. 1994). The potential ash waste volumes can be large. 

More than 400 coal ash disposal sites are designated in the United States.  In 2007, about 131 

million tons of ash waste was generated, and about 21% of this total was discharged to surface 

impoundments (Breen 2009).  Thermal, pH, and redox conditions during coal combustion help 

generate predominantly selenite in the ash waste collected on electrostatic precipitators (Yan et 

al. 2001; Huggins et al. 2007).  Selenium is readily solubilized in the alkaline conditions of 

aquatic fly ash settling basins or fly ash reservoirs (Wang et al. 2007).  Clarified ash sluice water 

or sluice water return flows make their way to local receiving waters as a permitted wastewater 

discharge or through groundwater seepage.  Selenium contamination can occur accidentally due 

to overfilling events or failures of containment systems.  Spectacular events occur as well, such 

as the catastrophic December 2008 spill of 5.4 million cubic yards of ash from a Tennessee 

Valley Authority coal-fired power plant (TVA 2009).   

 



The worldwide anthropogenic Se flux to the atmosphere has been estimated at 6.4 M kg/year 

(Mosher and Duce 1987).  Approximately 50% is from coal combustion.  Smelting of non-

ferrous metal ores involves intense heating to mobilize and isolate the metal of interest; the 

associated Se and sulfides are volatilized and released in stack gases. Up to 30% of the Se 

present in feed coal is emitted as a vapor phase and about 93% of that is returned in the form of 

elemental Se (Andren and Klein 1975).  Roughly 80% of atmospheric Se returns to the ground as 

wet deposition (Wen and Carignan 2007) mostly near emission sources (Wang et al. 1993). 

However, depending on atmospheric conditions, stack gases can be carried considerable 

distances.  Seleniferous stack gas from a large copper smelter in Sudbury, Ontario has 

contaminated lakes up to 30 km away (Schwarcz 1973; Nriagu and Wong 1983). 

 

Crude oil is formed in organic-carbon enriched basins and is a source of Se to the environment.  

A fraction of Se in crude oil partitions to wastewaters during refining and can be discharged to 

the environment.  Heavy crude oils produced in the San Joaquin Valley and processed at 

refineries that surround the northern reach of the San Francisco Bay contained 400-600 µg/L Se 

(Cutter and San Diego-McGlone 1990).  The northern reach of the bay was listed as impaired by 

Se discharged from refineries and control strategies were implemented to reduce Se loads to the 

bay in 1989 (Presser and Luoma 2006) (Appendix A). 

 

Production and use of Se as a commodity also results in discharge of Se to aquatic systems. Over 

80% of the world’s production of commercially available Se is derived from anode slimes 

generated in the electrolytic production of copper (Brown 2000; USGS 2000), which can result 

in aqueous discharges of Se to surface waters (Naftz et al. 2009). Refined Se is used: 1) in 

electronic components such as rectifiers, capacitors, and photocopy/toner products; 2) in a wide 

array of industrial applications, such as glass tinting, coloring of plastics, ceramics and glass; 3) 

as a catalyst in metal plating; and 4) in rubber production. (George 2008). Pharmaceutical 

applications include dietary Se supplements, anti-fungal treatments, and anti-dandruff shampoos. 

Each of these uses can result in Se discharges to surface waters and sewage treatment plants.  

Municipal landfills can generate leachates containing Se that can reach groundwater (Lemly 

2004).  

 

In some areas of the world, Se concentrations in soils are below levels adequate to produce feed 

and forage with sufficient Se to satisfy essential (or optimal) dietary requirements for livestock 

(Oldfield 1999).  Selenium deficiency can be remedied by supplementing Se in feed, some of 

which may be excreted.  Runoff from large feedlot operations where these dietary supplements 

are used is of particular concern since the Se is in the form of highly bioaccumulative 

selenomethionine (Lemly 2004). In other cases, fertilizers with nutritional Se amendments (e.g., 

selenate salts) are applied to lands to rectify this deficiency and enhance production (Watkinson 

1983).  Under some conditions, application to thin soils having low organic matter has produced 

short-term elevation of Se concentrations in runoff (Wang et al. 1994), which may be of concern 

in some receiving environments.   

   

Future sources of selenium 

 

Rapid progress in nanotechnology will likely benefit nearly every sector of science and industry, 

and consumer products containing nano-materials are presently entering the market at the rate of 



2-3 products per week (http://www.nanotechproject.org/).  These benefits, however, come with 

associated risks.  Selenium is a key component of nano-materials such as CdSe or PbSe quantum 

dots.  Quantum dots are nanometer scale crystallites that function as semiconductors because of 

quantum confinement effects that occur when the size of the particles approaches the wavelength 

of their electrons (Reiss et al. 2009). These materials are useful in optoelectronic devices such as 

light emitting diodes and photovoltaics.  In addition to potential toxicity resulting from 

degradation of these materials and associated release of Se, emergent properties of the solid-state 

materials could also elicit toxic responses.  For example, active electronic sites that arise from 

defects in crystal planes and electron hole pairs excited by ultraviolet light could lead to the 

generation of reactive oxygen species eliciting toxicity (Hardman 2006; Nel et al. 2006). 

Widespread use of Se-containing nano-materials could lead to environmental Se contamination, 

and the environmental consequences may be different from those due to current Se sources. 

 

 

Selected selenium problem sites 
 

Case studies documented in Appendix A represent a variety of site-specific conditions and 

include both freshwater and marine sites.  Case studies include:  

 

• Belews Lake, North Carolina, USA 

• Hyco Lake, North Carolina, USA 

• Martin Creek Reservoir, Texas, USA 

• D-Area Power Plant, Savannah River, South Carolina, USA 

• Lake Macquarie, New South Wales, Australia  

• Elk River Valley, Southeast British Columbia, Canada 

• Appalachian mountaintop mining / valley fills, USA 

• Kesterson Reservoir, California, USA 

• Kesterson terrestrial habitat and ephemeral pools, California, USA 

• Grassland Bypass Project, California, USA 

• San Francisco Bay / San Pablo Bay, California, USA 

• Phosphate Mines, Southeastern Idaho, USA 

 

Each study compiles information on: sources; fate and transformation; effects; and lessons 

learned.  Each case study is distinct with respect to biological receptors; attributes of water, 

sediment, particulates; food-web pathways; differing community complexity; and the relative 

extent of bioaccumulation and observed effects.  A synopsis of 12 case studies representing 

diverse Se sources was previously provided by Skorupa (1998).   

   

A variety of Se contamination events have occurred over the past 40 years in aquatic systems.  

There have been a number of investigated case studies where elevated environmental Se was 

attributed to disposal of power plant coal-combustion wastes.   These cases include situations 

where fly ash was released directly into a nearby water body (e.g., D-Area power plant at 

Savannah River) or more commonly held in ash settling ponds and the pond effluent released 

into lakes or reservoirs (e.g., Belews and Hyco Lakes, Martin Reservoir, and Lake Macquarie).  

In particular, the Belews and Hyco Lakes case studies provided some of the earliest and best 

documented evidence of elevated Se concentration effects in the aqueous environment.  In some 



of these cases, confounding factors such as release of other co-occurring contaminants or lack of 

sufficient information about ecosystem conditions prior to Se addition, have made it difficult to 

ascribe adverse impacts specifically to Se, even though Se toxicosis is well established.   

 

In the now classic study of Belews and Hyco Reservoirs in North Carolina, fly ash pond 

effluents containing high concentrations of Se were released into the reservoirs for a decade.  

