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Abstract The need for new and improved pharmacotherapies in medicine, high late-stage compound attrition
in drug discovery, and upcoming patent expirations is driving interest by the pharmaceutical industry in
pluripotent stem cells for in vitro modeling and early-stage testing of toxicity and target engagement.
In particular, human embryonic and induced pluripotent stem cells represent potentially cost-effective
and accessible sources of organ-specific cells that foretell in vivo human tissue response to new chemical
entities. Here we consider the potential of these cells as novel tools for drug development, including
toxicity screening and metabolic profiling. We hold that despite various challenges to translating proof-of-
concept screening platforms to industrial use, the promise of research is considerable, and close to being
realized.

Increasingly stringent regulatory requirements render the keted drug,''*' with most candidates failing during phase II
process of drug development from initial discovery of new clinical trials, suggesting poor translation from animal efficacy
chemical entities (NCEs) through to US FDA approval for studies to human patients.'^! Preparing for clinical trials represents
clinical use an incredibly labor-intensive, risky, and expensive a massive financial outlay, which makes deferred rejection due
endeavor. Estimates put the cost of discovering and developing to unanticipated toxicity or poor efficacy intractable,
a drug at over SUSI billion.f'^l Despite increased funding for Revised approaches to drug development incorporate
early-phase research and development (R&D), the number of numerous strategies to accelerate the process, reduce costs,
drugs going to market is in decline, with late-stage compound and, importantly, flag risks early in the discovery pipeline,
attrition being a major problem.'^' Less than 10% of NCEs Traditionally, this is done through careful selection of candi-
progress through the development process to become a mar- dates (limiting development to high-probability targets such as
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G-protein coupled receptors [GPCRs]), by using disease-
relevant cell-based model systems for proof-of-concept (POC)
studies, adjunct to appropriate animal models for in vivo effi-
cacy and toxicity studies.''*' Early-stage, cell-based screening
represents an especially cost-effective way to filter out problem-
atic compounds, with particular interest in models that
closely resemble human organs and cells targeted by drug
compounds.

Mammalian cell-based assays have become an important
tool in the drug discovery process. When combined with enzymatic
assays, they can provide valuable POC data by demonstrating
target engagement and desired phenotypic responses. Im-
portantly, cultured cells must retain or regain the phenotype of
the normal in vivo cell or tissue in response to compounds. For
example, the use of culture systems to study drug metabolism or
insulin secretion currently require primary hepatocytes or
pancreatic ß cells, respectively, which mimic endogenous cel-
lular processes following exposure to drug candidates.

While primary cells are usually considered the 'gold stan-
dard', there are many drawbacks to their use for compound
screening or assay models for POC studies. Some cells such as
adipocytes or keratinocytes are readily accessible from humans,
while others such as hepatocytes or neurons are less easily
attainable.!^'''! In most cases, primary cells are terminally dif-
ferentiated and non-proliferative. This limits the expansion or
scale-up of the cells in vitro, such that the cells must be harvested
in large quantities, likely from many donors, which is often
impracticable or unfeasible. Other problems arise from access-
ing tissue on demand, such as ensuring the quality of the
preparation, as well as heterogeneity of cell behavior between
donors. Finally, primary cells are invariably difficult to culture,
and the cells can rapidly lose their native phenotype due to
culture adaptation.'^! However, despite these shortcomings,
primary cells are preferred to transformed or immortalized
cells, which often lack critical characteristics of the tissue from
which they were derived.

Given the limitations of current models, the pharmaceutical
industry would undoubtedly benefit from new sources of cells
for efficient and germane early-phase compound screening.
Although novel, stem cells are predicted to fill the present gap
as a readily available supply of relevant and different cell types,
suitable for high-throughput application. Already, adult stem
cells are being isolated and cultured for various pharmaceutical
applications.'^' However, adult stem cells have not been iden-
tified in every tissue type, and in many cases are difficult to
isolate and culture, often only accessible from post-mortem
tissue. Alternatively, pluripotent human stem cells including
embryonic stem (ES) cells and more recently discovered in-

duced pluripotent stem (iPS) cells are less restricted, with theo-
retically unlimited potential to expand and form somatic cell
types required by industry.''"-"' This article summarizes the
potential of human ES and iPS cells as novel tools in drug
discovery (see figure 1). Special consideration is given to toxi-
city testing as a major cause of late-phase attrition and it is
proposed that, despite potential challenges, both cell types
represent excellent alternatives to current in vitro screening
paradigms, as relatively cost-effective and accessible sources of
organ-specific cells that predict in vivo human tissue response to
compound testing.

