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stamens and petals produce heat independently, and that the source of heating in these tissues is most 
likely the alternative oxidase (AOX). The temperatures of the receptacle, petals and stamens were 
significantly higher than non-thermogenic leaf tissue. After removal from the pedicel, the receptacle 
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(2.8 ± 4.2°C), with the stamens intermediate. High AOX protein levels and flux through the AOX pathway 
(in all tissues) during the thermogenic period are consistent with AOX being the mechanism used for 
thermogenesis. Lipids and carbohydrates were investigated as possible substrates for thermogenesis. 
There was little change in total lipids during floral development; however, soluble carbohydrate levels 
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Chapter 4. Distribution of thermogenic activity in floral tissues of 

Nelumbo nucifera 

 

This chapter is in preparation for Functional Plant Biology 

 

Grant, N.M., Miller, R.E, Robinson, S.A & Watling, J.R. Distribution of thermogenic 

activity in floral tissues of Nelumbo nucifera.  

 

ABSTRACT  

Thermogenesis in Nelumbo nucifera has been known to scientists for many years, 

however the extent of heating by different floral parts remains unclear. We present 

evidence that the receptacle, stamens and petals produce heat independently and that the 

source of heating in these tissues is most likely the alternative oxidase (AOX). The 

temperatures of the receptacle, petals and stamens were significantly higher than non-

thermogenic leaf tissue. After removal from the pedicel, the receptacle retained the most 

heat (8.1 ± 1.9°C above non- thermogenic tissue temperature) and the petals the least 

(2.8 ± 4.2°C), with the stamens intermediate. High AOX protein levels and flux through 

the AOX pathway (in all tissues) during the thermogenic period are consistent with 

AOX being the mechanism used for thermogenesis. Lipids and carbohydrates were 

investigated as possible substrates for thermogenesis. There was little change in total 

lipids during floral development, however soluble carbohydrate levels decreased by 

60% with the onset of thermogenesis. These sugars, may fuel thermogenesis in the 

stamens. The localisation of AOX protein in the various floral parts and possible 

evolutionary significance are discussed. 
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INTRODUCTION 

Thermogenesis, or self-heating, in plants has been known to scientists for more than 200 

years. Heating occurs across a diverse group of plants with examples found amongst 

water plants (Nelumbonaceae; Miyake, 1898), cycads (Tang, 1987), parasitic plants 

(Patino et al., 2000), magnolias (Dieringer et al., 1999), and aroids (Araceae), the latter 

accounting for the largest proportion of thermogenic species. Heating generally occurs 

in reproductive structures such as the fertile male florets in Philodendron bipinnatifidum 

(syn. P. selloum; Chapter 5) and P. melinonii (Seymour and Gibernau, 2008) and the 

ovule-containing receptacle in Nelumbo nucifera (Seymour and Schultze-Motel, 1996; 

Grant et al., 2008; Chapter 2; Grant et al., 2009; Chapter 3; Appendix 1). However, 

heating in non-reproductive parts has also been reported including the appendix of the 

spadix in Dracunculus vulgaris (Seymour and Schultze-Motel, 1999) and sterile male 

florets of P. bipinnatifidum (Nagy et al., 1972). Heating may have evolved to assist in 

attraction of insect pollinators either by the volatilisation of scent compounds (Meeuse 

and Raskin, 1988) or as a heat reward (Ervik and Barfod, 1999). For species such as the 

skunk cabbage (Symplocarpus foetidus and S. renifolius) which flowers in early spring, 

heating is thought to prevent low temperature damage during pollen maturation 

(Knutson, 1974; Onda et al., 2008; Seymour et al., 2009a). In addition to heating, some 

thermogenic plants can also regulate the temperature of their floral parts, maintaining a 

constant temperature despite changing ambient temperatures. This thermoregulation has 

been reported in P. bipinnatifidum (Nagy et al., 1972), S. foetidus (Knutson, 1974) and 

N. nucifera (Seymour and Schultze-Motel, 1996). This temperature regulation must 

occur at the cellular level, as plants do not contain the complex regulatory mechanisms 

of endothermic animals. 

 

There are two known means by which plants can produce heat; the alternative oxidase 

and uncoupling proteins (Watling et al., 2006; Onda et al., 2008). Both mechanisms 

utilise respiratory energy by uncoupling electron transport from ATP production. The 

alternative oxidase (AOX) is a cyanide resistant terminal oxidase located on the matrix 

side of the inner mitochondrial membrane. The AOX protein accepts electrons from 

ubiquinol and reduces oxygen to water, however AOX is non-proton motive and 

potential energy from electron transport is released as heat (Moore and Siedow, 1991). 

The AOX protein is present in all plants and AOX genes have recently been discovered 
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in all kingdoms except the Archaebacteria (McDonald and Vanlerberghe, 2006; 

McDonald, 2008). Plant uncoupling proteins (pUCPs) belong to the mitochondrial anion 

carrier family of proteins and are also located in the inner mitochondrial membrane 

(Vercesi et al., 1995). They partially uncouple respiration from ATP synthesis by 

dissipating the electrochemical H+ gradient (Jezek et al., 1996). AOX and pUCP are 

widespread in plant tissues of both thermogenic and non-thermogenic species.  