Both reservoirs experienced reproductive failure of fish populations, transforming formerly 

diverse fish communities to communities dominated by a few Se-insensitive fish species 

(Cumbie and Van Horn 1978; Lemly 2002).  Fly ash wastewater discharges were later curtailed 

and a diverse fish community, including Se-sensitive species, was re-established in both 

waterbodies within several years.  However, at each location, more than 20 years later, Se 

bioaccumulation remains elevated relative to reference sites. 

 

The most well-known case of Se bird poisoning in a field environment is the impoundment of 

Se-enriched agricultural drainage water in Kesterson Reservoir in the San Joaquin Valley of 

California.  High levels of dissolved Se in drainwater were taken up into the food web, affecting 

aquatic-dependent wildlife (birds) that showed signed of Se poisoning in adults as well as 

reproductive failure due to embryo teratogenesis and failure to hatch (Ohlendorf et al. 1986; 

Presser 1994).  Inputs of irrigation drainwater were halted in the late 1980s and the reservoir was 

filled and capped to reduce contact of water with Se-contaminated sediments.  Monitoring of 

ephemeral ponds in the Kesterson area since then shows Se concentrations ranging from 15 to 

247 µg/L Se.  Aquatic invertebrates collected from these ponds have Se body burdens ranging 

from 8 to 190 mg/kg (dw), but Se-induced toxicity has not been observed in aquatic birds 

(Skorupa 1998).  After the capping of Kesterson Reservoir, additional sites contaminated by 

agricultural irrigation water inputs were assessed (see case studies in California, Appendix A).   

 

Following the findings at Kesterson Reservoir, the United States Department of the Interior 

(USDOI) in 1985 initiated the National Irrigation Water Quality Program.  Reconnaissance 

monitoring or field-level screening took place at 39 areas in the western USA where wildlife 

populations were considered potentially at risk due to agricultural irrigation practices in areas of 

known seleniferous geological deposits (Presser et al. 1994).  By 1993, results had confirmed 

that Se was the contaminant of primary concern at the National Irrigation Water Quality Program 

study sites, and the receptors generally at greatest risk were water birds (Seiler et al. 2003).  

Seiler et al. (2003) identified the following sites for further study or remediation planning 

because these areas were classified as embryotoxic based on Se concentrations in bird eggs: 

• Tulare Basin, San Joaquin Valley, California  

• Salton Sea, California  

• Middle Green River Basin, Utah  

• Stillwater Management Area, Nevada  

• Kendrick Reclamation Project, Wyoming  

• Gunnison-Grand Valley Project, Colorado  

• San Juan River area, New Mexico 

• Sun River area, Montana  

• Riverton Reclamation Project, Wyoming  

• Belle Fourche Reclamation, South Dakota  

• Dolores-Ute Mountain Area, Colorado  



• Lower Colorado River valley, Texas  

• Middle Arkansas Basin, Colorado-Kansas  

• Pine River area, Colorado 

 

In some cases, a combination of Se sources has been identified as contributing to elevated levels 

of Se in ecosystems.  For example, the San Francisco Bay-Delta Estuary case study addresses 

both agricultural drainage-driven inputs plus industrial wastewater contributions.  In such 

instances, an accurate picture of the relative contribution of the multiple sources (e.g., 

independent characterization of source Se loading and speciation) is useful to conceptually or 

mechanistically model the ecosystem.  

 

Studies demonstrating the growing potential of Se-related impacts relating to mining activities 

include coal mining and phosphate mining (Appendix A).  Open pit mining practices have in the 

past produced “pit lakes” with elevated Se when mining activities were terminated.  Mining in 

areas with productive coal bed or ore deposits results in the weathering of Se from mining 

overburden material and, in some areas, contamination of groundwater which subsequently seeps 

into surface water areas.  In the Elk River Valley of southeastern British Columbia, open coal pit 

mining over the past decades has resulted in sharply increasing surface water Se concentrations. 

Selenium concentrations in discharges (primarily selenate) often exceed 300 µg/L.  Downstream 

of the mines, lotic, lentic, and marsh areas are receiving substantial Se loads, leading to 

bioaccumulation in macrophytes, benthic macroinvertebrates, and a variety of secondary 

consumers.  Individual-level early life stage effects have been observed in two fish species, 

marsh and water birds and frogs, but population-level effects linked to Se have been more 

difficult to establish in field studies (Harding et al. 2005; Orr et al. 2006; Elk Valley Selenium 

Task Force  2008). 

 

 

Selenium cycling and bioaccumulation in aquatic ecosystems 
 

Figure 3-3 is a conceptual model of Se dynamics and transfer in aquatic ecosystems.  The model 

illustrates the steps that determine Se effects in ecosystems.  Those steps are described in detail 

below. 

 

Selenium speciation in water, particulates, and biota 

 

Selenium from natural and anthropogenic sources typically enters aquatic ecosystems as the 

oxidized inorganic anions, selenate (Se IV), and selenite (Se VI), although small amounts of 

dissolved organic Se compounds (Se –II) also can be present in water due to biological activity.  

Selenate and selenite can be the predominant species present in the water columns of aquatic 

ecosystems (Conceptual Model, Figure 3-3).  While the aqueous phase is operationally defined 

as materials passing through a filter with 0.45 µm or smaller pore diameter, colloidal (non-

dissolved) Se may be present in this fraction.  In terms of mass balance, transport of Se via 

sediment is usually a lesser route of entry for Se into aquatic ecosystems.  However, in terms of 

biological reactivity, suspended material in an ecosystem plays an important role determining the 

effects of Se.  

 



 
 
Figure 3-3 Conceptual model of Se dynamics and transfer in aquatic ecosystems 
 

 

The biogeochemical cycling of Se in aquatic systems is characterized by the predominance of 

biologically-mediated reactions over thermodynamically-driven reactions (Stadtman 1974, 1996; 

Oremland et al. 1989, 1990).  Both selenate and selenite anions can be actively taken up by 

microbes, algae, and plants and converted to organic Se compounds, including Se analogues of 

sulfur-containing biomolecules (Fan et al. 1997, 2002; Stadlober et al. 2001).  Selenium is 

sequentially reduced to Se (-II) before it is ultimately incorporated into the amino acids 

selenocysteine and selenomethionine (Sunde 1997).  Selenomethionine is the primary organic 

form of Se at the base of aquatic food webs.  Selenocysteine is primarily present in seleno-

proteins in which the selenocysteine is genetically encoded (as described above).  Selenocysteine 

is readily oxidized, indicating that it should not be persistent under ambient conditions outside of 

organisms.  Selenocysteine typically accounts for a relatively small proportion of total Se in most 

plants with elevated Se concentrations, where excess Se accumulates as selenomethionine (Wu 

1998).  For these reasons, selenomethionine is thought to be the primary organic form of Se 

relevant to bioaccumulation and toxicity in food webs (Fan et al. 2002). 

 

For example, Se often enters a stream as selenate.  If that stream flows into a wetland and is 

retained there with sufficient residence time, then recycling of Se may occur.  During recycling, 

particulate Se is generated from dissolved Se species. The transformed reduced species are then 

returned to the water as these organisms die and decay.  The more recycling, the more organo-Se 

and selenite are produced.  Neither of these latter forms can be easily re-oxidized to selenate 

because that reaction takes hundreds of years (Cutter and Bruland 1984).  The net outcome of 

recycling in a watershed is a gradual build-up of selenite and organo-Se in the water.  Thus, 

biologically-mediated reactions drive conversions among dissolved species and transformation 

of dissolved Se to particulate species. 

