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1   Introduction 
 
It has been estimated that about 400 grams of protein are synthesized and 

degraded each day in the human body. Individual proteins are degraded at ex-
tremely varied rates, with half-lives ranging from several minutes to many 
hours. Intracellularly, this variation in half-life has been attributed to differ-
ences in the intrinsic stability of proteins and the recognition of non-native 
structures by highly selective and precisely regulated protein quality control 
systems. Molecular chaperones have been identified as key players in orches-
trating the control of protein folding, but almost all previous studies have 
been restricted to a focus on intracellular events. The average 70 kg human 
contains 15 liters of extracellular fluids, including five liters of blood. Alt-
hough the concentration of proteins is lower in extracellular than intracellular 
fluids (6% in plasma and 2% in interstitial fluid, 30% in cytosol), extracellu-
lar conditions are more oxidizing [1]. In addition, uniquely, extracellular flu-
ids are continuously subjected to shear stress (e.g. the pumping of fluids 
around the body) which is known to induce protein unfolding and aggregation 
[2]. The relatively harsh extracellular conditions suggest that mechanisms to 
sense and control the folding state of extracellular proteins are likely to be es-
sential for the maintenance of human (and other large animal) life. 

 
Uncontrolled protein unfolding or misfolding and the consequent accumula-

tion of protein aggregates are implicated in the pathology of many diseases 
collectively known as Protein Deposition Diseases (PDD). PDDs are typically 
late-onset [3], suggesting that the underlying cause of the disease may be dis-
ruption or overwhelming of protein folding quality control mechanisms that 
were once able to maintain existing proteins in their native conformation. Alt-
hough the reasons for the progressive impairment of fundamental physiologi-
cal processes in aging is not fully understood, it is likely that the combination 
of declining protein folding quality control and exposure to thermal, ionic, 
heavy metal or oxidative stress may be responsible for late-onset PDDs. All 
PDDs involve protein misfolding leading to the deposition in tissues of insolu-
ble protein aggregates; however, the type of aggregate formed varies between 
the individual diseases. In many PDDs including Alzheimer’s disease, type II 
diabetes, systemic amyloidosis and transmissible spongiform encephalitis, pro-
teins deposit as highly ordered, β-sheet-rich fibrillar aggregates known as amy-
loid. In other PDDs the nature of the protein deposits is fibrillar, but not amy-
loid – for example, Lewy bodies, which are found in Parkinson’s and 
Alzheimer's disease. In still other PDDs, amorphous (unstructured), non-
filamentous extracellular aggregates are formed. For example, such aggregates 
are formed by IgG light chain and/or IgG heavy chain in non-amyloidotic 
monoclonal IgG deposition disease (NAMIDD) [4]. In addition, drusen are 
amorphous extracellular deposits that accumulate in patients with age-related 
macular degeneration. In healthy eyes drusen are not found in the macula, 
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however they may exist in the retinal periphery and their size and number are 
considered a risk factor for developing age-related macular degeneration later 
in life [5].  

 
It is notable that many PDDs are associated with extracellular protein de-

posits. Thus the previous near-exclusive focus of studies on intracellular pro-
cesses to control protein folding may not provide the knowledge needed to 
treat these diseases. Intracellular chaperones (e.g. Hsp70 & Hsp90) may be re-
leased from necrotic [6] or apoptotic [7] cells, during viral cell lysis, secreted 
in exosomes [8, 9], or via other specific mechanisms [10-12]; they have been 
discovered in human plasma and associated with cell surfaces, in particular 
cancer cells. Numerous extracellular roles have been postulated for these 
chaperones, such as cancer cell invasiveness [13] and immune presentation 
[14-21]. These “moonlighting” functions for normally intracellular chaper-
ones may be very important. However, the low abundance of this class of 
chaperone in extracellular fluids makes it unlikely that they can play a major 
role in controlling the folding state of abundant extracellular proteins in body 
fluids.  

 
It has only recently become apparent that abundant extracellular counter-

parts to the intracellular molecular chaperones exist. Clusterin was the first 
abundant extracellular chaperone (EC) to be identified [22, 23] but the num-
ber of known ECs continues to grow and now includes at least 7 members. 
This Chapter outlines properties of each of the proteins that may function as 
mammalian ECs, and proposes a model for how they act as key elements in a 
system to monitor and control the folding state of extracellular proteins. The 
model presented will also propose how the ECs may play important comple-
mentary roles in the immune system. 

 
 
 
2   Abundant Extracellular Chaperones 
 

There are seven currently known abundant extracellular proteins likely to function 
as chaperones (outlined in table 1). The strength of the available evidence for this 
varies with each protein. For more detailed information see the corresponding sec-
tions below. 



 

 

Table 1: Overview of the currently known extracellular chaperones 
Chaperone Abundance  Chaperone  

function 
Disease association References 

Clusterin 35-105 µg/ml (blood plasma) 
1.2-3.6 µg/ml (CSF) 
2-15 mg/ml (seminal plasma) 

Holdase-type chaperone 
activity similar to the 
small heat shock pro-
teins 

* Associated with extracellular deposits tested including age related 
macular degeneration, Creutzfeldt-Jakob disease, atherosclerosis, 
Alzheimer’s disease 

* Upregulated in experimental models of stress 
* Genetic association with Alzheimer’s disease 

[22-54]  

α2-macroglobulin 1.5-2 mg/ml (blood plasma) 
1-3.6 µg/ml (CSF) 
 

Holdase-type chaperone 
activity similar to the 
small heat shock pro-
teins 

* Promotes phagocytosis of pathogen Trypanosoma cruzi 
* Associated with extracellular deposits in Alzheimer’s disease, dialy-

sis related amyloidosis and Creutzfeldt-Jakob disease 
* Able to stimulate a cytotoxic T lymphocyte response against chaper-

oned peptides 

[55-65] 

Haptoglobin 0.3-2 mg/ml (blood plasma) 
0.5-2 µg/ml (CSF) 
 

Holdase-type chaperone 
activity similar to the 
small heat shock pro-
teins 

* Upregulated during infection, neoplasia, trauma, and other inflam-
matory conditions 