 

Which pathway is responsible for heat generation seems to vary with species. For 

example, in P. bipinnatifidum (Chapter 5) and S. renifolius (Ito-Inaba et al., 2008a; 

Onda et al., 2008) both AOX and pUCP proteins were expressed in thermogenic tissue 

and thus might operate together to produce heat. In S. renifolius, substantial linoleic acid 

(LA) inducible uncoupling is thought to be primarily mediated by pUCPs (Onda et al., 

2008). In addition, although LA is generally assumed to inhibit AOX activity (Sluse et 

al., 1998), pyruvate activated AOX activity was only partially inhibited by LA in S. 

renifolius (Onda et al., 2008), indicating that activities of both AOX and pUCP can 

remain high simultaneously. However, presence of the protein does not directly 

correspond to heating by AOX or pUCPs, and it is necessary to measure activity in vivo 

to demonstrate such a role. Stable isotope methodology, which makes use of differential 

fractionation of O isotopes by the terminal oxidases of the electron transport chain 

(AOX and COX), allows in vivo measurements of the involvement of the alternative 

pathway (Robinson et al., 1992; Ribas-Carbo et al., 1995; Robinson et al., 1995). In N. 

nucifera receptacles, AOX protein levels were high during the thermogenic period, 

whilst pUCPs were not detected and AOX flux increased with heat production whilst 

COX pathway flux remained stable (Watling et al., 2006; Grant et al., 2008; Chapter 2). 

The alternative oxidase thus appears to be solely responsible for uncoupled respiration 

and heating in N. nucifera receptacles. Measurements of AOX flux in P. bipinnatifidum 

similarly suggest that the bulk of the flux is through the AOX despite the presence of 

pUCP protein in these tissues (see Chapter 5). In S. renifolius, both AOX and pUCP are 

thought to play a role in thermogenesis (Onda et al., 2008) as AOX in this species does 

not appear to be as sensitive to LA as in non-thermogenic species (Sluse et al., 1998), 

however which pathway(s) are operational in vivo has not been tested.  

 

Thermogenic plants can use carbohydrate and/or lipids as respiratory substrates for 

thermogenesis. For example, in thermogenic clubs of Arum maculatum (ap Rees et al., 
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1977), and receptacles of N. nucifera (Grant et al., 2008; Chapter 2), both of which use 

AOX to generate heat, starch content declines significantly by the end of the 

thermogenic period. Based on respiratory quotients, S. foetidus also uses carbohydrates 

(Seymour and Blaylock, 1999). In contrast, the spadix of P. bipinnatifidum switches 

from carbohydrate to lipid metabolism with the start of thermogenesis (Walker et al., 

1983; Seymour et al., 1984), and lipid content decreases significantly by the end of the 

thermogenic period (Chapter 5). There is some suggestion in the literature that substrate 

type determines whether AOX or pUCPs are used for thermogenesis, as both can be 

present in thermogenic tissues. For example, AOX , but not pUCP, gene expression 

increased in thermogenic tissue of D. vulgaris which uses carbohydrates for heating (Ito 

and Seymour, 2005). In contrast, pUCP, but not AOX, gene expression increased in P. 

bipinnatifidum (Ito and Seymour, 2005), where lipids are the respiratory substrate 

(Walker et al., 1983). However, measurements of protein content in thermogenic tissues 

of P. bipinnatifidum suggest that AOX protein increases rather than pUCP (Chapter 5), 

indicating that substrate alone may not determine whether AOX or pUCPs are used.  

 

Heating generally occurs in floral tissues and until recently, it was thought the flowers 

of thermogenic plants possessed some unifying characteristics (Seymour and Schultze-

Motel, 1997). Flowers of thermogenic species are usually large as small flowers with 

high surface area:volume ratios are unable to retain heat efficiently (Seymour and 

Schultze-Motel, 1997). Thermogenic flowers are also usually protogynous; the female 

parts of the flower are receptive before the male parts. However, the discovery of 

thermogenesis in the stalk of the  parasitic plant Rizanthes lowii (Rafflesiaceae; Patino 

et al., 2000) shows that thermogenesis may occur in other plant organs. 