 



Bacterially-mediated reactions can also produce volatile methylated Se species, which are 

rapidly lost to the atmosphere, or insoluble elemental Se(0), which tends to accumulate in 

anaerobic sediments (Fan et al. 1998; Peters et al. 1999; Turner et al. 1998; de Souza et al. 2001). 

 

Selenium uptake and transfer in aquatic food webs  

 

Fine particulate organic matter, composed of living and dead biotic material and some associated 

inorganic particles, may contain varying proportions of inorganic and organic Se species.  

Consumption of these particles by primary consumers, typically invertebrates and small fish, is 

the primary pathway for Se entry into aquatic food webs (Figure 3-3).   

 

Partitioning between water and particulates is a dynamic biogeochemical process that is difficult 

to model, because equilibrium geochemical modeling fails to describe major biological 

processes.  However, Se partitioning for any location and time can be described by a distribution 

coefficient or Enrichment Factor (EF), which describes the relationship between Se 

concentrations in particulate and dissolved phases:  

 

EF = Se concentrations in particulates (mg/kg dw) / Se concentrations in water (µg/L). 

 

The EF usually refers to a simple ratio, as described here, but can be elaborated into a more 

complex enrichment function that describes variation in Se uptake in response to different 

environmental factors.  Presser and Luoma (2009) compiled data from 52 field studies in which 

both water-column Se concentrations and particulate Se concentrations were determined.  They 

calculated EFs, which they termed the distribution coefficient, Kd.  The Kds across the variety of 

ecosystems (ponds, rivers, estuaries) vary by as much as two orders of magnitude (100-10,000) 

and measure up to 40,000.  Most rivers and creeks show Kds of greater than 100 and less than 

300 (e.g., San Joaquin River [CA, USA] at 150). Lakes and reservoirs are mainly greater than 

300, with many in the 500 to 3,000 range (e.g., Belews Lake [NC, USA] at 3,000). Those Kds 

greater than 3,000 are usually associated with estuary and ocean conditions (e.g., San Francisco 

Bay [CA, USA] at 10,000 to 40,000).  Exceptions from this categorization can occur as a result 

of speciation effects and other site specific conditions.   

 

The EF represents the outcome of Se transformations occurring in a specific ecosystem, but it 

does not differentiate those processes.  There have been few attempts to develop biogeochemical 

models to quantify these processes (Meseck and Cutter 2006).  For ecosystem-scale modeling, 

EF is estimated from field determinations of dissolved Se concentrations and Se concentrations 

in one or more types of particles.  It is recognized that this operational EF will vary widely 

among environments.  An important part of the methodology is to use the characteristics of the 

environment in question to narrow the potential variability.  Hence, it is critical for site-specific 

Se assessments to quantify Se concentrations in particulates forming the based of the food web.. 

 

Bioaccumulation of Se from particulates by primary aquatic consumers is a key determinant of 

dietary Se exposure and, therefore, the risk of Se toxicity to higher-order aquatic consumers 

(e.g., predatory fish and aquatic birds) (Figure 3-3; Wang 2002; Luoma and Rainbow 2005, 

2008).   Biodynamic models, which characterize the balance between gross Se influx rate and the 

gross efflux rate, can be the basis for modeling Se bioaccumulation and trophic transfer in 



aquatic ecosystems (Presser and Luoma 2009).   For primary consumers, biodynamic 

experiments indicate that uptake of dissolved Se is negligible compared to Se uptake from diets 

of fine particulates (Luoma et al. 1992).  With simplifying assumptions (i.e., no uptake of 

dissolved Se and no growth), the exposure equation for consumers is: 

 

C consumer = [(AE)(IR)(C diet)] / [ke] 

 

The species-specific information in this equation (ingestion rate [IR]), assimilation efficiency 

[AE], and efflux rate [ke] can be determined from kinetic experiments with invertebrates that 

serve as the basis of many important food webs (see Chapter 5).  These parameters can be 

combined to calculate a Trophic Transfer Factor (TTF) for Se.  The modeled TTF characterizes 

the potential for a consumer to bioaccumulate Se from its diet based on the balance of Se influx 

and efflux.  Because TTF is defined as the Se concentration in a consumer (mg/kg dw) divided 

by Se concentration in diet (mg/kg dw), the above equation can be expressed as: 

 

TTF = (AE) (IR) / ke 

 

Selenium TTFs determined for invertebrates vary widely, from 0.6 for amphipods to 23 for 

barnacles (Presser and Luoma 2009; Chapter 5).  This variation in TTF is propagated by trophic 

transfer, making some food webs and some predatory taxa more vulnerable to Se 

bioaccumulation and toxic effects. 

 

Biodynamic models have been developed primarily for invertebrates feeding on particulate 

organic matter, but the same modeling approach can also be applied to higher-order consumers 

such as fish feeding on invertebrates or other fish (Baines et al. 2002).  Selenium TTFs for 

predatory fish are less variable (range, 0.6 to 1.7; mean 1.2) than those for invertebrates (Presser 

and Luoma 2009).  The conceptual model (Figure 3-3) summarizes Se transfer from water to 

organic particulates at the base of the food web to primary consumers and predators.  Food web 

modeling based on EFs and TTFs is illustrated in more detail by Presser and Luoma (2009).   

 

 

Food-web exposure and toxicity risks 

 

Biodynamic modeling can provide insight into variability of Se exposures among different 

ecosystems and different trophic levels.  Selenium TTFs are useful metrics for understanding this 

process because they describe the bioaccumulation in animals across each trophic linkage.  

Contaminants that biomagnify would be expected to have TTFs greater than 1.0 at each trophic 

linkage within a food chain.  Although Se TTFs are variable among different ecosystems, they 

tend to be similar within groups of related species or species with similar trophic status.  It is 

clear that the majority of food chain enrichment with Se occurs at the lowest trophic levels and 

that less enrichment occurs at higher trophic levels.  A compilation of TTFs for Se indicates that 

for freshwater primary consumers, TTFs range from 0.9 for amphipods to 7.4 for zebra mussels; 

TTFs for fish average 1.1 (Presser and Luoma 2009).  These observations have important 

implications for problem formulation and risk assessment.  Unlike contaminants that strongly 

biomagnify in higher trophic levels (e.g., DDT and Hg), for Se, secondary and tertiary 

consumers may not experience substantially higher Se exposure than lower trophic levels, 



because enrichment of Se in aquatic food webs primarily occurs in particulates and primary 

consumers.  For example, a recent study suggests that amphibian larvae that primarily graze 

periphyton actually bioaccumulate higher Se concentrations than predatory fish in the same 

system (Unrine et al. 2007). 

 

However, Se exposure and the magnitude of Se bioaccumulation must be considered along with 

an animal’s sensitivity to Se to establish risk.  Birds and fish (predators) are the two taxa of 

animals most sensitive to aquatic Se contamination (that is, they are the first to express the 

effects of Se within ecosystems), with embryonic and larval life-stages being of particular 

concern.  Invertebrates, on the other hand, are relatively insensitive to Se (Lemly, 1993; Presser 

and Luoma, 2006).  Thus, the organisms that are most at risk are higher order predators.  

   

Risks of toxicity to aquatic organisms may be driven by differences in Se exposure mediated by 

food-web transfer.  In a toxicological sense, Se sensitivity is an inherent property of the species.  