* Co-deposits with amyloid in senile plaques, drusen with age-related 
macular degeneration and in protein deposits associated with chron-
ic glomerulonephritis 

[66-74] 

Apolipoprotein E 4-6.4 µg/ml (blood plasma) 
1.8-5.7 µg/ml (CSF) 

Stabilizes proteins in 
solution 

* Strong genetic association with Alzheimer’s disease 
* Co-localizes with Alzheimer’s and Creutzfeldt-Jakob plaques 

[75-81] 

Serum Amyloid P 
Component  
(SAP) 

40 µg/ml (blood plasma) 
8.5 ng/ml (CSF) 
 

ATP-independent re-
folding activity 

* Binds with high specificity to amyloid and is universally found in 
amyloid deposits 

* Elevated SAP levels in CSF of Alzheimer’s patients 

[82-90]  

Caseins ~ 80% of milk protein αS1- and β-casein have a 
holdase-type chaperone 
activity similar to the 
small heat shock pro-
teins 

* Associated with amyloid-like deposits in mammary tissue [26, 91-103] 

αEC-Fibrinogen  2-4.5 mg/ml (blood plasma) Stabilizes proteins in * Plasma levels are elevated under periods of stress [104-106] 
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solution 
 



 

 

2.1   Clusterin 
 
Clusterin (also known as apolipoprotein J, sulfated glycoprotein 2 and SP-40, 

40) was the first normally secreted protein identified as an abundant extracellular 
chaperone [22]. This heat-stable glycoprotein has an extremely broad biological 
distribution and exhibits high sequence homology (70-80%) across a wide range 
of mammalian species, suggesting that it performs a fundamentally important 
function in vivo [107]. Clusterin has been detected in all extracellular fluids that 
have been tested. In humans, clusterin is present in the range of 35-105 µg/ml in 
blood plasma [24], 1.2-3.6 µg/ml in cerebral spinal fluid (CSF) [25], and 2-15 
mg/ml in seminal plasma [25]. Determining the biological importance of clusterin 
has been complicated by the propensity of the protein to interact with a large 
number of structurally diverse molecules. It is likely that many of these interac-
tions result from a single underlying property of clusterin, which is relevant to its 
primary function. Regardless, many alternative biological functions for clusterin 
have been proposed including roles in lipid transport [108], sperm maturation 
[109], complement regulation [107], membrane recycling [110] and apoptosis 
[111].  

 
Clusterin is encoded by a single gene and the translated product is internally 

cleaved to produce two subunits, α and β, prior to secretion from the cell. Matrix-
assisted laser desorption ionization mass spectrometry has identified two primary 
forms of human plasma clusterin at about 58 kDa and 63.5 kDa, which are likely 
to be different glycoforms [112]. Approximately 17-27% of the mass of clusterin 
is comprised of branched, sialic acid-rich, N-linked carbohydrates [112]. This high 
carbohydrate content in addition to a high level of disorder and a tendency to form 
oligomers has impeded structural analysis of clusterin, however, sequence analysis 
has allowed for the prediction of several structural elements. These include three 
predicted amphipathic α-helices (residues 173–184, 234–250 and 424–441) [108] 
and two predicted coiled-coil helices (residues 40-99 and 318-350) [113]. The five 
predicted α-helical regions are thought to be significant in the chaperone activity 
of clusterin. It has been proposed that the α–helical regions form a molten glob-
ule-like binding pocket that is the site of interaction for a variety of ligands [114]. 

 
Many reports have suggested that clusterin may have intracellular importance, 

for example in DNA repair [115], transcription [116], microtubule organization 
[117], or apoptosis [115, 118, 119]. Various mechanisms have been proposed to 
explain the presence of clusterin in intracellular compartments. This includes the 
reuptake of secreted clusterin back into the cytosol [117], retrotranslation of 
clusterin from the golgi to the cytosol [120], and the generation of nuclear 
isoforms via alternative initiation of transcription to yield a 43 kDa isoform [121] 
or via alternative splicing to yield a 49 kDa isoform [122]. Given that none of the-
se latter studies sequenced the intracellular clusterin, it is unknown whether the 
putative “isoforms” are indeed the result of alternative transcription initiation or 
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splicing or whether they simply represent clusterin at different stages of matura-
tion (e.g., cleaved or uncleaved, at different stages of glycosylation). Unambigu-
ous structural identification of these intracellular isoforms of clusterin is required 
before their existence can be firmly accepted and their function(s) meaningfully 
assigned. 

 
2.1.1   In Vitro Chaperone Activity 
 
The hypothesis that clusterin may function as a molecular chaperone was first 

proposed over 10 years ago [22]. Since that time many studies have shown that 
clusterin has chaperone activity similar to that of the small heat-shock proteins 
(sHsps) [22, 23, 26-29, 33]. At substoichiomentric concentrations, clusterin inhib-
its the stress-induced amorphous aggregation of a large number of unrelated client 
proteins by binding, in an ATP-independent manner, to areas of exposed hydro-
phobicity on partially unfolded intermediates [22, 26-29, 31]. While clusterin 
alone has no refolding activity, it can preserve heat-stressed enzymes in a state 
competent for subsequent ATP-dependent refolding by Hsc70 [112]. The chaper-
one activity of clusterin involves the sequestration of client proteins into soluble 
high molecular weight (HMW) complexes; when generated in vitro, these com-
plexes have diameters of 50 - 100 nm and are ≥ 4 x 107 Da [31]. The maximum 
“loading” of clusterin appears to correspond to a mass ratio of 1:2 
(clusterin:client) regardless of the client protein [31]. Immunoaffinity depletion of 
clusterin renders proteins in human plasma more susceptible to aggregation and 
precipitation [27]. Fibrinogen, ceruloplasmin and albumin are major endogenous 
clients for clusterin when human plasma is subjected to physiologically relevant 
stress [30]. However, the method used to detect endogenous clients is biased to-
wards those proteins that are relatively less stable and more abundant; it is likely 
that clusterin acts globally to stabilize a very broad range of clients in vivo. 