1. Pluripotent Human Stem Cells

Pluripotent stem cells have the potential to differentiate into
any of the three germ layers: endoderm (e.g. pancreas, gastro-
intestinal tract, lungs), mesoderm (e.g. muscle, blood, bone) or
ectoderm (e.g. epidermis, nervous system). They include nat-
ural ES cells and engineered iPS cells, which are by-and-large
similar since both express typical stem cell genes and pro-
teins,''^' share similar chromatin methylation patterns,''^' and
form embryoid bodies in vitro and teratomas in

Human ES cells
Human ¡PS cells

FIbroblast isolation
and expansion

Isolated
Inner cell mass

Piuripotent
cells

Genetic reprogramnning

i

Teratoma formation Directed differentiation

Fig 1. Schematic of human embryonic stem (ES) and Induced piuripotent
stem (iPS) ceil production for in vitro modeling and drug discovery. Once
derived, stem ceils have uniimited potentiai to expand and differentiate to aii
somatic ceii types, typicaily characterized by in vivo teratoma formation
(comprising endoderm, mesoderm, and endoderm derivatives).

© 2010 Adis Data Information BV. Aii rights reserved. Biadajgs2010:24(2)



Pluripotent Human Stem Cells in Drug Discovery 101

Since their initial isolationt'̂ 1 and ensuing prolongation as
stable and expandable cell lines,!'̂ 1 human ES cells have gen-
erated much hope as the first widely accessible pluripotent stem
cells. Hundreds of lines have been produced worldwide from
supernumerary blastocysts by established methods of isolation,
culture, and preservation. Theoretically capable of differ-
entiating into more than 220 somatic cell types,t'°' the past
decade has also seen the development of innumerable protocols
to induce human ES cells into clinically relevant lineages
including pancreatic ß cells,!'^' cardiomyocytes,''^' and neu-
ronsJ^"! By applying optimal and standardized approaches
to differentiation, efficient and cost-effective methods of stem
cell expansion, derivative cell enrichment, and quality con-
trolled (e.g. good manufacturing practice [GMP]-compliant)
stem cell production, the use of ES cells for drug discovery
will likely progress from being theoretical, and at best POC,
to mainstream tools ofthe pharmaceutical industry. The ability
to model disease states'̂ '̂  by genetically modifying stem
cells and their derivatives will undoubtedly broaden their
application.

The recent discovery of somatic cell reprogramming by viral
delivery of four genes {0CT4, S0X2, MYC, and KLF4) to
derive pluripotent cellŝ ^̂ ' provides an attractive alternative to
ES cell-based modeling, not least because of fewer ethical di-
lemmas for stem-cell production and the relative ease of sourc-
ing cells, including disease-specific cells. Since initial
breakthrough studies with mouse embryonic and human
fibroblasts,''-^'-^^' major goals for the field include the elimina-
tion of viral vectors and potentially mutagenic molecules from
reprogramming, with concomitant improvement of induction
efficiency.p2'24-29] Similar to human ES cells,[30.3il as optimal
methods of iPS cell derivation are identified, increased atten-
tion is being given to understanding line-to-line variability and
the full extent of ES and iPS cell likeness. While human ES and
iPS cells share similar gene expression profiles, there appears
to be a small number of genes consistently expressed differen-
tially in iPS cells, indicating subtle epigenetic differences related
to the reprogramming processJ^ l̂ Finally, in addition to
the basic biology of iPS cells, there is increasing focus
on the production and differentiation of disease-specific cell
lines for in vitro modeling and longer-term autologous cell
therapy.[2133,34]