However, differences in Se exposure among ecosystems may be more significant than 

differences in the toxicological sensitivity among species.  Trophic structure (who is eating 

whom) is as important as trophic position (food chain length) in determining Se bioaccumulation 

within food webs (Stewart et al. 2004; Presser and Luoma 2009).  Combining site-specific 

estimates of EFs with generic TTFs for different taxonomic groups or species of invertebrates, 

fish, and birds can help explain how environmental Se concentrations will differ among 

ecosystems exhibiting differing ecological and biogeochemical characteristics. 

 

 

 Adverse effects of selenium 
 

Risk assessment protocols for most contaminants consider two thresholds: concentrations that 

cause adverse effects following short-term exposures (acute toxicity); and concentrations that 

cause adverse effects following long-term exposure (chronic effects).  Because adverse effects 

due to Se exposure are dominantly related to food web exposure, the standard concept of acute 

Se toxicity based on aqueous exposures has limited applicability in nature.   

 

Chronic dietary toxicity from Se is manifested primarily as reproductive impairment due to the 

maternal transfer of Se, leading to embryotoxicity and teratogenicity (Gillespie and Bauman 

1986; Lemly 1993a, 1998; Skorupa 1998; Ohlendorf 2003).  This is particularly true for egg-

laying vertebrates because Se is incorporated into egg yolk proteins (Unrine et al. 2006; Kroll 

and Doroshov 1991; Davis and Fear 1996).  In addition to reproductive impairment, Se has a 

variety of other sublethal effects including reductions in growth and condition index (Heinz et al. 

1987; Ohlendorf 2003; Sorenson et al. 1984), tissue pathology (Sorenson et al. 1982a,b, 1983a,b, 

1984; Sorenson 1988), and induction of oxidative stress (Spallholz and Hoffman 2002; Palace et 

al. 2004).  Selenium can be lethal to adult organisms (Ohlendorf 1989, 2003; Heinz 1996) as 

demonstrated by mass mortalities of adult coots (Fulica americana) which occured in 

agricultural drainwater habitats in California (USA) (Skorupa 1998).  However, most aqueous 

and dietary concentrations of Se encountered by wildlife are not high enough to be lethal to 

adults. 

 



Chronic toxicity to birds and fish is strongly associated with concentrations of the Se-substituted 

amino acid, selenomethionine, in diets and tissues of exposed biota.  Studies with mallards (Anas 

platyrhynchos) have demonstrated that diets containing the naturally-occurring form of 

selenomethionine (L-selenomethionine) were more toxic than diets containing either the 

synthetic enantiomeric mixture, D,L-selenomethionine, or inorganic Se (as selenite) (Heinz et al. 

1988; Hoffman et al. 1996).   Hamilton et al. (1990) demonstrated that toxic effects of artificial 

diets spiked with selenomethionine fed to chinook salmon (Onchorhynchus tshawytscha) were 

similar to effects of diets prepared from wild mosquitofish (Gambusia affinis) collected from Se-

contaminated habitats.    

 

The sensitivity of aquatic taxa to Se toxicity, expressed in relation to Se concentrations in tissues 

or diets varies widely among fish and aquatic-dependent birds (Staub et al. 2004).  

Concentrations of Se that cause adverse effects may differ substantially even between closely-

related species, such as rainbow trout (Onchorhynchus mykiss) and cutthroat trout (O. clarki; see 

Chapter 6).  Similarly, two species of wading birds in the family Recurvirostridae showed widely 

differing effect concentrations for embryo hatchability and teratogenicity, with the black-necked 

stilt (Himantopus mexicanus) being much more sensitive than the American avocet 

(Recurvirostra americana) (Skorupa 1998). 

 

The effects of Se on the survival and reproduction of individuals can lead to adverse changes to 

populations and community structure (Figure 3-4) (Lemly 1993a; Garrett and Inman 1984).  

Population and community-level effects have been primarily documented in aquatic systems 

where movement of organisms (emigration and immigration) is restricted.  In the classic example 

of Belews Lake (NC, USA), 26 of 29 resident fish species experienced local extinction 

(Appendix A) due to reproductive failure caused by Se (Lemly 1993a, 1998).   

 

Elimination of species from communities, particularly those taxa that exert strong top-down 

(some predators) or bottom-up (some microbes or benthic invertebrates) effects may have 

ecosystem-wide repercussions, particularly when sufficient functional redundancy is absent in 

the system.  Se-induced shifts in community composition due to declines of certain invertebrate 

or forage fish species could result in reduced quality and/or quantity of food resources for higher 

trophic level consumers.  

 

Most of what we know about Se bioaccumulation and toxicity comes from studies of birds and 

fish, but relatively little is known about Se toxicity in other vertebrates.  The process of maternal 

transfer of Se in viviparous vertebrates (i.e., mammals and some herpetofauna) is poorly 

understood, but it appears that the margin between essentiality and toxicity of Se is much broader 

for placental mammals than for egg-layers (NRC 1980; see Chapter 6).  Thus, among 

vertebrates, the most notable knowledge gap regarding Se exposure and toxicity is for oviparous 

species of amphibians and reptiles.  This knowledge gap prevents phylogenetic comparisons 

regarding Se sensitivity.   

 



 
                                                                                                                                             

 
Figure 3-4 Hierarchy of effects across levels of biological organization.  

 

 

 

Amphibians and reptiles are among the most critically endangered vertebrates (Gibbons et al. 

2000; Stuart et al. 2004; Wake and Vredenburg 2007).  Collectively referred to as herpetofauna, 

they are also ecologically important in both aquatic and terrestrial ecosystems.  As ectotherms 

with low energy requirements, herpetofauna can achieve high biomasses compared to mammals 

and birds occupying similar trophic levels (Hopkins 2006, 2007).  In numerous ecosystems 

where vertebrate numbers and biomass have been carefully calculated, salamanders, frogs, 

lizards, and snakes have been shown to be far more abundant than most other vertebrates (Burton 

and Likens 1975; Petranka and Murray 2001; Gibbons et al. 2006; Rodda et al. 1999; 

Roughgarden 1995).  Thus, herpetofauna greatly influence the cycling of energy and nutrients in 

many ecological systems (Bouchard and Bjorndal 2000; Beard et al. 2002; Ranvestel et al. 2004; 

Seale 1980; Wyman 1998; Gibbons et al. 2006; Regester et al. 2006) and may play significant 

roles in the cycling of contaminants of Se in food webs (Hopkins 2006, 2007; Hopkins and Rowe 

in press).   

 

In a system contaminateded with coal combustion wastes in South Carolina (USA), water snakes 

(Nerodia fasciata) accumulated elevated concentrations of Se from the fish and amphibians they 

ingested (Hopkins et al. 1999).  Based on indirect evidence from long-term controlled feeding 

studies (Hopkins et al. 2001, 2002a) and additional field studies on amphibians (Roe et al. 2005; 

Hopkins et al. 2006), it appears that the elevated Se concentrations in snakes were more likely 



due to ingestion of amphibians than fish (Hopkins 2006).  No studies have evaluated the 

importance of amphibian and reptilian prey as pathways of Se exposure to fish, birds, or 

mammals that commonly ingest them.  Nor have any studies rigorously examined 

bioaccumulation and effects of Se in top trophic level reptiles such as snapping turtles and 

alligators, despite many traits that make these species desirable for ecotoxicological studies (Roe 

et al. 2004; Hopkins 2000, 2006; Bergeron et al. 2007).  