 

 The pattern and location of heating is varied and species specific (see Table 1.1 page 

2). Heating episodes often correspond with reproductive maturity of the stigma and 

pollen and occur in these specific floral parts at different times. Dracunculus vulgaris 

displays a triphasic heating pattern, the floral chamber heating on the first night, 

appendix heating the following day and a second floral chamber heating episode on the 

second night (Seymour and Schultze-Motel, 1999). In other species heating is less stage 

specific, as in S. foetidus where thermogenesis can occur in all stages of flowering 

(Seymour and Blaylock, 1999). In addition, the extent of heating can be tissue and floral 

stage specific. For example, female stage flowers of Magnolia tamaulipana heat almost 
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twice as much as male stage flowers (1.0-9.3 °C and 0.2-5.0 °C above ambient 

respectively; Dieringer et al., 1999) whilst male florets of P. bipinnatifidum can reach 

more than 15°C above ambient compared with the female florets which do not heat at 

all (Chapter 5). Heating in these plants clearly has a specific purpose and the location 

and duration of the heating episodes reflects this. When heating is a protecting 

mechanism against low temperatures, it is less stage/tissue specific and of long duration, 

as in S. foetidus. However, if heating aids in the volatilisation of scent compounds to 

attract insect pollinators, it needs to be executed at specific times of day as is shown 

with the appendix heating episode in D. vulgaris.  

 

Heating in thermogenic plants is often reported on a whole flower basis so the specific 

localisation of the thermogenic tissue remains unclear. In S. renifolius and S. foetidus 

the thermogenic spadix is small (2.5 -4.0 g) with floret mass even lower (Seymour and 

Blaylock, 1999; Onda et al., 2008). This small size makes distinguishing between 

adjacent thermogenic and non-thermogenic tissues difficult. As both pUCP and AOX 

have been found in the petals and pistil of S. renifolius, it has been suggested that 

heating occurs in both tissues (Onda et al., 2008). In P. bipinnatifidum the sterile male 

florets have been the focus of most studies (Nagy et al., 1972; Seymour, 1999), however 

recently precise thermoregulation has also been reported in the fertile male florets of 

this genus (Seymour and Gibernau, 2008; Chapter 5).  

 

The sacred lotus (Nelumbo nucifera Gaertn.) is an aquatic eudicot which can regulate the 

temperature of its floral chamber between 30-36°C against changing ambient 

temperatures (Seymour and Schultze-Motel, 1996). Although thermogenicity in the 

sacred lotus receptacle has been known for more than 100 years (Miyake, 1898) there is 

still uncertainty regarding heating in the surrounding stamens and petals. Heating has 

been suggested to occur in both the receptacle (Vogel and Hadacek, 2004) and stamens 

exclusively (Skubatz and Haider, 2004) and in all floral parts (receptacle, stamens and 

petals; Seymour and Schultze-Motel, 1998). The present study had four objectives. 

Firstly, to clarify if the sacred lotus stamens and petals contribute to floral heating. 

Secondly, to determine if heating was localised to particular regions of each tissue 

(receptacle included). Thirdly, we hypothesised that similar to the receptacle (Watling et 

al., 2006; Grant et al., 2008; Chapter 2), the petals and stamens would use the alternative 
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pathway to generate heat. Our final objective was to identify if carbohydrates or lipids 

were the thermogenic substrate in these tissues. 

 

MATERIALS AND METHODS 

Plant material and temperature measurements 

Sacred lotus (Nelumbo nucifera Gaertn.) flowers were collected from the Adelaide 

Botanic Gardens, South Australia during consecutive summer seasons 2006-2008. 

Flowers were grouped into developmental stages 0-4 as described by Grant et al. (2008; 

Chapter 2). Briefly, stage 0 is a pre-thermogenic closed bud and stages 1-3 are 

thermogenic, with maximum heating at stage 2 (also see Chapter 2 Fig. 2.1 & Table 

2.1). Stamens and petals are only present during stages 0-3. At stage 4, the petals and 

stamens abscise, leaving a post-thermogenic receptacle which becomes a photosynthetic 

seed bearing organ (Miller et al. 2009). The temperature of the intact receptacle, 

stamens and petals were measured in the field using an infrared thermometer 

(Scotchtrack T Heat tracer IR1600L; 3M, Austin, TX, USA) and again 30 s after 

removal from the pedicel. Temperature measurements for the petals were taken towards 

the basal end. In addition, the temperatures of a nearby non-thermogenic bud and leaf 

were measured for comparison. Immediately after temperature measurements the floral 

tissue was returned to the lab on ice for mitochondrial isolation. Sections were also 

frozen at -80°C for lipid and carbohydrate analysis. In January 2009 thermal images of 

intact stage 2 flowers and of excised floral parts were also obtained to illustrate the 

spatial distribution of temperature throughout the flower parts. Thermography 

(ThermaCAM S65, Flir Systems, Lindfield NSW) was also used to measure heat loss 

from recently excised heating tissues and equivalent non-heating tissues. Receptacle, 

stamen and petal tissues were “killed” by freezing, then heated in a water bath to the 

equivalent temperatures observed on the flower. The rate of cooling was compared to 

excised, live thermogenic tissues over an equivalent range with similar background air 

temperatures.  