2. Drug Discovery and In Vitro Modeling

Pharmaceutical companies require well regimented screen-
ing systems to identify biologically active compounds with

minimal toxicity. Typically, compounds are selected based on
interaction and engagement of the chosen target (producing
either the desired inhibition or activation).'̂ ^l The 'hits' are then
filtered through a series of in vitro and in vivo assays to dem-
onstrate efficacy and safety profiles before being declared as
'lead' and then 'candidate' compounds. Therefore, there is a
need for cell-based model systems that accurately emulate the
in vivo response, particularly for early-stage compound selec-
tion. While freshly isolated primary cells are often superior in
performance compared with immortalized or transformed cell
lines, they can be difficult to isolate and have limited pro-
liferative potential and unstable phenotypes, affecting batch
variability.[^ '̂ Nonetheless, since hepatocytes have long been
implicated in the development of metabolic diseases, transformed
hepatocytes such as HepG2 cells or freshly isolated non-
proliferative hepatocytes have been popular for in vitro NCE
screening (e.g. drug candidates for diabetes mellitus and obesity).'̂ ^
This is despite a tendency to dedifferentiate when culture
adapted, which limits their use to a few days after isolation and
causes batch variability.t^^l Moreover, it remains to be shown
how closely in vitro hepatocyte response matches the in vivo
response with respect to, for example, cytochrome P450 (CYP)
enzyme induction and drug interactionJ^^' Similarly, other
primary cell types such as human pancreatic ß cells would be
useful for drug discovery if they could be effectively supplied,
isolated and stably maintained in vitro. Unfortunately, current
methods are at best derisory, with cells tending to quickly lose
functionality; thus, researchers often opt for cadaveric organ
tissue isolations that are in limited supply and often comprise
undefined mixed cell populations that are less relevant to tissue-
specific POC studies.'̂ '̂ In comparison, stem cells clearly retain
replicative potential, and have demonstrated differentiation
capabilities. Accordingly, the use of pluripotent cells and their
derivatives are attractive alternatives to more conventional
primary cells.

Despite the recognized potential of stem cells, the pharma-
ceutical industry has been slow to adopt them as tools for
screening. This is likely due in part to the dearth of research
relating to stem cell modeling, with few published examples
of these cells as practical models in R&D and drug discovery.
In addition, traditional methods for working with stem cells
(in particular methods for human ES cell culture and differ-
entiation) are onerous and complicated. However, as simpler,
scaleable, standardized, and more efficient protocols are de-
vised, a few leading pharmaceutical and biotechnology com-
panies such as GE Healthcare (in partnership with Geron
Corporation), Pfizer, and Novartis have begun to 'test the
waters' of human ES cells for translational application.

© 2010 Adis Data Information BV. Aii rights reserved. Biodrugs 2010; 24 (2)
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Recently, there have been several examples of high-
throughput screening for small molecules influencing ES cell
differentiation, mostly with respect to regenerative medicine
applications. Pancreatic development and improved ß-cell
induction were recently addressed using murine ES cells
expressing Discosoma spp. red fluorescent protein (dsRED)
under the control of the SOX 17 promoter (an endoderm-
expressed gene). The cells were used to screen around 4000
molecules resulting in 27 primary 'hits' subsequently narrowed
down to two compounds that reproducibly induced endoderm
formation in their ES cell model.i'*°l A similar approach has
been adopted to optimize murine ES cell neurogenesis proto-
cols.t'*'! Using the dual luciferase reporter clones to monitor
Tal a-tubulin expression, the authors screened 975 compounds.
Thirty-two hits were further analyzed to identify phenazopyr-
idone, which was further shown to promote neuronal differ-
entiation in human ES cells. A recent POC study using human
ES cells has shown that the cells can be seeded into 384-well
plates in single cell suspension and used for high-throughput
screening using immunocytochemistry and high-content ima-
ging.I'*̂ ] In this case, the authors monitored pluripotency and
lineage markers, which emerged from the human ES cell culture
following compound treatment. Though preliminary and often
optimized in murine pluripotent cells, these studies indicate that
the use of pluripotent cells is feasible, and can produce hits. As
improved culture conditions arise, we can look forward to
further screens for regenerative medicine or using enriched
human ES cell-derived populations for functional assays.
Combined with an increasing confidence and interest in the
potential of iPS cells, we predict a rapid expansion of pluri-
potent stem cell-based modeling for research and applied drug
development. This includes modeling with cells provided by
healthy donors, congenitally ill donors, or transgenic cells fol-
lowing in vitro targeted disease-related gene disruption.

3. Drug Toxicity Assessment

Currently, one of the main contributors to late-stage attri-
tion of compounds in the pharmaceutical industry is toxicity. In
many cases, the appearance of unanticipated contraindications
will not be apparent until clinical trials, following considerable
cost and time in the development pipeline. Late discovery arises
from the use of inappropriate in vitro and/or in vivo testing
regimes that are poor predictors of clinical response. In prin-
ciple, early in vitro toxicity testing using potentially limitless
human ES or iPS cell derivatives represents a practical and
cost-effective alternative to traditional approaches. Given

the pharmaceutical industry's penchant for primary cardio-
myocytes in toxicity screening, stem cell-derived cardiomyocytes
are appealing.