 

Like birds and fish, reptiles and amphibians partition significant quantities of the Se they 

accumulate into their ovaries, with subsequent maternal transfer to their eggs. Turtles, alligators, 

snakes, lizards, and frogs have all been shown to maternally transfer Se (Nagle et al. 2001; Roe 

et al. 2004; Hopkins et al. 2004a, 2005a,b, 2006).  In controlled feeding studies with lizards and 

field surveys of frogs, 33-53% of a female’s total body burden of Se prior to oviposition was 

transferred to her follicles or eggs (Hopkins et al. 2005a,b, 2006).  Spinal deformities in 

Columbia spotted frog embryos with Se concentrations up to 20 mg/kg dw were documented in 

the Elk River Valley (BC, Canada) watershed (Appendix A).   

 

The reproductive effects and developmental consequences of Se deposition into reptilian eggs 

remain largely unexplored.  A field study with adult amphibians demonstrated that females that 

transferred excessive concentrations of Se and Sr to their eggs also experienced significant 

reproductive impairment, including teratogenic effects characteristic of Se toxicity (Hopkins et 

al. 2006; discussed in more detail in Chapter 6).  Additional field studies and controlled dietary 

exposures linked to adverse reproductive outcomes, much like those conducted on birds and fish, 

are needed for these diverse and threatened group of vertebrates. 

 

 

Ecosystem recovery following selenium contamination  

 

A limited number of examples are available to document the recovery of impacted aquatic 

populations in Se-contaminated ecosystems.  The recovery of the warm water fish community in 

Belews Lake represents the most comprehensive example currently available.  Prior to being 

impacted by coal ash effluent, the Belews Lake fish community was diverse, comprised of 29 

species. The lake began receiving Se-laden ash pond effluents in 1975.  The changes in the 

warmwater fish community in Belews Lake was documented by sampling lake coves during the 

period 1977 – 1984, coupled with muscle tissue Se measurements in selected taxa collected from 

trap nets or by electrofishing (Barwick and Harrell 1997).  Monitoring showed significantly 

reduced fish diversity and biomass during 1977 – 1981, as the lake continued to receive some 

Se-laden ash pond effluents.  In 1978 only seven taxa were represented; in 1979 only three were 

collected.  By the mid-1980s, all seleniferous loading to the lake from ash pond effluent was 

curtailed.  Fishery monitoring in successive years indicated a gradual re-establishment of a 

diverse community, as the range of species successfully expanded downlake from a relatively 

un-impacted headwater area (Lemly 1997; Barwick and Harrell 1997).   By 1985, as median 

Belews Lake Se water column concentrations decreased to < 5 µg/L, 21 fish species had been 

documented from the main body of Belews Lake (1984 and 1985 data; Barwick and Harrell 

1997).  By 1990, within five years of termination of ash pond effluents, 26 fish taxa (combined 

1984-1990 data) had been documented (Barwick and Harrell 1997). 

 



Compared to these population-level responses that indicated recovery of the system over a five 

year period, Se residues in monitored taxa, including catfish (Ameiurus spp. and Ictalurus spp.), 

green sunfish (Lepomis cyanellus), and bluegills (L. macrochirus) were slow to decrease.  

Muscle Se concentrations in these taxa decreased from average concentrations (converted from 

wet weight, using an estimated 75% moisture content) of 42 mg/kg in catfish and 87 mg/kg in 

green sunfish during 1983 – 1987, to levels between 4.0 and 15 mg/kg,  respectively by 1992.  

Those concentrations remained well above reference site fish residues, however, and low 

frequencies (up to 6%) of malformed fish larvae continued to be reported as late as 1996 (Lemly 

1997).  A continuing decline in fish Se concentrations has been closely linked with gradually 

declining Se concentrations in sediment and benthic food webs in Belews Lake. 

 

Following the termination of drainwater inputs and the filling of the ponds at Kesterson National 

Wildlife Refuge, monitoring and modeling indicated that reduced, but persistent, Se exposures 

from the terrestrial habitat and ephemeral pools would continue to present a low-level of risk to 

wildlife (Ohlendorf 2002).  Although Se concentrations in specific food webs remained above 

toxicity levels of concern and slightly elevated with respect to reference sites, the author 

concluded that Se concentrations in terrestrial and aquatic wildlife did not pose substantial risk of 

adverse effects on reproductive or other responses.   

 

Under some conditions, recovery of populations of a specific receptor species may not take 

place.  For example, Se amendments made to a series of Swedish lakes in the 1980s is thought to 

have resulted in the local extirpation of perch (Perca fluviatilis) from several lakes isolated from 

source populations (Paulsson and Lundbergh 1989; Skorupa 1998).   

 

In summary, these cases indicate that some aquatic populations may recover in several years 

following the cessation of aqueous Se inputs.  However, aquatic communities commonly include 

important benthic food webs.  Selenium concentrations in sediment typically decline more 

slowly than water column concentrations.  Therefore, natural attenuation of Se in food webs may 

require several years or even decades. 

 
 

Strategies for assessing the resource to be protected  
 

System characteristics 
 

Source, habitat, and food web characteristics, along with other stressors, influence Se’s overall 

effect on an ecosystem (Figure 3-5).  These characteristics are important in developing a strategy 

to assess an ecosystem that may be at risk from Se contamination.    



 
 
 
Fig 3-5.  Ecosystem characteristics that influence Se cycling, bioavailability, and effects. 

 

 

Both the amount and the chemical form of Se discharged into an ecosystem help to determine its 

fate and effects.   Most often, Se enters aquatic systems as a highly water-soluble oxyanion (i.e., 

selenate or selenite).  In typical coal combustion wastewaters, for example, most of the Se enters 

the ecosystem as selenite.  The efficiency of uptake by plankton from the water column is greater 

for selenite than for selenate, resulting in a rapid flux of Se into the aquatic food web (Besser et 

al. 1993; Riedel et al. 1996).  Relative to selenate, selenite is also more readily complexed and 

precipitated from the water column via non-biological pathways (for example, by co-

precipitation with metal hydroxides: NAS 1976; Simmons and Wallschläger 2005).  These 

properties tend to favor incorporation of selenite-Se into particulates, which facilitates a benthic 

exposure pathway for consumers.  Increased severity and rate of manifestations of selenite-Se-

induced toxicity observed in biota (e.g., at Belews Lake), relative to ecosystems receiving a 

similar or greater concentrations of selenate-Se (e.g., Kesterson Reservoir) have been attributed 

to these differences in source speciation (Skorupa 1998; Appendix A). Source characterization 

should include temporal analyses both as a means to accurately assess loading rates and to 

confirm Se speciation over time. 

 

The conditions within a receiving water body are important factors contributing to Se 

accumulation within components of food webs.  The most severe Se toxicity problems 

documented to date have occurred in lentic systems with elevated Se inputs and comparatively 

slow hydrologic loss rates.  High biological productivity tends to increase the rate of 

incorporation of dissolved inorganic Se into biota, resulting in high concentrations of 

bioavailable Se in biota and organic detritus (Orr et al. 2006).  High levels of microbial activity 

are typical of high-productivity lentic and wetland habitats that are most often also associated 

with high levels of Se bioavailability.  This is not surprising, as microbially-mediated reactions 



are involved in many all of the transformations that affect Se fate and bioavailability, including 

reduction of selenate (least bioavailable) to selenite (more bioavailable) and reduction of these 

inorganic species to organic selenides (most bioavailable) (Riedel et al. 1996).  Microbial 

activity can also lead to reduced Se bioavailability, e.g., by formation of elemental Se, an 

insoluble form that tends to accumulate in sediments, or loss from the aquatic system by 

formation of volatile methylselenide species (Fan et al. 1998). 