 

Respiration and discrimination analysis 

Discrimination during respiration and steady state flux of electrons through the 

cytochrome c and alternative pathways of stamens and petals at each developmental 



Chapter 4   Heating in floral tissues of N. nucifera 

 67

stage was determined using the on-line oxygen isotope technique described in Watling 

et al., (2006). Briefly, respiration rates and differential uptake of oxygen stable isotopes 

were measured simultaneously in six sequential samples taken from the gas phase 

surrounding the respiring tissues. The isotopic discrimination factors (D) and 

partitioning of electrons between the cytochrome and alternative pathways were 

calculated essentially as previously described. The r2 of all unconstrained linear 

regressions between –ln f and ln (R/Ro), with a minimum of six data points, was at least 

0.992. To establish the discrimination endpoints for the alternative (∆a) and cytochrome 

(∆c) oxidases, stamens and petals were infiltrated with either 16 mM KCN or 25 mM 

SHAM (made from a 1M stock solution in 0.05% DMSO) prior to measurement. The 

endpoints for stamens (∆c = 17.5 ± 1.0‰, and ∆a = 25.6 ± 1.8‰; mean ± sd) and petals 

(∆c = 16.3 ± 1.1‰, and ∆a = 26.6 ± 2.7‰; mean ± sd) were then used to calculate the 

flux through the alternative and cytochrome pathways in uninhibited tissues as 

described in Ribas-Carbo et al. (2005).  

 

Mitochondrial isolation and immunoblots 

Isolation of washed mitochondria was based on the method of Day et al. (1985) with 

minor modifications as described by Grant et al. (2008; Chapter 2). Approximately 10 g 

of petals and 5 g of stamens were used for each isolation. In addition to whole tissue 

isolation, the petals and stamens were separated into three sections; top, middle and 

base for the petals, and appendage (distil), anther sacs (medial) and filament (proximal) 

for the stamens. Receptacle mitochondria for AOX activation analyses were isolated 

from 40 g of stage 1 receptacles. Each receptacle was divided into three sections; 

dermal, upper mesenchyma and basal mesenchyma. Firstly, the epidermal and 

hypodermal layers of the receptacle were removed and pooled (dermal section). This 

left a spongy inner core of glandular mesenchyma (Vogel and Hadacek, 2004) which 

was bisected horizontally into upper and basal mesenchyma sections. Crude 

mitochondria isolated from these three sections were further purified using a three-step 

Percoll gradient. The washed mitochondria were placed on the gradient (Percoll 50% 

[v/v], 35% [v/v] and 20% [v/v]) in buffer (250 mM sucrose, 10 mM HEPES-KOH (pH 

7.2), 0.2% [w/v] fatty acid free BSA) and spun for 1 h at 20 000 g and 4 °C. Collected 

mitochondria were washed (0.4 M mannitol, 10 mM MOPS/KOH (pH 7.2), 0.1% [w/v] 

fatty acid free BSA) twice by centrifugation at 10 000 g and the final pellet re-

suspended in 1 ml wash buffer. The protein concentration of the mitochondria was 
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determined using the Bradford (1976) method. Separation of proteins by SDS-PAGE 

electrophoresis, transfer to PVDF membrane and detection of AOX protein with the 

monoclonal antibodies raised against Sauromatum guttatum AOX (Elthon et al., 

1989b), Anti-COXII (Agrisera) raised against subunit II of cytochrome c oxidase, a 

monoclonal antibody reacting with porin (PM035, Dr T Elthon, Lincoln, NE, USA) and 

pUCP antibodies raised against Symplocarpus foetidus (Ito, 1999) and soybean 

(Considine et al., 2001) were performed as previously described (Grant et al., 2008; 

Chapter 2). 

 

AOX capacity 

AOX capacity was measured in isolated mitochondria from sacred lotus receptacle 

sections; dermal, upper mesenchyma and basal mesenchyma. A Clark type electrode 

was used to measure O2 uptake at 25oC in 1.8 ml of incubation buffer (0.2 M sucrose, 

10 mM KCl, 1 mM MgCl2, 5 mM KH2PO4, 20 mM MOPS/KOH (pH 7.2), 0.1% [w/v] 

fatty acid free BSA). The O2 concentration in air-saturated buffer at 25oC was estimated 

at 250 μM in each experiment. Mitochondrial activity was initiated with the addition of 

2 mM NADH and 20 mM succinate to the cuvette. AOX capacity was calculated as the 

KCN-insensitive and n-propyl gallate-sensitive O2 consumption.  

 

Soluble carbohydrate and starch assay  

Soluble carbohydrates and starch were determined in stamen tissue from stages 0, 2 and 

3 using the methods of Scholes et al. (1994) and Caporn et al. (1999) as previously 

described (Grant et al., 2008; Chapter 2). Stages 0, 2 and 3 represent pre-thermogenic, 

thermogenic and post-pollen stages, respectively.  