3.1 Cardiotoxicity

Cardiomyocyte models are used in toxicity testing for several
reasons. In addition to the high burden of cardiac infarct as a
leading cause of death, adverse cardiac affects of drug candi-
dates are a leading cause of late-stage attrition. The recent
withdrawal of rofecoxib (Vioxx®) from the market due to
cardiotoxicity highlights the immense cost in both legal fees and
lost revenues caused by late-stage candidate failure.t'* '̂ Un-
fortunately, cardiotoxicity culminating in death is usually de-
tected after large numbers of patients receive a drug during
or after clinical trials and reinforces the importance of early
detection, t'̂ l

The complexity of cardiomyocyte function with a multi-
plicity of channel proteins presents several off-target mechan-
isms for compounds to interact with. The end result can be
ventricular tachycardia, also described as torsades de pointes
('twisting of points'; TdP) based on the altered shape of the
QRS complex of an ECG recording.!"* !̂ Importantly, TdP can
quickly accelerate into ventricular defibrillation followed by
cardiac failure and death.''* '̂ Since it is rare, it is unlikely to be
detected during traditional phase III trials. The risk of TdP
arising is all the more alarming for drugs targeting non-life-
threatening maladies. Current predictive tests include complex,
variable, and low-throughput in vivo animal studies of elon-
gated QT intervals in an ECG trace.t'* '̂

Other serious although non-lethal problems relating to car-
diotoxicity should be identifiable early in the drug discovery
process. Again, methods of testing range from relatively simple
high-throughput in vitro primary cell screens to more complex
and expensive ex vivo (e.g. organ culture-based) and in vivo
studies.̂ '*''' In humans, one of the main channel proteins asso-
ciated with ionopathy is the hERG protein (human Ether-a-
Go-Go).t''̂ l This potassium ion channel is associated with
elongated QT interval. A common initial assay is to measure
hERG binding by target compounds, or to use more complex
patch clamping to measure hERG ion channel activity.!"* !̂
Though routinely used by pharmaceutical companies (and
endorsed by regulatory agencies)'''^' these methodologies are
limited by being dependent on the isolated hERG channel that
is often over-expressed in HEK293 cells, which are not re-
flective of beating cardiomyocytes and their full complement
of ion channels and surface proteins. More complex ex vivo
cardiotoxicity screens such as the Langendorff assay (which

© 2010 Adis Data Information BV. Aii rights reserved. Biodrugs 2010; 24 (2)



Pluripotent Human Stem Cells in Drug Discovery 103

employs excised rodent hearts) and in vivo animal studies are
physiologically more relevant, although they are low through-
put, potentially non-predictive of human myocardium, and
expensive.''* '̂ Importantly, while no amount of in vitro testing
can match in vivo human trials, the inadequacies of existing pre-
clinical assays make human stem-cell cardiomyocyte deriva-
tives attractive alternatives for pre-clinical testing.

Early cardiomocyte induction protocols involved co-culture
of human ES cells with a fibroblast feeder layer that expressed
endoderm-like signals.[̂ °l Protocols were progressively im-
proved by eliminating feeders,̂ '̂! and serum-reduction for
improved differentiation.̂ -̂̂ ^ Finally, several groups have
developed enrichment strategies by generating transgenic cell
lines for cardiomyocyte selection through antibacterial re-
sistancet'̂ 1 or the use of small molecules to improve differ-
entiation efficiency.t̂ l̂

Recent progress in differentiating human ES cells to func-
tional cardiomyocytes has enabled sufficient levels of enrich-
ment for electrophysiological studies using microelectrode
array systems.''̂ »^ '̂ This has provided the impetus for
several companies such as Reprocell (QTempo) and Roche
(xCELLigence system) to further optimize and validate this
type of assay for compound screening. Indeed, the company
Cellular Dynamics International, who have a commercial in-
terest in human ES cell- and iPS cell-derived cardiomyocytes
for cardiotoxicity screening,t̂ '*! have partnered with Roche to
assess well characterized kinase inhibitors using the iPS cell-
cardiotoxicity model. POC studies are encouraging, with
compounds known to interfere with cardiomyocyte ion chan-
nels showing measurable effects on human ES cell-derived
cardiomyocyte function.̂ ^ '̂