 

Even among aquatic ecosystems with low productivity and short residence times for dissolved 

inorganic Se, the fate of Se in some localized habitats may vary widely.  In sites such as marginal 

wetlands, side channels, and seasonally-flooded areas local hydraulic residence time is longer 

and productivity is higher than in main-channel habitats.  This leads to greater Se accumulation 

in organic detritus and organic-rich sediments, greater biotransformation of inorganic Se, and 

greater Se bioaccumulation.   

 

Hydrology, productivity, and microbial activity of aquatic habitats influence the quantity and 

type of fine particulate organic matter available at the base of aquatic food webs.  These 

differences are reflected in the speciation and bioavailability of particulate Se (Presser and 

Luoma 2009).  Operationally defined EFs characterize Se partitioning between water and 

particulate matter for aquatic systems.  Systems with relatively low EFs (< 500) are streams, 

whereas systems with the highest EFs (>2000) tend to be dominated by highly-productive 

wetlands and estuaries. 

 

The magnitude of enrichment factors (EFs) for primary producers is an important determinant of 

the potential for Se bioaccumulation in food webs. The fate of Se entering aquatic food webs, 

however, is further modified by differences in food web structure among aquatic ecosystems.  

The Se exposure of higher-order predators is predominantly determined by the specific taxa that 

comprise these links rather than the number of trophic links in their food webs.  Predators that 

consume aquatic taxa such as marine bivalves, which have exceptionally high TTFs (range: 1.4 

to 23), may experience greater Se exposure than other predators in the same ecosystems (Presser 

and Luoma 2009). 

 

Food web linkages to the top oviparous consumers as species of concern for Se toxicity should 

be included in site assessments. Reproductive impairment and early life stage malformations in 

high trophic level egg-laying (oviparous) vertebrate species, including fish and aquatic-

dependent birds, are the most frequently documented manifestations of Se toxicity.  Under-

studied oviparous species, including reptiles and amphibians can make up a substantial fraction 

of biomass, and are critical components in system energy transfer and ecology. 

 

Food web structures and hence the potential for dietary Se exposure of top predator species are 

commonly highly complex.  Consumers utilize a wide variety of food sources that are influenced 

by season, migratory patterns, or life stage-dependent factors.  Temperate lentic habitats, when 

provided with sufficient soluble nutrients, support a robust but seasonally variable food web.  

Partitioning of water-column Se in particulates is efficient as reflected in higher EFs in lentic 

versus lotic systems (see previous discussion).  Benthic organisms comprise an important 

component of both lentic and lotic food webs, but lentic sediment is typically comprised of fine 

particulates, including biogenic particulate organic material.  The organic component (total 



organic carbon) of sediments has been associated with higher Se concentrations and, further, 

appears to strongly influence the magnitude of Se bioaccumulation in benthic invertebrates.  In 

lotic systems, substrates and stream velocities are less amenable to accumulation in fine 

particulate and detritus, except in backwater areas, which are essentially lentic habitats. 

 

The length of the food web, number of trophic levels represented, may not reflect the magnitude 

of the risks posed by environmental Se contamination to species of concern.  In San Francisco 

Bay (Appendix A), white sturgeon, (Acipenser transmontanus), an exceptionally long-lived top 

predator, consume great quantities of an invasive clam species (Potamocorbula amurensis).  

While Se concentrations remain relatively low in both the bay water column (< 1 µg/L) and 

suspended particulates (0.5 to 1.5 mg/kg dw), Se is bioaccumulated efficiently to potentially 

problematic Se concentrations by sturgeon because of the approximate 6-fold trophic transfer 

from particulate to clam.  In the same ecosystem, juvenile striped bass (Morone saxatilis) utilize 

a slightly longer food web comprised of first and second-order crustacean consumers 

(zooplankton and mysid shrimp).  The bass do not accumulate Se to problematic concentrations 

because trophic transfer is less than 2-fold.  In mechanistic terms, the key difference between the 

two food webs, and therefore the exposures of predatory fish, is the very low efflux rate of Se 

from clam tissue relative to the crustacean food items (Stewart et al. 2004). 

 

There is reason to suspect that the toxicity of Se may be enhanced by other ecological variables 

normally encountered by animals in nature.  Lemly (1993b) demonstrated that the process of 

overwintering enhanced the toxicity of Se to bluegill (i.e., Winter Stress Syndrome).  Additional 

recent research did not fully substantiate the severity of the originally observed effects, but 

experimental details deviated from the original experiment (e.g., the photo-period did not mimic 

overwintering conditions) (McIntyre et al. 2008).  Selenium-induced shifts in community 

composition due to declines of certain invertebrate or forage fish species could result in reduced 

quality and/or quantity of food resources for higher trophic level consumers.  Such indirect 

effects mediated through nutritional deficits are widespread in systems contaminated by other 

pollutants (Fleeger et al. 2003), including complex waste mixtures containing Se (Hopkins 

2002b, 2004b; Roe et al. 2006).  Possible interactions between Se and ecological variables (e.g., 

temperature, salinity, climate), life history events (e.g., migration, metamorphosis), and other 

anthropogenic factors (e.g., eutrophication, habitat modification, interactions with other 

contaminants) are also knowledge gaps that need to be addressed to better inform future risk of 

Se to herpetofauna. 

 

Another major challenge to evaluating Se toxicity is its well-documented interaction with other 

constituents of aquatic environments.  For example, sulfate inhibits uptake of selenate by plants 

and has an antagonistic effect on the selenate’s acute toxicity (dissolved route of exposure only) 

to invertebrates and fish (Brix et al. 2001).  However, sulfate-selenate interactions have not been 

shown to influence Se transfer via trophic transfer, which is the primary exposure mechanism for 

chronic toxicity (Besser et al. 1989; Skorupa 1998; Presser and Luoma 2009).  A more 

significant challenge to evaluating Se toxicity in the field is its common co-occurrence with other 

pollutants. Many of the industrial sources of Se also emit additional trace elements and in some 

cases organic contaminants.  For example, coal combustion produces solid waste containing 

elevated concentrations of more than a dozen potentially-toxic trace elements (Rowe et al. 2002).  

This complication is not unique to Se, as all habitats on the planet contain measurable 



concentrations of other contaminants.  However, for Se this may become a major source of 

uncertainty because it is well known that Se interacts with other contaminants such as Hg and As 

(Heinz and Hoffman 1998; Hopkins et al. 2006, 2007; Cuvin-Aralar and Furness 1991; Yoneda 

and Suzuki 1997a,b). Synergistic, additive, and/or antagonistic interactions are likely in some Se-

contaminated systems. These interactions are complex and are likely to be site-specific.  

Revealing the molecular mechanisms behind these interactions with Se also may allow better 

predictive power in these situations. 

 

Investigation of population-, community-, and ecosystem-level responses to Se contamination 

also may be complicated by the presence of other stressors such as habitat modification, altered 

hydrology, species introductions, diseases, and the like.  Each of these factors would be relevant 

for establishing hypothetical or actual reference site conditions, as would consideration of natural 

successional stages. 