 

Fatty acid analysis 

Total lipid was extracted from 0.4 g of frozen tissue using standard methods (Folch et 

al., 1957) as described by Cyril et al. (2002). The tissue was ground to a fine powder in 

liquid nitrogen (N2) using a mortar and pestle and then further homogenised with 10 ml 

of ultra pure chloroform:methanol (2:1, v/v) containing butylated hydroxytoluene 

(0.01%, w/v) as an antioxidant. Total lipids were separated into triacylglycerides (TAG 

- neutral lipids) and phospholipids (PL - charged lipids), by sequential elution in hexane 

and ethyl acetate from Sep-Pac silica columns (Waters, Milford, MA, USA). PL and 

TAG were trans-methylated using the method of Lepage and Roy (1986). The fatty acid 
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methyl esters were separated by gas-liquid chromatography on a Shimadzu GC 17A 

(Shimadzu, Sydney, Australia) with a Varian WCOT Fused Silica Column (50 m x 0.25 

mm ID, CP7419, Sydney, Australia). Fatty acids were identified using retention times 

of an external standard (FAME Supelco, Bellefonte, PA, USA). The samples were 

quantified against heneicosanoic acid (21:0) as the internal standard (Sigma Aldrich, 

Sydney, Australia) so that fatty acids could be expressed as an absolute amount as well 

as a percentage of the total lipid present in the sample. The stages collected for fatty 

acid analysis were stage 0 (pre-thermogenic), stage 2 (thermogenic) and stage 4 (post-

thermogenic) in the receptacle and stage 0 (pre-thermogenic), stage 2 (thermogenic) and 

stage 3 (post-pollen) in the stamens.  

 

Statistical analysis 

Mean differences in relative AOX and COX protein, AOX capacity, floral temperature 

changes, starch, soluble carbohydrates and fatty acids were investigated using one-way 

ANOVA and paired T-tests. Where significant differences were identified post hoc 

Tukey-HSD tests were performed. Data were tested for normality and homogeneity of 

variances using Shapiro-Wilk W and Bartlett’s tests, respectively. Stamen and petal 

AOX/porin protein and stamen sucrose determination data were log transformed to 

satisfy the assumptions of ANOVA. All statistical analyses were carried out using JMP 

5.1 (SAS Institute Inc, Cary, NC, USA). Significant differences at P<0.05 are reported.  

 
RESULTS 

Do sacred lotus stamens and petals heat? 

Whilst intact and attached to the pedicel it was difficult to observe whether the petals 

and stamens heated independently of the receptacle (Fig. 4.1A). Therefore, floral parts 

of stage 2 flowers (see Chapter 2 for description of stages) were removed and separated 

(Fig. 4.1B). Immediately after removal from the pedicel, parts of stage 2/3 flowers  were 

significantly warmer than non-thermogenic leaf tissue with the receptacle heating the 

most, the petals the least and the stamens heating intermediately (Table 4.1; F3,32= 

19.28, P<0.0001). Temperature change was measured for 3 min after the floral parts 

were separated from the pedicel. For all floral parts, thermogenic tissues (i.e. fresh and 

heating) lost significantly less heat than the equivalent non-heating tissue (tissue which 

had been frozen; Table 4.1; t= 4.53, P=0.02). This was most pronounced in the non-
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heating receptacle which lost heat 8-fold faster than the heating receptacle, but heat loss 

was also 3-4-fold faster in non-heating stamens and petals than the equivalent heating 

tissue (Table 4.1). Heat loss from heating tissues was lowest in receptacles (0.12°C in 

per minute) intermediate in petals (0.50°C per minute) whilst stamens had the largest 

temperature loss at 0.73 °C per minute (Table 4.1). Heating in the petals was 

predominantly towards the base (Fig. 4.1B) while all sections of the stamens (filament, 

anther sacs and appendage) remained warm (Fig. 4.1B). Closer inspection revealed that 

the filaments of the stamens were somewhat warmer than the distal sections (Fig. 4.1C). 

Attached stamens also remained 10°C higher than ambient temperature 4 min after the 

receptacle had been removed from the flower (see supplementary material Fig S4.1 

page 83). 

 
Figure 4.1. Thermal image (left) and photograph (right) of stage 2 sacred lotus floral tissue. A) whole 
flower (intact and in situ), B) dissected flower parts; stamens (left), receptacle (middle) and petals (right), 
C) detached stamens; appendage (top), anther sacs (middle) and filament (bottom). Please note that the 
photograph images are slightly offset from the thermal images. 
 

Receptacle 31.0 oC 
Petal top   19.3 oC 
Appendages 25.9 oC 
Ambient 17.8 oC   
  
 

Receptacle 19.1 oC 
Petal top   15.9 oC 
Petal bottom 17.7 oC 
Stamens  18.8 oC 
Ambient 15.7 oC   
  
 

Appendages 15.6 oC 
Anther sacs 15.6 oC 
Filaments   16.9 oC 
Ambient 14.2 oC   
  
 

C 

B 

A 
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Table 4.1. Heating in thermogenic and non-thermogenic sacred lotus floral tissue.  
Flowers in stage 2 were collected between 7.00 and 8.00am AEST. For thermogenic tissue, flowers were 
cut from the pedicel, separated into tissue types (receptacle, petals and stamens) and placed on foam. 
Time lapse thermal images were taken every 30 sec for 3 minutes. For non-heating tissue, flowers were 
collected and frozen at -80 °C. The tissue was thawed and heated in a water bath to 34 °C, placed on foam 
and time lapse thermal images taken. Where shown, rows with different letters are significantly different 
from each other (data points are means ± sd of n=10 samples). 
 