While ES cells are becoming widely accepted as nascent
sources of cardiomyocytes for early detection of toxicity pro-
blems, the potential of iPS cells is only now beginning to
emerge. However, the advances of their embryonic counter-
parts will undoubtedly facilitate their acceptance and applica-
tion. Recent reports provide POC of human iPS differentiation
into cardiomyocytes'̂ ^l and potential for cardiotoxicity as-
says,[̂ l̂ where cardiomyocytes show expected morphology
and responded to ß-stimulators, ß-adrenoceptor antagonists
(ß-blockers), and ion channel blockers.

3.2 Embryotoxicity

The primary characteristics of ES cells are their ability to
self-renew and pluripotency. These attributes make ES cells
useful to model early development and embryotoxicity. The
embryonic stem cell developmental toxicity test (EST), an

in vitro screening assay used to investigate the embryotoxic
potential of chemicals by determining their ability to inhibit sur-
vival and/or differentiation of ES cells, has become a popular
tool for environmental toxicologists. For example, a recent
study of nanoparticles demonstrated embryotoxicity using a
mouse EST.t̂ '̂ However, despite the apparent success of
animal-based ESTs, like other non-human cellular models, they
are not necessarily predictive of human biology. Importantly,
human ESTs have recently been used to determine toxicity
concentrations that produce 50% inhibition (IC50) for fluoro-
uracil and retinoic acid.'̂ '̂ Moreover, the sensitivity of ES-
derived cardiomyocytes to bile acids has been investigated as a
model of obstetric cholestasis, an important cause of maternal
delivery complications and fetal death.t^"! This study showed
that immature ES cell-derived cardiomyocytes of either human
or mouse origin are more sensitive to the presence of tauro-
cholate, one of the principal constituents of maternal bile acids,
compared with mature cultured cardiomyocytes. The sensitiv-
ity presented as reduced and irregular contraction rate, de-
pressed amplitude, and disorganization of contractile networks.

As human ES cell differentiation protocols become more re-
fined, the use of embryotoxicity tests for drug screening will
become more common by enabling extensive modeling of em-
bryonic and fetal development using different precursor cell and
tissue types. The extent to which iPS cells can similarly be used will
depend on how 'embryonic-like' they really are. Time will tell!

4. Drug Metabolism Assessment

It is important to anticipate the metabolic profile of a given
compound, since drugs are transformed into new chemical
species with therapeutic and/or toxic effects. The simplest ap-
proach involves membrane fractions (microsomes) from hu-
man liver preparations. Microsomes are stable, can be stored
for an extended time, and can be prepared in large quantities.
They do, however, exhibit a limited expression of drug meta-
bolizing enzymes and related CYP enzymes.t̂ ^ Cultured pri-
mary human hepatocytes provide the closest model of human
liver, exhibiting typical hepatic functions and drug-metaboliz-
ing enzymes. Ideally, the latter should include stable expression
of CYPs (including CYP1A2, CYP2A6, CYP2B6, CYP2Cs,
CYP2D6, CYP2E1, CYP3A4, and CYP3A5), which are the
primary mediators of phase I metabolism for the initial
breakdown of compounds into metabolically active byproducts
or other non-functional metabolites. Not surprisingly, tradi-
tional hepatocyte models are limited by being difficult to pre-
pare, have limited scaleability, and experience batch-to-batch

© 2010 Adis Data Information BV. Aii rigtits reserved. Biodrugs 2010: 24 (2)
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variability due, in part, to variable cytochrome expression.'^''
In view of the limitations of current methods, human ES and
iPS cell-derived hepatocytes would likely bolster the use of
cellular and other in vitro models for metabolic risk assessment.