 
The chaperone activity of clusterin is not limited to those proteins that form 

amorphous aggregates. Clusterin also inhibits the fibrillar aggregation of a large 
number of amyloid forming clients including amyloid β (Aβ) peptide [34, 35], 
PrP106–126 [36], apolipoprotein C-II [37], disease-associated variants of lyso-
zyme [33], α-synuclein, calcitonin, κ-casein, SH3 and CCβw [32]. While clusterin 
appears to prevent amyloid formation in a dose dependent manner, in some cases 
very low levels of clusterin (relative to client protein) significantly increased amy-
loid formation [32]. It was proposed that when present at very low concentrations, 
clusterin may stabilize prefibrillar oligomers that “seed” fibril growth and are be-
lieved to be primarily responsible for amyloid-associated cytotoxicity. Thus, the 
clusterin:client protein ratio is an important determinant of the effects of clusterin 
on amyloid formation and toxicity. It is unknown exactly how clusterin is able to 
interfere with amyloid formation although the existing evidence suggests that it in-
teracts predominantly with prefibrillar oligomeric species formed during the early 
stages of amyloid aggregation [32, 33]. These early aggregating species possess 
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surface-exposed hydrophobicity [123], thus the interaction of clusterin with amy-
loid-forming proteins may, as in the case of amorphously aggregating proteins, 
arise from hydrophobic interactions. 

 
A number of investigations have focused on identifying possible interactions 

between members of the LDL receptor superfamily and clusterin [124-131]. Cellu-
lar internalization of clusterin via the LDL receptor megalin was the first reported 
clusterin-LDL receptor superfamily interaction [124]. Subsequent reports de-
scribed the internalization of free clusterin and clusterin-Aβ peptide complexes by 
the same receptor [125, 126]. Recently, two other human members of the LDL re-
ceptor superfamily, ApoE receptor 2 and very low density lipoprotein receptor, 
were reported to bind and internalize free clusterin and leptin-clusterin complexes 
using transfected cell models [131]. Interactions of clusterin with chicken oocyte-
specific LDL receptors have also been described [128]. A recent study has sug-
gested that megalin and LRP are capable of mediating the clusterin-dependent 
clearance of cellular debris into non-professional phagocytes [129]. However, the 
previous report of Kounnas et al. (1995) indicated that megalin, but not LRP, 
binds clusterin. Additional unidentified mechanisms of clusterin-dependent inter-
nalization were also suggested by Bartl et al. (2001). The affinity of clusterin 
binding to megalin is increased by the association of clusterin with lipids [127]. It 
is currently unknown how binding interactions with other molecules, such as 
stressed chaperone client proteins, affect the binding affinity of clusterin for 
megalin or other members of the LDL receptor superfamily. However, it has been 
shown that clusterin has independent binding sites for megalin, stressed proteins 
and unstressed ligands [130]. 
 

2.1.2   Evidence for In Vivo Chaperone Action/Disease Involvement  
 
Clusterin is found associated with extracellular protein deposits in numerous 

diseases including in normal peripheral drusen and drusen in age-related macular 
degeneration patients [38], with membrane attack complex in renal immunoglobu-
lin deposits [39], in prion deposits in Creutzfeldt-Jakob disease [40, 41], with PEX 
material in pseudoexfoliation (PEX) syndrome [42], in atherosclerotic plaques 
[43] and in amyloid plaques or with soluble Aβ peptide in Alzheimer’s disease 
[44, 45]. Two genome wide studies have recently implicated certain single nucleo-
tide polymorphisms in the clusterin gene as risk factors for Alzheimer’s disease 
[53, 54]. The overexpression of clusterin has been reported in a diverse range of 
renal and neurodegenerative diseases in addition to cancers, atherosclerosis and 
diabetes [46]. Additionally, clusterin is upregulated in experimental models of 
pathological stress including oxidative stress [47], shear stress [48], proteotoxic 
stress (generated by inhibition of the proteasome) [49], heat stress [50], ionizing 
radiation [51] and exposure to heavy metals [52].  

 



8  

 

In clusterin knock-out mice, damage to testicular cells is increased after heat-
shock and the removal of damaged cells is impaired [132]. After myosin-induced 
auto-immune myocarditis, cell damage is also more severe in clusterin-deficient 
mice [133] and post-ischemic brain injury is more severe [134]. Together this data 
suggests that stress-induced increase in clusterin expression is a cytoprotective re-
sponse. In an Alzheimer’s disease model, compared to control mice, mice in 
which the clusterin and ApoE genes were knocked out showed early disease onset 
and a marked increase in Aβ peptide levels and amyloid formation. The research-
ers concluded that apoE and clusterin work synergistically to inhibit the deposition 
of fibrillar Aβ [135]. A more recent study has demonstrated that clusterin knock-
out mice develop progressive glomerulopathy which is characterized by the accu-
mulation of insoluble protein deposits in the kidneys [136]. This directly impli-
cates clusterin in the clearance of potentially pathological aggregating proteins, 
although the precise mechanism underlying this has yet to be described. 
 

2.2   α2-Macroglobulin (α2M) 
 