Temperature decrease per min (oC) 
Tissue 

Amount of heating above 
non-thermogenic tissue 

immediately after removal 
from pedicel (°C) Thermogenic tissue Equivalent non-

heating tissue 
    

Receptacle 8.1 ± 1.9a 0.12 1.05 

Stamens 6.8 ± 2.0ab 0.73 2.09 

Petals 2.8 ± 4.2b 0.50 2.52 

Leaf -1.9 ± 3.3c na na 
 
 
Respiratory flux and proteins in the stamens  

Total respiratory flux was high in stamens reaching a mean maximum 0.029 ± 0.005 

µmol O2 g fw-1 s-1 (± se) in stage 3 stamens (Fig. 4.2A). There was considerable 

variation in total respiratory flux of stamens, especially in stage 3 flowers where anthers 

are dehiscing prior to stamen and petal abscission (range 0.0093 to 0.042 µmol O2 g fw-

1s-1; Fig. 4.2A). As a result of this variation there was no significant change in total 

respiratory flux across developmental stages. There was no detectable AOX flux in pre-

thermogenic (stage 0) stamens (Fig. 4.2A), but AOX flux had significantly increased by 

stage 1, and remained similar across stages 1-3 when, on average, it accounted for 15 to 

23% of total respiratory flux (F3,22=3.02, P =0.0014). The proportion of total flux via 

AOX was also highly variable among stamens within a single developmental stage, for 

example, at stage 2, the proportion of AOX flux ranged from 3 to 40% of total 

respiratory flux. Flux through the COX pathway averaged 0.020 ± 0.008µmol              

O2 g fw-1s-1 in stamens and was similar across the development sequence (Fig. 4.2A).  
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Figure 4.2. Changes in staminal (A & C) and petal (B &D) respiratory fluxes (top) and protein levels 
(bottom) during floral development. Thermoregulation occurs in the receptacle during stages 1, 2 and 3 
and pollen is shed during stage 3. Data are means ± se, n=5-10. Columns with different letters are 
significantly different at P<0.05. In A & B the unshaded region is the COX respiratory flux.  
 

AOX was detected in stamens as a ~32 kDa protein. AOX protein levels in the stamens 

increased until stage 2 and remained high throughout stage 3 (Fig. 4.2C). Stage 2 AOX 

protein levels were 5-fold higher than stage 1 (F3,16=9.96, P =0.0006). COX protein 

levels in stamens did not change significantly during development (Fig. 4.2C). There 

was no detection of pUCPs in the stamens at any developmental stage. 

 

Respiratory flux and proteins in the petals 

Total respiratory flux in petals was similar at all developmental stages (Fig. 4.2B), with 

the highest mean flux, 0.015±0.001 µmol O2 g fw-1s-1 measured in stage 2 petals. 

Similarly, no significant differences were detected in flux through the COX pathway 

across the developmental sequence (Fig. 4.2B). AOX flux in the petals increased 

significantly with the onset of thermogenesis, increasing more than 3-fold from stage 0 
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to stage 1 (Fig. 4.2B; F3,23=4.53, P =0.012). Mean AOX flux then declined by 53% from 

stage 2 to stage 3, however this decrease was not significant.  

 

AOX in the petals was also detected as a ~32 kD protein. AOX protein levels in petals 

remained low during stages 0 and 1 but increased 5- and 12-fold from these initial 

stages to stages 2 and 3, respectively (Fig. 4.2D). AOX protein levels increased 

significantly within the thermogenic period with stage 3 petals containing the largest 

amount of AOX protein (Fig. 4.2D; F2,19=7.81, P=0.006). Mean COX protein levels did 

not change significantly across the developmental sequence (Fig. 4.2D). There was no 

detection of pUCPs in the petals. 

 

AOX protein distribution in stamens, petals and receptacle 

Both AOX and COX proteins were distributed evenly throughout the length of the 

stamens (Fig. 4.3A). By contrast, in the petals there was 10-fold decrease in relative 

AOX protein from the base to tip (Fig. 4.3B; F3,19= 28.56, P <0.0001) whilst COX 

protein levels remained similar along the length of the petal (Fig. 4.3B). AOX protein 

was detected at a similar level in three parts of dissected sacred lotus receptacles; 

dermal layer, upper mesenchyma and basal mesenchyma (Table 4.2; F2,16=2.12, 

P=0.15). In addition, there was no difference in AOX capacity, measured as cyanide 

resistant respiration, in mitochondria isolated from the three sections (Table 4.2; 

F2,19=0.79, P=0.46).  