 

Assessment endpoints and measures of exposure and effect 

 

When episodes of Se contamination occur or are suspected, it is useful to have a methodical way 

to assess the possible adverse effects on the ecological systems in the field.  The Ecological Risk 

Assessment framework developed by the USEPA (1992) recommends that assessment endpoints 

and associated measures be used for this purpose.  In this context, assessment endpoints 

represent components that sustain the structure, function, and diversity of an ecological system, 

or components that may be valued for other reasons (such as a rare species). Assessment 

endpoints may be identified at any level of biological organization:  molecular; cellular; 

organism; population; community; and ecosystem (Figure 3-5).  Once the assessment endpoints 

are selected, measures of exposure and effects can be identified.  These measures reflect the 

actual types of data that will need to be collected in order to complete the risk assessment. 

Ideally, they should be able to be measured relatively easily, either indirectly or directly.   

 

Generic assessment endpoints and measures that can be used to determine the effects of Se 

contamination on an ecological system were derived from the synthesis of Se research presented 

above, as well as the conceptual models proposed for exposure pathways and ecological effects.  

Measures of exposure and effects are categorized in Table 3-1, and the measures of system 

characteristics are subsumed within the community- and ecosystem-level exposure and effects 

measures.  Data collection on the key measures (in bold text) is recommended for systems where 

a Se problem is strongly suspected or has been identified.  For systems where studies are just 

beginning and less information exists on whether Se is an influence, the first steps might be to 

measure Se concentrations in water, particulate phases (including organic carbon content of the 

sediment), and tissues of primary consumers.   

 

For the purpose of characterizing Se exposure in a particular aquatic ecosystem, the 

recommended measures are Se concentrations in water and in biogenic particulates (used to 

calculate the EF) and measurement of Se concentrations in dominant primary consumers.  Both 

of these measures capture much of the site-specific variation in Se enrichment at the base of 

aquatic food webs. Temporally- and spatially-matched samples related to specific food webs are 

valuable given the site-specific nature of Se effects. The most appropriate measure of Se 

exposures for the purpose of estimating Se hazards to higher-order consumers is Se 



concentrations in eggs or mature ovaries  of vertebrates (fish and/or birds), which are the best 

predictors of the toxic effects of Se on embryo  and larval stages.  Measurement of Se 

concentrations in diets, muscle and whole organisms are less predictive of toxic effects of Se.  

Measurement of the biologically-active species, Se-methionine, at various levels of organization 

(particulates, whole-body, tissues, and sub-cellular components) may also provide insight into 

differences in Se bioavailability and toxicity among ecosystems and taxa.   

 

The measures of effect that are most reliably diagnostic of Se toxicity in aquatic ecosystems are 

those most directly related to the reproductive toxicity of Se at the organism level: embryo 

malformations (terata); embryo-larval edema; and egg hatchability.  Reproductive failure can 

lead to effects at both the population level (reduced abundance, loss of year classes) and the 

community level (loss of Se-sensitive species); these changes are often the most visible evidence 

of Se toxicity in aquatic ecosystems.  However, these measurements can be difficult to 

implement because of the need for a large number of samples, specialized equipment, or 

extensive time and resources; they also may be less diagnostic of Se toxicity because they may 

reflect effects of other stressors.  Measures of effects at tissue and subcellular levels may be 

diagnostic of Se toxicity (e.g., measures of oxidative stress), but these measures are generally 

less predictive of effects at higher levels of organization. 

 



Table 3-1 Key assessment endpoints and corresponding exposure and effects measures for Se 
risk assessments in aquatic systems.  Data collection for the key measures (in bold 
text) is recommended for systems where a selenium problem is strongly suspected or 
has been identified. 

 

Level of 

Organization 
Assessment Endpoint Measures of Exposure Measures of Effect 

Molecular/cellular Oxidative stress 

protection 

Normal biomolecule 

structure and function 

Se in subcellular 

compartments 

Se substitution in 

biomolecules 

Enzyme assays and gene 

expression 

  

Tissue Normal tissue structure 

and function 

Total Se and /or 

selenomethionine in tissue 

 

Pathology of liver, kidney, 

eyes, gills, blood, gonad 

Relative organ weight 

Organism Survival, growth, and 

reproduction of egg 

laying vertebrates  

Selenium in female 

reproductive tissue of 

oviparous vertebrates
 
 

Selenium in whole-body or 

surrogate tissue  

 

 

Survival 

Growth 

Body condition  

Edema
 
 

Embryo malformation 

Egg hatchability
 
 

Immuno-competence 

Incidence of parasites / 

disease 

Population Population 

sustainability  

Se in diet 

 
Reduced abundance 

Population structure 

Change in genetic diversity 

Community Community structure 

and function 

Se in water and 

particulates (Enrichment 

Function)
 
  

Selenium speciation in 

particulates 

Se in primary consumers 

Trophic transfer factor 

Food web structure 

Presence / absence of 

sensitive species and 

functional groups  

Taxa richness and diversity 

Ecosystem Ecosystem structure and 

function 

Se loading and speciation 

in ecosystem 

Residence time of Se in 

ecosystem 

Organic carbon in 

sediment 

Productivity 

Nutrient cycling 

 



Summary 
 

The ecological effects of Se are mediated by site-specific factors, but certain general patterns 

emerge from a synthesis of current research.  These generalizations address: the geochemistry 

and anthropogenic activities likely to cause risk; Se biochemistry; the cycling of Se in aquatic 

environments; the uptake and transfer of Se through food webs; and the mechanisms of action 

for Se toxicity.  While recognizing that each site is different, these general patterns not only can 

be used to assess contaminated sites, but also to predict situations in which potential Se 

mobilization may cause great risk. 

 

Selenium’s biochemical role 

 

Selenium is both an essential element for animal nutrition and a toxicant.  In fish and birds there 

is a narrow margin between essentiality and toxicity.  Selenium occurs in a variety of organic 

and inorganic forms, but selenomethionine has been associated most closely with trophic transfer 

and toxicity in the environment. In aquatic systems, bacteria, algae, and plants convert inorganic 

forms of Se into organic forms, including selenomethionine, which is then transferred through 

food webs and, for egg-laying species, from mother to egg.  The confirmed effects of Se on 

reproductive success in egg-laying vertebrates, including developmental abnormalities, have 

been linked to vertebrate population extirpations. 

 

Selenium as a global problem 

 

Selenium is distributed globally but not uniformly in organic-rich marine sedimentary rocks. 

Anthropogenic activities such as coal, phosphate, and metals mining can expose Se-rich strata to 

greatly enhanced leaching and subsequent transport. Soils derived from weathering and erosion 

of Se-rich sedimentary rocks can contribute Se through agricultural irrigation runoff and 

drainage. Selenium also is associated with processing and combustion of fossil fuels such as coal 

and oil. Coal combustion and oil refinery wastes may contain greatly concentrated Se relative to 

the raw material, and wastes from these processes can elevate Se concentrations in aquatic 

environments.  These and other human uses of Se-associated products can transport 

contamination far from sources, potentially generating problems in areas distant from source 

rocks. Selenium discharges and Se contamination of aquatic ecosystems can be expected when 

known geologic sources of Se are combined with anthropogenic activities such as mining, 

irrigation, and coal-fired power plant operation unless appropriate management measures are 

instituted. 

 

Specific examples of Se contamination from anthropogenic activities are well documented in the 

literature (Appendix A).  In many of these cases, significant adverse effects on biota that are 

typical of Se toxicity have been documented; in several cases, population and/or community-

level effects also occurred.  These case studies also demonstrate that the ecological outcome of 

Se contamination depends in part on measures of system characteristics such as: Se loading; 

dissolved Se speciation; residence time or flow conditions; productivity; general food web 

characteristics including diet and predator linkages; and the presence of other stressors. 