α2M is a large secreted glycoprotein, assembled from four identical 180 kDa 

subunits into a 720 kDa tetramer; disulphide linked dimers of the individual 180 
kDa subunits interact non-covalently to form the final tetrameric quaternary struc-
ture [137]. The secreted molecule is comprised of ~ 10% carbohydrate by mass. It 
is synthesized mainly in the liver, but is secreted from a range of different cell 
types (such as astrocytes) and can be found in human plasma and cerebrospinal 
fluid at 1500-2000 [56] and 1-3.6 µg/ml [57], respectively. It is best known for its 
ability to inhibit a broad spectrum of proteases, which it accomplishes using a 
unique trapping method. α2M contains a ‘bait region’ which undergoes limited 
proteolysis upon encountering a protease, resulting in a large conformational 
change and exposure of a thiol ester bond. The protease forms a covalent linkage 
with α2M by reacting with the intramolecular thiol ester bond, which leads to fur-
ther conformational changes exposing a receptor recognition site for low density 
lipoprotein receptor related protein (LRP). Overall, these structural changes pro-
duce a more compact molecule (known as “activated” or “fast” α2M) and inhibits 
the protease by physically trapping it within a steric “cage” [56]. By directly inter-
acting with the thiol ester bond, small nucleophiles such as methylamine can also 
activate α2M [138]. Although human α2M is best known for its protease inhibitor 
function, it has also been shown to bind to and promote clearance of other endog-
enous and exogenous molecules, consistent with a broader protective function. 
α2M is known to bind to cytokines and growth factors (without converting to acti-
vated α2M), including transforming growth factor-β (TGF-β), tumor necrosis fac-
tor-α (TNF-α), interleukin 1β (IL-1β), interleukin 8 (IL-8), platelet derived 
growth factor-BB (PDGF-BB), nerve growth factor-β (NGF-β), and vascular en-
dothelial growth factor (VEGF) (reviewed in refs [139, 140]). The affinity of α2M 
for most cytokines is higher in the activated state, and while in this state α2M can 
deliver them via receptor mediated endocytosis to lysosomes for degradation 
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[141]. In addition, α2M has been shown to bind to the pathogen Trypanosoma 
cruzi and promote its phagocytosis [142]. α2M has also been found to bind to en-
dogenous proteins found in proteinaceous deposits associated with disease. α2M is 
known to bind to the Aβ peptide associated with Alzheimer’s disease [58, 59], β2-
microglobulin which forms insoluble deposits in dialysis related amyloidosis [60], 
and prion protein associated with plaques in Creutzfeldt-Jakob disease [61].  

 
2.2.1   In Vitro Chaperone Activity 
 
α2M forms stable complexes with misfolded proteins to inhibit their stress-

induced aggregation and precipitation but is unable to independently promote their 
refolding [62]. In addition, depletion of α2M from whole human plasma renders 
proteins in this fluid more susceptible to aggregation and precipitation, even at 37 
°C [62]. The formation of complexes between α2M and misfolded proteins is 
thought to be, at least in part, due to hydrophobic interactions [62]. The binding of 
a misfolded substrate protein does not activate α2M and as a result the complex 
formed is not bound by LRP. However, while complexed with misfolded client 
proteins, α2M remains able to interact with proteases and subsequently adopt its 
activated conformation and then interact with LRP [62]. Although LRP is the only 
known receptor for α2M, it remains possible that non-activated α2M/misfolded 
client protein complexes are taken up via other cell surface receptors. As an ex-
ample, scavenger receptors have been shown to bind to methylamine activated 
forms of α2M [143]. In addition to inhibiting amorphous aggregation, α2M has 
been shown to inhibit amyloid fibril formation. This effect can be seen even at 
sub-stoichiometric levels of α2M (as low as a 1:100 molar ratio of α2M:substrate) 
[144, 145]. It is thought that α2M interacts with lowly populated oligomeric spe-
cies affecting the formation of stable nuclei from which amyloid formation pro-
ceeds [58, 145]. 
 

α2M–client protein complexes are thought to be removed from the extracellular 
space by receptor mediated endocytosis. α2M-Aβ complexes are internalized via 
LRP expressed on U87 cells and are subsequently degraded [58]. In addition, 
complexes formed from α2M and heat-stressed citrate synthase (or glutathione-S-
transferase, GST) that have been incubated with trypsin also bind to LRP on the 
surface of JEG-3 cells [62]. This uptake of complexes may protect cells from the 
toxicity of aggregating species. However, under certain conditions, α2M was 
shown to promote the neurotoxicity of Aβ [63]. In stark contrast, using primary rat 
mixed neuronal cultures, others have demonstrated that α2M can protect cells 
from Aβ toxicity [146]. The different effects observed may be explained by differ-
ences between systems in the extent of receptor mediated removal of complexes 
from the extracellular environment. This is illustrated by the demonstration that in 
the presence of α2M (but not otherwise), SH-SY5Y cells expressing the α2M re-
ceptor (LRP) are more resistant to Aβ toxicity than cells that do not [63]. The pro-
tective effect of α2M could be inhibited by RAP (a pan-specific inhibitor of LRP 
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ligand binding). Furthermore, α2M promoted Aβ toxicity against LRP-negative 
LAN5 cells but had the opposite effect with LRP-expressing LAN5 transfectants 
[63]. Importantly, this function has been demonstrated in vivo: the normally rapid 
removal of radiolabelled Aβ from mouse brain is significantly inhibited by the 
LDL family inhibitor RAP and antibodies against LRP-1 and α2M. 

 
2.2.2   Evidence for In Vivo Chaperone Action/Disease Involvement 
 
α2M has been found co-localized with Aβ and prion plaques in Alzheimer’s 

disease and CJD respectively [61, 63]. In addition, levels of circulating complexes 
formed between α2M and β2m in plasma of haemodialysis patients are correlated 
with the severity of dialysis related amyloidosis [60]. In addition, α2M has been 
found in complex with prion protein in human plasma [64]. Lastly, the ability of 
α2M to promote the removal of Aβ from the extracellular space has been shown in 
vivo; the normally rapid removal of radiolabelled Aβ from mouse brain is signifi-
cantly inhibited by the LDL family inhibitor RAP and antibodies against LRP-1 
and α2M [147]. 
 

2.2.3   Potential Application of α2M in Anti-Cancer Treatments 
 
α2M shares a common receptor (α2M receptor/ LRP1) with a variety of intra-

cellular chaperones [148-150] which have been implicated in the re-presentation 
of chaperoned peptides to stimulate an immune response [8, 14, 16, 18-21, 148, 
150-154]. This has led to the ability of α2M to perform a similar immunological 
function being examined. It was shown that α2M-peptide complexes are able to 
induce the re-presentation of the chaperoned peptides on MHC class I molecules 
in vitro and subsequently prime a cytotoxic T lymphocyte response in α2M-
peptide immunized mice [55]. As both intra- and extracellular chaperones have 
now both been shown to elicit such a response, it has been proposed that α2M 
samples the extracellular space and Hsps the intracellular milieu. In this model, 
LRP1 facilitates the sampling of the entire antigenic milieu of an organism [55]. 
Unlike Hsps which are ubiquitously expressed, many tumors do not express α2M. 
Thus, in order to explore the use of α2M-peptide complexes as an anti-cancer 
treatment, exogenous α2M has been added to tumor cell lysates to generate the 
complexes [65]. α2M-peptide complexes made in vitro induced anti-tumor re-
sponses and protection against tumor challenge similar to that of GP96 [155]. 
Thus, α2M and perhaps the other extracellular chaperones all offer potential vehi-
cles for peptide-specific control of the immune response and immune modulatory 
therapies. 
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2.3   Haptoglobin  
Haptoglobin is a secreted glycoprotein with many known biological functions, 