 
Figure 4.3. Changes in AOX (filled) and COX (open) protein levels in mitochondria isolated from 
dissected stage 2 sacred lotus stamens (A) and petals (B). Data are means ± se, n=5-6 samples. Columns 
with different letters are significantly different at P<0.05 (ns= not significant). 
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Table 4.2. AOX capacity and relative AOX protein levels in mitochondria isolated from dissected 
sacred lotus receptacles. Each receptacle was cut into three sections; the dermal layer, the upper and 
basal mesenchyma. AOX capacity was measured as KCN-insensitive and n-propyl gallate sensitive 
oxygen consumption. The data are means ± se of n=6-8 assays and were not significantly different 
between sections. Tissue was collected from flowers in stage 1 and 2 of the thermoregulatory period 

 
 

Contribution of parts to whole flower heating  

Based on AOX flux and tissue mass we calculated the contribution of each of the floral 

parts to the AOX flux of the whole flower. In the receptacle AOX flux is directly 

correlated with heat production (Grant et al., 2008; Chapter 2; Watling et al., 2008) and 

if we assume this relationship holds true for the petals and stamens, the contribution of 

AOX flux for each tissue will be directly related to the amount of heat produced by that 

part. During the thermogenic period (stages 1-3) the receptacle contributes 39-50% of 

the AOX flux, the petals 43-45% and the stamens 8-16% (Table 4.3). AOX flux in the 

receptacle increased 22% between stages 1 and 2 and remained high during stage 3. 

Conversely, in the stamens, the contribution to total floral AOX flux halved between 

stages 1 and 2 and remained less than 10% of floral AOX during stage 3 (Table 4.3). 

The contribution made by the petals was constant across the thermogenic period (Table 

4.3).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Receptacle 
section 

 AOX capacity 
(nmol O2 min-1 mg-1 protein) Relative AOX protein 

Epidermis 214 ± 11 7.8 ± 0.5 

Upper 
mesenchyma 267 ± 13 5.8 ± 0.4 

Basal 
mesenchyma 248 ± 11 7.9 ± 0.5 
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Table 4.3. Contribution of various parts to total floral AOX flux throughout development. AOX 
flux for each tissue and proportion of floral AOX flux for sacred lotus floral parts receptacle, stamens and 
petals during the thermogenic stages. Mass (means ± se; n= 5-13 samples). Flux data was sourced from 
Fig. 4.2 and Grant et al., (2008; Chapter 2). N.B. Stamens and petals abscise after stage 3 and receptacle 
greens. 
 

Tissue Stage Mass (g) AOX flux per tissue 
(μmol O2 s-1) 

 % Floral 
AOX flux  

Receptacle 1 6.36 ± 0.70 0.095 39 

 2 8.67 ± 0.70 0.217 50 

 3 9.69 ± 0.66 0.121 47 
     

Stamens 1 6.54 ± 0.40 0.039 16 

 2 6.86 ± 0.43 0.030 7 

 3 5.07 ± 0.69 0.020 8 
     

Petals 1 13.79 ± 1.30 0.112 45 

 2 19.18 ± 2.18 0.185 43 

 3 25.33 ± 4.22 0.115 45 

 

Soluble carbohydrates and starch in staminal tissue 

There were significant changes in staminal starch concentrations during floral 

development (Fig. 4.4A; F2,14= 6.78, P= 0.0121). Starch concentrations doubled from 

8.3 ± 4.2 mg g fw-1 to 16.6 ± 3.4 mg g fw-1 between stages 0 and 3 (Fig. 4.4A). 

Concentrations of fructose and glucose remained low until late in floral development 

(stage 3) when they increased 4-fold (Fig. 4.4C; F2,14= 60.27, P<0.0001). In contrast, 

sucrose concentrations decreased by 70% from 6.1 ± 5.0 mg g fw-1 to 1.7 ± 0.1 mg g fw-

1 between stages 0 and 2 (Fig. 4.4B; F2,14= 5.12, P=0.029), although this decrease was 

not significant due to the large variances during the pre-thermogenic stage 0. Sucrose 

concentrations then increased significantly between stages 2 and 3 to a maximum 

concentration of 9.3 ± 2.4 mg g fw-1 (Fig. 4.4B).  
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Figure 4.4. Changes in concentration of starch (A), sucrose (Suc) (B) and glucose (Glc) & fructose (Fru) 
(C) in sacred lotus stamens during floral development. Columns are means ± se (n=5). Columns with 
different letters are significantly different at P<0.05. 
 

Lipid content and composition of the receptacle and stamens  

Total lipid content of the sacred lotus receptacles remained similar with a mean (± se) of 

1.49 ± 0.10 mg g fw-1 during floral development (Fig. 4.5A). Total lipids were 

comprised of 55-64% phospholipids (PL) and 36-45% triacylglycerides (TAG; Fig. 