Early studies of teratomas and spontaneously differentiating
cells showed that human ES cells are capable of becoming cells
expressing hepatocyte markers.'^^"^' More refined differentia-
tion protocols have been based on hepatocye development
in situ and murine ES differentiation. However, despite hepato-
cyte conditioned medium and acidic fibroblast growth factor
(FGFl) improving the efficacy of differentiation, only -6% of
cells were albumin expressing.'̂ ^l Protocols have more recently
improved, with the use of activin A and Wnt3A increasing in-
duction to 90% albumin-positive hepatocyte-like cells.'̂ '̂ Im-
portantly, these cells expressed a large complement of other
hepatocyte-specific markers including alpha-fetoprotein
(AFP), hepatocyte nuclear factor 4-a (HNF4A), tyrosine
aminotransferase (TAT), tryptophan oxygenase (TO), apolipo-
protein E (APOE), and several CYPs. Also, POC for
metabolism modeling was demonstrated by comparing
CYP1A2 activity of human ES cell-derived hepatocytes to
isolated native human hepatocytes. ES cell-derived hepatocytes
performed admirably, achieving 4-24% activity (depending on
the clone tested) of the primary cells.'̂ '̂ This reinforced pre-
vious work, which showed that enriched human ES cell-derived
hepatocytes expressed a panoply of cytochrome genes and
CYPl A2 activity (around 25% activity compared with primary
human hepatocytes).'^''' When transplanted into severe com-
bined immunodeficient (SCID) mice, the authors demonstrated
engraftment and release of human liver-specific proteins into
the serum even after 75 days. Collectively, these studies show
the potential of pluripotent stem cell-derived hepatocytes for
metabolic profiling.

5. Disease Modeling

Clearly, there are many obstacles to the clinical use of pluri-
potent stem cells. These include demonstrable alternatives to
viral vector-based methods of iPS cell derivation, and platforms
for large-scale stem cell culture and differentiation. A more
near-term application is disease modeling.

Disease modeling with ES cells is possible by targeted gene
disruption and cell-line isolation from congenitally defective
blastocysts identified by preimplantation genetic diagnosis
(PGD). While gene targeting by, for example, RNA inter-
ference has been reported,'̂ ^" '̂'! poor transfection and cloning
efficiencies limit efficacy.''"'''^' Recent efforts to improve

homologous recombination show promise,'^''^^' although there
remains an ongoing concern for the clonal selection of karyo-
typic abnormalities.'̂ '*i Genetic manipulation of ES cell deri-
vatives may be a better alternative to undifferentiated ES cells,
with two recent reports indicating lentiviral-based transduction
of self-renewing human neural-lineage restricted progenitor
cells.'^''"'''^' PGD is used to detect genetic defects before im-
plantation of in vitro fertilization (IVF) embryos. Once identi-
fied, ES cell lines can be derived from defective embryos for
disease modeling. Examples of PGD-derived cell lines include
Huntington disease'̂ '̂̂ l̂ and fragile X syndrome'̂ '̂

The accessibility of disease-specific iPS cell lines makes them
leading candidates for disease modeling and drug discovery.'*^]
While their ability to recapitulate cellular mechanisms of dis-
ease states remains to be determined, numerous lines have been
derived. Examples include trisomy 21, Huntington disease,
amyotrophic lateral sclerosis. Gaucher disease, Duchenne
muscular dystrophy, and type 1 diabetes, among others,'̂ '̂̂ '*'*''̂ '̂
with POC for drug screening applications provided using spinal
muscular atrophy (SMA)'̂ '̂ and familial dysautonomia'^"'
cell lines.

SMA cells are characterized by loss of function of the SMNl
gene (encoding survival of motor neuron 1, telomeric) and are
capable of robust expansion and neuronal differentiation, but
exhibit a marked motor neuron degeneration, which mirrors
the in vivo phenotype of SMA patients. To determine if the
'diseased' iPS cells respond to compounds, the authors studied
the response to valproic acid, a compound that increases SMNl
protein levels.'̂ '̂ In both SMA fibroblasts and SMA-derived
iPS cells, valproic acid resulted in increased nuclear SMNl
aggregates.'̂ ^l Based on this result, it is possible to envisage a
high-content imaging approach to screen for compounds that
could restore motor neuron function in patients with SMA.

Familial dysautonomia is a disease characterized by sensory
and autonomie neuron degeneration. The mechanism of disease
progression is not clearly understood but is thought to be
associated with a point mutation in IKBKAP, resulting in a tissue-
specific splice defect.'̂ l̂ iPS cell-based modeling has shown
defects in IKBKAP splicing and neurogenesis that can be resolved
by treatment with candidate compounds such as kinetin.'^'''

Given the potential of pluripotent cell lines for research and
translational application, their use should entail careful
and standardized culture and cell banking, complimented by a
baseline level of characterization to assure their capacity for
self-renewal, pluripotentiality, and minimal sample-to-sample
and batch-to-batch variation. Such measures will maximize
their usefulness as a valuable resource for understanding the
cause and pathology of disease and drug discovery.