 



Demand for coal, oil, and phosphate ore are expected to continue to increase in the foreseeable 

future. In addition, certain new technologies that use Se, such as nanotechnology, may have 

unpredicted impacts. As a result, both localized and landscape-scale Se contamination are 

global issues that are expected to increase in prominence in the future. 

 

Movement and transformation of selenium  

 

Much has been learned in recent years regarding the transport and transformation of Se in 

aquatic systems (Figure 3-3).  Most importantly, research has shown that diet is the dominant 

pathway of Se exposure for both invertebrates and vertebrates.  For this reason, traditional 

methods for predicting toxicity on the basis of exposure to dissolved concentrations do not 

work for Se. Selenium moves readily from water to primary producers and the other organic 

particulates that form the base of aquatic food webs.  The EF, the ratio of the Se concentration in 

particulates to the Se concentration in water, describes the initial enrichment step for Se at the 

base of the food web.  The EF measure in natural systems can vary by up to two orders of 

magnitude at different locations, although there is some evidence that EF values cluster more 

closely among sites with similar characteristics (e.g., lake systems versus river systems).  This 

variability in EF makes it difficult to predict Se exposure and effects from water concentrations 

alone.   

 

Transfer from particulates to primary consumers is less variable.  TTFs (ratio of Se concentration 

in consumers to Se concentration in diet) for invertebrates are site- and species-specific, but 

generally vary within 0.6 to 23.  This dietary pathway is dominant; uptake of Se directly from 

water by consumers is negligible.  Similarly, transfer from invertebrates to fish is from 0.6 to 1.7.  

For these reasons, the composition of the food web is important in determining bioaccumulation; 

the length of the food chain does not necessarily predict the level of Se exposure. 

 

Effects of selenium on ecosystems 

 

Acute toxicity from exposure to elevated dissolved Se concentrations has rarely, if ever, been 

reported in the aquatic environment. Significant chronic effects would be expected at far lower 

dissolved Se concentrations because Se is bioaccumulative and its toxicity to fish and birds 

occurs primarily through the diet.  

 

Chronic Se toxicity is primarily manifested through reproductive impairment via maternal 

transfer in egg-laying vertebrates, resulting in embryotoxicity and teratogenicity. Other chronic 

effects include reductions in growth, tissue pathologies, induction of oxidative stress, and 

mortality. Sensitivity to chronic Se toxicity may vary widely, even among closely-related 

species. Because estimates of risk are developed from knowledge of exposure and effects, the 

species that are most sensitive to Se are not always the most exposed to Se in nature. Species-

specific feeding habits that result in high exposure levels may also drive toxicity risks.  While 

much has been learned about bird and fish species, far less is known about toxicity in other 

oviparous vertebrates.  A notable knowledge gap exists for egg-laying species of amphibians and 

reptiles, which include some of the most critically endangered vertebrate species. 

 



Effects on the population and community levels of biological organization have been 

documented at some sites (Appendix A).  There is much less information about other 

ecologically-relevant effects at the community or the ecosystem levels. Changes in invertebrate 

community structure caused by Se-induced loss of fish predators could be one example.. 

Interactions between Se and temperature or other stressors also may occur, but require further 

study.   

 

These observations help explain why the behavior and toxicity of Se in ecological systems are 

highly dependent upon site-specific factors.  Knowledge of the food web is one of the keys to 

determining which biological species or other ecological characteristics will be affected. Other 

important parameters include rates of input of Se into the system, hydraulic residence time, and 

Se speciation in water and particulates. 

 

It is difficult to generalize about system recovery when Se contamination is reduced or removed. 

Recovery is a function of the characteristics of the particular ecosystem and the decreases in 

mass loading of Se.  Experience at Belews and Hyco Lakes shows that once the source is 

removed, aquatic communities can substantially recover within a few years, although the 

community composition may be altered.  Selenium in sediment may contribute to long (decadal) 

recovery times of tissue residues and long-term persistence of adverse effects in aquatic 

consumers.  

 

How to investigate a potential selenium problem 

 

Key assessment endpoints and corresponding exposure and effects measures at multiple levels of 

biological organization can be used to diagnose a suspected Se problem (Table 3-1).   Similar 

assessment endpoints and measures also can be used to help predict potential impacts of a future 

anthropogenic activity.   

 

Based on current knowledge, the endpoints most diagnostic of Se exposure occur at the tissue 

and organism level.  Table 3-2 presents the key measures recommended for assessing an 

ecosystem where significant Se contamination is strongly suspected or known.  In systems where 

Se contamination is less certain, a shorter list of initial endpoints is proposed that includes Se 

concentrations in water, particulates, reproductive tissues from oviparous fish and wildlife, and 

tissues from primary consumers. In either situation, significant insight into the fate and effects of 

Se also may be gained by evaluating system characteristics such as Se loading and speciation, 

hydraulic residence time, ecological productivity, general food web characteristics, and the 

presence of other anthropogenic or natural stressors.  

 

 

Priorities for future research 
 

Selenium research has progressed in recent decades and has resulted in significant advances in 

our knowledge of Se dynamics and effects in aquatic systems. There are still important 

unknowns, however, and we suggest the following priorities for continued research: 

 



1. Determine the species sensitivity of other egg laying vertebrates, including reptiles and 

amphibians. 

Research has confirmed the susceptibility of oviparous fish and birds due to the maternal 

transfer of Se, and subsequent embryonic deformities.  There is insufficient toxicity 

information (in some cases, no toxicity information) on other oviparous species, including 

reptiles and amphibians. 

2. Synthesize information regarding methods for collection of particulate components and 

develop a database of EF values. 

Particulate Se determines the uptake of Se into the base of the food web and serves as the Se 

source for primary consumers.  There is substantial variability in approaches to particulate 

matter definition, collection and analysis. 

3. Obtain more information on Se sensitivity of marine species. 

There is insufficient information on Se effects in marine organisms.  

4. Expand biodynamic modeling in freshwater systems. 

Collection of additional data regarding relationships among environmental compartments 

should lead to more reliable predictions of exposure and effects in freshwater systems.  This 

would include more generalizable relationships across systems.    

5. Develop additional quantitative surrogates for reproductive endpoints. 

Because it may be difficult or impractical to measure reproductive endpoints directly, 

alternative approaches would be valuable.  For example, if a confirmed, quantitative 

relationship between diet and a reproductive endpoint is established, data on diet can then be 

used to predict reproductive toxicity risk. 

6. Elucidate the mechanisms of Se toxicity. 

Although selenomethionine appears to be the form of Se that is most closely associated with 

adverse reproductive outcomes in wildlife, the precise mode of action for these toxic effects 

is poorly understood.   

7. Explore indirect effects of selenium exposure within ecological systems. 

An understanding of changes in ecosystem ecological structure due to Se exposure is needed, 

including system-wide effects mediated via loss of food resources, disruption of predator – 

prey relationships, and loss of predators. 

8. Identify interactive effects of selenium with other contaminants and stressors. 

Future studies on Se toxicity should consider the possible interactions between Se and 

common ecological variables (e.g., temperature, salinity, climate), important events in an 

animal’s life history (e.g. migration, metamorphosis), and other anthropogenic factors (e.g., 

eutrophication, habitat modification, interactions with other contaminants).  Although it is 

well known that Se interacts with other elements such as Hg, much remains to be known 

about the molecular mechanisms driving these interactions and their implications for toxicity. 
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