however, it is best known as a hemoglobin binding protein. The non-covalent in-
teraction between haptoglobin and hemoglobin is particularly strong with a report-
ed Kd ~ 10-15 M [66]. This interaction prevents the loss of hemoglobin and iron via 
glomerular filtration by redirecting the haptoglobin-hemoglobin complex to the 
liver [156]. The interaction of haptoglobin with hemoglobin also reduces the 
amount of free hemoglobin and iron available to catalyse oxidation reactions 
[157], and has an inhibitory effect on nitric oxide [158] and prostaglandin synthe-
sis [159]. Haptoglobin also has a bacteriostatic effect on organisms unable to ob-
tain heme from the hemoglobin-haptoglobin complex [160] and appears to play an 
important role in angiogenesis [161]. Finally, haptoglobin has been implicated in 
the regulation of lymphocyte transformation [162]. Haptoglobin is found in most 
body fluids. Its plasma concentration is between 0.3-2 mg/ml [67] and it is found 
in CSF between 0.5-2 µg/ml [66]. Sequence analysis has identified haptoglobin as 
a chymotrypsinogen-like serine protease homolog, although it has a distinct bio-
logical function [163]. Humans express one of three different haptoglobin pheno-
types (Hp 1-1, Hp 1-2 or Hp 2-2) depending on the presence of two principal al-
leles (Hp1 and Hp2) coding for the α and β chains which associate covalently via 
disulphide linkage. The α1, α2 and β chain peptides are 9.2 kDa, 15.9 kDa and 
27.2 kDa, respectively [68]. Similar to clusterin, haptoglobin is heavily glycosyl-
ated.  
 

 

2.3.1   In Vitro Chaperone activity 
 
Human haptoglobin specifically inhibits the precipitation of a wide variety of 

proteins induced by heat or oxidative stress [68, 69]. All three human haptoglobin 
phenotypes exert this chaperone action, although Hp1-1 appears to be the most ef-
ficient. Like clusterin, haptoglobin forms stable, soluble high molecular weight 
complexes with partially unfolded clients in an ATP-independent manner, but has 
no independent refolding activity. The possibility that haptoglobin holds 
misfolded proteins in a state competent for refolding by other chaperones is cur-
rently untested. Immunoaffinity depletion of haptoglobin from human serum sig-
nificantly increases the amount of protein that precipitated in response to stresses 
[164]. At substoichiometric levels, haptoglobin has been shown to dose-
dependently inhibit amyloid formation by Aβ, ccβw, calcitonin, and the lysozyme 
variant I59T [164].  

 
Haptoglobin is a known ligand of the CD11b/CD18 receptor on natural killer 

cells [145]. With much lower affinity, haptoglobin also binds to CD4 and CD8 re-
ceptors on T lymphocytes [165]. Neutrophils and monocytes also possess binding 
sites for haptoglobin and are responsible for haptoglobin uptake in peripheral 
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blood [165]. Additionally, the acute-phase macrophage protein CD163 has been 
identified as a scavenger receptor for hemoglobin-haptoglobin complexes [166]. 
This high affinity receptor ligand interaction is Ca2+-dependent and mediates en-
docytosis of the hemoglobin-haptoglobin complex [70]. It is possible that 
haptoglobin may facilitate the clearance of misfolded proteins via a similar mech-
anism to the clearance of hemoglobin-haptoglobin complexes, although this is yet 
to be investigated. 

 
2.3.2   Evidence for In Vivo Chaperone Action/Disease Involvement 
 
Haptoglobin is upregulated during a variety of conditions including infection, 

neoplasia, pregnancy, trauma, acute myocardial infarction and other inflammatory 
conditions [70]. Its possible chaperone role in vivo is supported by co-deposition 
with amyloid in senile plaques [71], with drusen in age-related macular degenera-
tion [72], and in protein deposits resulting from chronic glomerulonephritis [73]. 
Surprisingly, haptoglobin gene knockout does not impair the clearance of free 
plasma hemoglobin, however haptoglobin-null mice display reduced postnatal vi-
ability and greater oxidative damage after induced hemolysis [74].  

 
2.4   ApoE 
 
Apolipoprotein E (ApoE), is a 35 kDa secreted glycoprotein, synthesized pri-

marily by the liver, but can be found expressed by astrocytes, microglia and 
oligodendrocytes in the brain. It exists in three isoforms, E2, E3, and E4, which 
differ only by single amino acid variations. The prevalence of the alleles coding 
for these isoforms, E2, E3 and E4, is approximately 7–8%, 75–80% and 14–15%, 
respectively [167, 168]. ApoE is an amphipathic protein that is known for its abil-
ity to mediate transport and clearance of cholesterol, triglycerides and other lipids 
[169]. It mediates lipid transport through binding to the low density lipoprotein 
(LDL) receptor. ApoE is best known for its association with Alzheimer’s disease; 
APOE ε4/ε4 homozygotic individuals have a significantly greater risk of develop-
ing Alzheimer’s disease [170]. 