© 2010 Adis Data Information BV. Aii rights reserved. Biodrugs 2010: 24 C2)
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6. Scale-Up and Good Manufacturing
Practice Compliance

A major requirement for drug discovery is large, homo-
geneous populations of stem cells and their derivatives for
early-phase high-throughput compound screening. Ideally, the
number of cell batches should be minimized and the size
of individual batches maximized. While traditional culture
methods are inadequate, '̂̂ ! innovations in human ES and iPS
cell culture and expansion offer practicable alternatives in-
cluding feeder-free and 3-dimensional platforms for large-scale
cell production.t̂ '̂̂ - '̂ While removal of feeder cells has posed
less of a challenge (using, for example, basic FGF [FGF2]
fibroblast-conditioned media and various growth substrates),P^"'̂ l
advancing to single-cell culture from clumped-based methods
has been more difficult, though not insurmountable. Many
groups have employed trypsin or other enzymatic approaches
to stem-cell expansiont'^"^'' despite concerns for karyotypic
stability of the cells.t'""' More recently, several groups have
shown that Rho kinase (ROCK) inhibitors facilitate long-term,
single-cell culture of human ES cells.'""^ This has paved the way
for improved cell expansion using cell factories or stirred sus-
pension cultures on microcarriers.̂ ^^^ Whether or not a similar
approach can be applied to iPS cell scale-up remains to be
shown.

Improved methods of ES and iPS cell culture are com-
plemented by improved quality of cell-line derivation. Until
recently, all human ES cell lines were derived and maintained
under laboratory-grade conditions, without standard quality
control including validation of pathogen status, risks of genetic
and phenotypic instability, traceability, and cross-contamination.
Quality control strategies are essential for high-quality
stem cell-line production necessary for stem cell research and
translational applications such as drug development. Recent
examples of best practice include the derivation of cell lines
under GMP conditions for clinical compliance.t'°^' The option
to use such lines for drug discovery is set to expand, with pro-
grams supported by the UK Medical Research Council and a
project between the Waisman Clinical Biomanufacturing
Facility and WiCell Research Institute to produce GMP human
ES cell lines. Such lines will be attractive for both drug dis-
covery and cell-based therapeutics.

not without its challenges. As biologicals, they tend to be un-
stable in culture, causing variability from passage to passage,
batch to batch, and line to line.t '̂l For example, cells that are
derived and/or cultured using the same methods inevitably ex-
hibit phenotype instability and differences in differentiability.
This seems irreconcilable with the rigorous statistical uni-
formity tests applied to assay development for drug discovery.
To be used successfully as screening tools, the cells must behave
consistently from assay to assay in order to pass typical phar-
maceutical industry assay validation criteria.

Other challenges are less specific to human ES and iPS cells
but rather common to cell-based assayology in general. These
include devising strategies for single-cell adaptation of stem

, cells for automated handling and high-throughput plating and
screening, as well as managing the 'edge effect' of cultured cells,
evaporation and gas exchange.̂ '"-']

8. Conclusions and Future Perspectives

Pluripotent human stem cells offer new and compelling ways
to discover and develop a new generation of medicines. Benefits
arise from a potentially limitless cell supply, the opportunity for
large-scale cell banking for ease of access and quality control,
relevance to in vivo human tissue response, and early applica-
tion in the drug discovery pipeline. Moreover, efficient differ-
entiation to functional cell types such as hepatocytes and
cardiomyocytes will ensure a reliable supply of cells for meta-
bolism and toxicity testing of drug candidates. Collectively,
these features are expected to decrease the risk of late-stage
attrition of NCEs, reduce R&D costs, and increase the like-
lihood and rate oibonafide drug discovery - primary objectives
for the pharmaceutical industry. While there are significant
challenges to advancing current POC platforms, these will be
addressed by improved and standardized methods of growing
and screening cells. Importantly, investment by the pharma-
ceutical industry into human pluripotent stem cell R&D will
undoubtedly assist to overcome the remaining hurdles to full-
scale industrial application and accelerate the drug develop-
ment process.

7. Chiallenges

Despite the potential of pluripotent human stem cells, their
acceptance by the regulatory authorities and wholesale adop-
tion by the pharmaceutical industry for drug development is
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