 
2.4.1   In Vitro Chaperone activity 
 
ApoE has been shown to have the ability to bind to aggregation prone polypep-

tides, such as tau and Aβ [77, 78]. Interestingly, binding of ApoE to Aβ is iso-
form-dependent with the binding of ApoE4 being of lowest affinity (E2>E3>E4) 
[78, 171]. The stoichiometry of the interaction between Aβ and ApoE has been es-
timated at 5 Aβ peptide molecules per ApoE molecule [172]. This interaction is 
likely to be the driving force behind the ability of ApoE to affect the aggregation 
of Aβ. It has been shown to both promote and inhibit Aβ aggregation depending 
on the conditions and specific variant of Aβ peptide used. The formation of com-
plexes between ApoE and Aβ1-40 has been shown to inhibit the formation of amy-
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loid, at a 100:1 molar ratio of Aβ:ApoE [173]. The complexes made were added to 
monomeric Aβ and were unable to act as “seeds” for amyloid formation. Howev-
er, the complexes formed still reacted with thioflavin T [173]. In addition, it has 
been shown that ApoE can prolong the lag phase of Aβ aggregation without af-
fecting the amount of fibrillar material finally formed [174]. Similarly, ApoE 
lengthens the lag phase of amyloid formation from Aβ29-40 and Aβ29-42 by forming 
complexes with the respective peptides [172]. Interestingly, the E4 isotype had no 
effect on the lag phase. In contrast, there are many reports that suggest that ApoE 
can promote the formation of Aβ fibrils. ApoE was shown to enhance the for-
mation of thioflavin T positive material from Aβ1-40 [175], and promoted fibril 
formation by Aβ1-42 (as judged by thioflavin T and transmission electron micros-
copy) [176].  

 
2.4.2   Evidence for In Vivo Chaperone Action/Disease Involvement  
 
The major focus on ApoE work has been its role in chaperoning Aβ due to its 

strong genetic association with Alzheimer’s disease [79]. In humans ApoE has 
been found co-localized with Alzheimer’s and CJD plaques [80]. To further com-
plicate understanding of the role of ApoE in amyloid formation (see above), 
mouse studies have been similarly conflicting. In initial studies, both Aβ immuno-
reactivity and amyloid formation were reduced in ApoE knockout mice [177, 
178]. In contrast, expression of human ApoE in transgenic mice suppressed Aβ 
deposition [179]. Regardless of its effect on amyloid formation, just as observed 
for other extracellular chaperones such as clusterin and α2M, complexes formed 
between ApoE and Aβ are efficiently taken up by receptor mediated endocytosis 
and promote subsequent degradation of Aβ. It has been shown that Aβ-ApoE 
complexes bind to the cell surface receptor megalin while free Aβ does not [180]. 
In addition, LRP1 binds to Aβ-ApoE complexes and internalizes them for subse-
quent degradation in lysosomes (or transport into plasma) [147]. Furthermore, it 
has been suggested that ApoE facilitates internalization and degradation of Aβ by 
astrocytes [81]. As Aβ is known to activate glial cells, its incorporation into com-
plexes and its ApoE-dependant receptor mediated uptake may play a role in modu-
lating the immune response. Consistent with this idea, it has been shown that the 
formation of ApoE- Aβ complexes inhibits the activation of astroctyes by Aβ 
[181]. 

 
2.5   Serum Amyloid P Component  
 
Serum Amyloid P Component (SAP) is a member of the highly conserved 

pentraxin family and consists of five identical 25 kDa subunits arranged in a ring 
[182]. As for other pentraxins, SAP displays calcium-dependent ligand binding 
and tertiary structure similar to legume lectins [183]. It is estimated that over 8% 
of the mass of the molecule is N-linked oligosaccharide [183]. It has been pro-
posed that SAP circulates as a decamer with two pentameric rings noncovalently 
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bound [183, 184]. However, other reports claim that SAP exists as a single 
pentamer in the body and that the decameric form is obtained only upon purifica-
tion [185, 186]. Human SAP shares approximately 51% amino acid homology 
with C-reactive protein, a classical human acute phase protein. In contrast, SAP 
does not behave as an acute phase protein in humans [82]; it is generally present in 
human plasma at around 40 µg/ml [83] and in CSF at around 8.5 ng/ml [84]. Alt-
hough to date no clear biological function has been ascribed to SAP, it is known to 
interact with a diverse range of molecules in vitro. For example, SAP binds to 
glycosaminoglycans [187], DNA and chromatin [188-190], complement compo-
nents [191, 192], fibronectin [193], C-reactive protein [194], aggregated IgG 
[195], phosphatidylethanolamine [196] and endotoxin [183, 197]. Of particular in-
terest in the current context, SAP binds highly specifically to amyloid and is uni-
versally found in amyloid deposits [85-88, 191]. 

 
2.5.1   In Vitro Chaperone Activity 
 
There is currently little evidence for the existence of efficient refolding chaper-

ones in the extracellular milieu, however, it has been reported that SAP has ATP-
independent refolding activity [89]. When present at a 10-fold molar excess, SAP 
was able to recover 25% of the initial enzyme activity of denatured lactate dehy-
drogenase. Whether this activity would be enhanced by the presence of ATP or 
“helper” chaperones is currently unknown. Further studies are needed before the 
potential physiological significance of this refolding activity becomes clear. SAP 
binds to synthetic Aβ at physiological concentrations of Ca2+ [198] and binds to 
all types of amyloid fibrils tested in vitro [199]. SAP has a protease-resistant β-
pleated sheet structure that in the presence of Ca2+ is resistant to proteolysis [200]. 
Consequently, SAP binding to amyloid fibrils is thought to inhibit their proteolytic 
digestion.  

 
2.5.2   Evidence for In Vivo Chaperone Action/Disease Involvement  
 
SAP constitutes up to 15% of the mass of amyloid deposits in vivo, which is 

remarkable considering it is only present in plasma at trace concentrations. Also, 
strongly supporting a role for SAP in amyloid pathogenesis is the frequency with 
which it is found localized in amyloid deposits in vivo [85-88, 90]. SAP knockout 
mice are viable and fertile with no obvious abnormalities, however, they display 
delayed amyloid deposition in models of systemic amyloidosis [89]. These results 
support that SAP plays a role in amyloid pathogenesis and that inhibition of SAP 
binding to amyloid is a potential therapeutic target. Given that SAP does not ap-
pear to be expressed in the brain, localization of SAP with cerebral amyloid de-
posits suggest that either specific active transport mechanisms exist to transport it 
from one side of the blood-brain barrier to the other or that damage to the blood-
brain barrier is sufficient to allow the protein to leak into the brain during disease. 
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Regardless of the mechanism by which it gets there, the CSF concentration of 
SAP is higher in patients with Alzheimer’s disease [85].  

 
2.6   Caseins 
 
Casein is the main constituent of milk (~ 80% of protein in bovine milk) and is 

made up of a heterogeneous mixture of phosphoproteins that includes four unre-
lated gene products, αS1-, αS2-, β- and κ-casein. In their monomeric forms, the ca-
seins themselves are small, ranging in molecular mass between 19 and 25 kDa. 
However, the casein proteins exhibit a strong tendency to associate with each oth-
er, through hydrophobic and ionic interactions, which, in the presence of calcium 
and other ions, leads to the formation of casein micelles [91]. The micelles range 
in mass between 103 and 3 x 106 kDa and represent the primary nutritional source 
of calcium (in the form of calcium phosphate) to the neonate [91]. The caseins 
have been classified as intrinsically disordered proteins, as they are extremely 
flexible, essentially unfolded and have relatively little secondary or tertiary struc-
ture under physiological conditions [201]. Their open, dynamic and malleable 
conformations suggest that they exist in a molten globule-like state, with extensive 
regions of solvent-exposed and clustered hydrophobicity [202]. As a result, it is 
unlikely that detailed X-ray crystal structures of full-length casein protein will be 
achieved; however, three-dimensional energy-minimized molecular models are 
available [203, 204]. Two of the casein proteins, αS1- and β-casein, have been 
found to have molecular chaperone-like activity, similar to the small heat shock 
proteins (sHsps) [26, 92]. The open, flexible nature of αS1-casein and β-casein re-
sults from the high percentage of proline residues in their amino acid sequence 
(9% of the amino acid sequence of αS1-casein and 18% of β-casein) and lack of 
disulfide bonds. Both αS1-casein and β-casein also possess a high degree of overall 
hydrophobicity, with well separated hydrophilic and hydrophobic domains. Such 
properties, which they share with other molecular chaperones such as the sHsps 
and clusterin [26], likely accounts for their ability to bind to a wide-range of de-
stabilized, partially unfolded target proteins to prevent their aggregation [92]. 

 
2.6.1   In Vitro Chaperone Activity 
 
To date, studies on the chaperone-like activity of casein proteins have been per-

formed with bovine whole casein (comprising all four casein proteins) or with αS-
casein (comprising both αS1- and αS2-casein) or β-casein. Thus, αS-casein and β-
casein have been shown to inhibit the amorphous aggregation of a range of unre-
lated target proteins induced by heating [93-97], reduction [93, 95, 96] and UV-
light [93]. They do so by forming high molecular weight complexes with the tar-
get protein, and stabilizing them in order to prevent their aggregation and potential 
precipitation. They have no intrinsic re-folding ability [95, 96] and thus their 
mechanism of action is akin to the sHsps and clusterin [26]. The chaperone-like 
activity of αS-casein and β-casein against amorphously aggregating target proteins 
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is phosphorylation-dependent, dephosphorylation decreasing their chaperone effi-
cacy [94, 205]. The caseins are heavily phosphorylated (typically 8 phosphate res-
idues per mole for αS1-casein and 5 for β-casein) which, apart from its role in cal-
cium-binding and stabilization of the casein micelle, appears to play a significant 
role (via their negative charge) in maintaining the solubility of the complexes 
formed between the caseins and target proteins [205]. It has recently been sug-
gested that the chaperone-like activity of these caseins may be exploited in order 
to control protein aggregation during food production [92]. αS-casein and β-casein 
also appear to possess a generic ability to prevent protein aggregation associated 
with fibril formation. For example, whole and β-casein inhibit heat-induced fibril 
formation by ovalbumin [206], αS-casein and β-casein inhibit κ-casein fibril for-
mation [205, 207], and αS1-casein inhibits αS2-fibril formation [208].  

 
2.6.2   Evidence for In Vivo Chaperone Action/Disease Involvement  
 
Caseins are uniquely synthesized in the mammary gland and immediately 

associate to form casein micelles, which are secreted into the alveolar lumen 
[209]. There is no direct evidence that a failure in the chaperone action of αS-
casein and β-casein is involved in disease, however, amyloid-like deposits 
(known as corpora amylacea) have been identified in mammary tissue from a 
variety of species [98-100], and bundles of fibrils have been reported in the 
cytoplasm of cells that surround these calcified deposits [101]. The proteins 
present in these deposits and fibrils include the caseins [102, 103]. When iso-
lated from the other caseins, αS2- and κ-casein readily form fibrils when incu-
bated under conditions of physiological pH and temperature (i.e. pH 7.0-7.4, 
37 °C) [207, 208, 210, 211] which suggests that these proteins may form fi-
brils in vivo. However, fibril formation by αS2- and κ-casein is inhibited by 
physiological concentrations of αS1- and β-casein in vitro [207, 208] and thus, 
the tendency of caseins to associate together acts as a protective mechanism 
to prevent this form of aggregation. Indeed, the fact that amyloid deposits in 
mammary tissue are not more prevalent is most likely attributable to the 
chaperone-like ability of αS1- and β-casein, which act to prevent the release of 
the amyloidogenic αS2- and κ-casein precursors by binding them into casein 
micelles. 

 
2.7   Fibrinogen 
 
Fibrinogen is synthesized by the liver and circulates in human plasma at a con-

centration of 2-4.5 mg/ml [212]. It is the 340 kDa glycoprotein precursor to fibrin, 
which forms clots in the wound response. Fibrinogen is an “acute phase protein” 
and its levels in plasma are elevated in response to a variety of stresses including 
stroke, atherosclerotic diseases, age and acute myocardial infarction [212]. Fibrin-
ogen molecules are comprised of two sets of disulfide-linked Aα-, Bβ-, and γ-
chains. Fibrin is formed after cleavage of fibrinopeptide A (FPA) from fibrinogen 
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Aα-chains, which initiates fibrin polymerization. In addition to its well known 
role in providing a scaffold for clots, fibrinogen also has other biological functions 
involving a range of binding sites, some of which are only exposed as a conse-
quence of fibrin formation. These other functions include recruiting platelets into 
clots, down-regulation of circulating levels of thrombin, and plasminogen activa-
tion [212]. 

 
2.7.1   In Vitro Chaperone Activity 
 
Two publications only have appeared so far describing the chaperone activity 

of fibrinogen. The first of these presented results suggesting that human plasma 
fibrinogen (i) specifically, and independently of ATP, inhibited the thermally in-
duced aggregation of citrate synthase and firefly luciferase, (ii) held the heat-
stressed forms of these proteins in a state competent for refolding by a rabbit re-
ticulocyte lysate, (iii) inhibited amyloid formation by yeast prion protein Sup35, 
and (iv) inhibited heat-induced aggregation of proteins in undiluted mouse plasma 
[105]. These studies were described as having been done using fibrinogen sourced 
from a commercial supplier (which would be expected to be overwhelmingly 
comprised of the usual 340 kDa form). However, in a subsequent study by the 
same group, similar chaperone properties were attributed specifically to the αEC 
C-terminal extension of fibrinogen, present only in a much less abundant 420 kDa 
isoform of the protein (fibrinogen-420) [106]. Fibrinogen-420 is normally present 
in human plasma at 20-150 mg/ml (i.e. making up about 0.4-7.5% of the circulat-
ing fibrinogen pool). Our own experiments failed to show any chaperone activity 
for the 340 kDa form of fibrinogen (A. Wyatt, unpublished). The reason(s) for the 
apparent discrepancy between these two publications is unclear. However, the bal-
ance of evidence suggests that the abundant 340 kDa form of fibrinogen is not a 
chaperone, but that the αEC moiety in fibrinogen-420 is a chaperone-active spe-
cies. 

 
2.7.2   Evidence for In Vivo Chaperone Action/Disease Involvement  
 
The level of αEC can be regulated by proteases (such as matrix 

metalloproteases and plasmin) which can rapidly release it from fibrinogen-420. It 
has been suggested that fibrinogen-420 acts as a delivery vehicle for αEC [106]. 
Evidence for an in vivo chaperone role for fibrinogen-420/αEC is currently limited 
to the demonstration that (i) proteins in plasma of fibrinogen knock-out mice ag-
gregate to a greater extent when incubated for 48 h at 43 °C than those in the 
plasma of wild-type mice [106], and (ii) exogenously added αEC formed com-
plexes with a variety of proteins in human plasma heated for 30 min at 50 °C 
[106]. Future work will hopefully further define the in vivo role(s) of the fibrino-
gen-420/αEC chaperone activity and its potential involvement in diseases. 
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2.9   In Vivo Functions of Extracellular Chaperones 
 
It is clear from the growing number of abundant ECs identified that they are 

likely to play very important roles in the maintenance of normal physiological 
functions. The precise details of these roles are currently under investigation but 
are likely to include (i) selective binding to exposed regions of hydrophobicity on 
extracellular proteins induced to misfold by (for example) various physical or 
chemical stresses, leading to (ii) inhibition of their toxicity towards cells and (iii) 
stabilization of their structure so that they are prevented from aggregating to form 
insoluble deposits. Soluble complexes formed between ECs and misfolded pro-
teins are probably internalized via receptor-mediated endocytosis and subsequent-
ly degraded by (for example) lysosomal proteolysis. However, it is also feasible 
that within antigen-presenting cells ECs can direct bound protein antigens to other 
intracellular proteolytic systems such as the proteasome, and that peptide frag-
ments of the degraded chaperone client proteins are later presented at the cell sur-
face in association with Class I and/or II major histocompatibility antigens. In this 
way, ECs may play multiple critical roles in vivo, protecting the body from the 
dangers of inappropriate aggregation of extracellular proteins but also playing a 
pivotal role in the processing of extracellular protein antigens necessary for elicit-
ing protective immune responses (Figure 1).  

 
 
3   Conclusions 
 
It is barely over a decade since the first abundant mammalian extracellular 

chaperone (clusterin) was identified. Since that time there have been a series of 
discoveries of other extracellular chaperones such that we now know there are at 
least 7 present at (in some cases) substantial concentrations in human blood. Col-
lectively, by mass, these chaperones account for possibly in excess of 7% of all 
blood proteins. The caseins are also abundant in another important extracellular 
fluid, milk. It will be unsurprising if further extracellular chaperones are identified 
in coming years. The shear abundance of these chaperones in body fluids strongly 
suggests that they perform vital biological functions. These functions may include 
roles in stabilizing misfolded proteins aggregating via either the amorphous or 
amyloid-forming pathways, mediating the clearance of these aggregation-prone 
(and often toxic) proteins from the body, and modulating the response of the im-
mune system to extracellular antigens. The processes governing the development 
of the many serious human diseases linked to inappropriate aggregation of extra-
cellular proteins are poorly understood. Clearly, advances in knowledge of extra-
cellular chaperones will impact upon our ability to prevent and treat these diseas-
es, and may allow us to better harness the power of the immune system to fight 
conditions such as cancers. Furthermore, extracellular chaperones may exert pow-
erful but currently poorly characterized effects on the delivery and efficacy of sys-
temically administered hydrophobic drugs. All of these considerations point to the 
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importance of future work to identify the in vivo roles of the growing family of ex-
tracellular chaperones. 
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Figure legend 
 
Figure 1 Theoretical model for the involvement of ECs in extracellular 

proteostasis and the immune response. Under normal physiological conditions 
misfolded extracellular proteins are bound by (a) scavenger-like receptors directly, 
or (b) circulating ECs, keeping them soluble and facilitating their subsequent 
transport to cell surface scavenger-like receptors. EC-client protein complexes 
may internalized and subsequently degraded by lysosomal proteolysis. Alterna-
tively, on antigen presenting cells (c), EC (or IC)-client protein complexes may be 
(i) bound and internalized by a variety of receptors, (ii) subsequently processed 
intracellularly by yet to be established mechanisms, and then (iii) re-presented as 
peptides on the cell surface associated with major histocompatibility (MHC) anti-
gen class I or II molecules to trigger the release of cytokines and an immune re-
sponse.  
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