4.5A). Phospholipid content in sacred lotus receptacles also remained similar (range 

0.80 ± 0.04 to 1.04 ± 0.09 mg g fw-1) during floral development. Triacylglycerides did 

not change from stage 0 to stage 2, but significantly decreased (40%) to 0.46 ± 0.03 mg 

g fw-1 in stage 4 receptacles (post-thermogenesis; F2,14 =7.1237, P=0.0091). Total lipids 
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(TAG and PL) in stamens were more than 2-fold higher than in the receptacle tissue and 

remained high during floral development with a mean of 3.72 ± 0.17 mg g fw-1 (Fig. 

4.5B). There were no significant changes in staminal total PL (46 ± 1.9%) or TAG (54 ± 

1.9%) during development (Fig. 4.5B).  

 

 

 

 

 

 

 

 

 
Figure 4.5. Total lipid composition of A) receptacle and B) staminal tissue during floral development 
shown as PL (phospholipids) and TAG (triacylglyceride) fractions. Columns are means ± se, n=5. 
Different letters denote significant differences at P<0.05, ns= not significant. Individual components are 
shown in Supplemental Table 4.1 
 

Compositionally, for both the receptacle and stamens, fatty acids were dominated by 

palmitic (16:0), linoleic (18:2) and linolenic acids (18.3; Supplemental Table 4.1 page 

84). Staminal TAG was the only measured lipid fraction that contained lignoceric acid 

(24:0), which increased 7-fold from 1.4% to 10.0% during floral development 

(Supplemental Table 4.1 page 84). The ratio of carbohydrate to lipids was high, with 5 

to 10 fold more carbohydrates than lipids per gram fw for all stages in both stamens and 

receptacles (carbohydrate data for receptacle are from Grant et al., 2008; Chapter 2).  
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DISCUSSION 

Although it is clear that the sacred lotus receptacle heats via the alternative oxidase 

(Watling et al., 2006; Grant et al., 2008; Chapter 2) there is some debate in the literature 

concerning the role of stamens and petals in floral heat production. Several workers 

have suggested that the stamens are the predominant heating tissue (Schneider and 

Buchanan, 1980; Skubatz et al., 1990), however other work based on metabolic rates, 

reports that the receptacle contributes 50% of the floral heating and the stamens and 

petals 25% each (Seymour and Schultze-Motel, 1998). The only study to investigate 

direct temperature measurements found no evidence of staminal heating and implied 

that heating in the petals and stamens was only a result of heat transfer from the 

thermogenic receptacle (Vogel and Hadacek, 2004). This study presents a range of data 

which together confirm that in addition to the receptacle, the surrounding stamens and 

petals of the sacred lotus also heat. 

 

Temperatures of both petals and stamens were significantly higher than the non-

thermogenic leaves and although some heat was lost on removal from the flower, 

sufficient remained to suggest that these organs may heat independently. Further 

evidence is provided by thermal images showing floral parts separated from the pedicel 

and each other, where stamens and petals are clearly warmer than their surroundings 

and stay warm for longer than equivalent non-heating tissue (Fig. 4.1B, Table 4.1). This 

ability of all parts of newly excised flowers to stay warm (Table 4.1) suggests that they 

are able to generate heat to replace that which is lost. As expected, heat loss was most 

rapid in the small, spindly stamens and least in the denser receptacles (Table 4.1). 

Further evidence for independent heating of stamens is seen in the thermograph 

(Supplemental Fig. 4.1) where upon the removal of the receptacle from the flower, the 

attached stamens remained nearly 10°C higher than ambient temperature for 4 min. 

Whilst necessary to prevent heat transfer from the receptacle, removing the petals and 

stamens from the flower could also reduce heating by disturbing metabolism or 

inducing a wound response. However, this is not always the case since in the 

thermogenic Philodendron bipinnatifidum, for example, sterile and fertile male florets 

continue to heat for up to 30 hours after removal from the plant (Chapter 5). Although 

Vogel and Hadacek (2004) reported no staminal heat production, they used flowers 

which appeared to be smaller, have fewer petals and, on average, were 2°C cooler than 
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the ones used in the present study. The size of the heating tissue has been shown to 

influence the amount of heating, with larger spadices of P. bipinnatifidum and skunk 

cabbage (S. foetidus) regulating at higher temperatures than smaller spadices (Nagy et 

al., 1972; Seymour and Blaylock, 1999). It may also be the case that different 

populations of N. nucifera have different heating patterns as was found for the 

thermogenic skunk cabbage, with one group heating to approximately 4°C and another 

group averaging 17°C above ambient (Seymour and Blaylock, 1999).  

 

An increase in flux through the AOX pathway was seen in both stamens and petals with 

the onset of thermogenesis (Fig. 4.2). Total respiratory flux was 40% higher in the 

stamens than the petals, however this is not surprising considering the high-energy 

demand of pollen development. Lilium longiflorum pollen respires 10 times faster than 

vegetative tissue (Dickinson, 1965) and electron micrographs of N. nucifera stamens 

showed high numbers of mitochondria (Skubatz et al., 1990). AOX and total respiratory 

flux in the receptacle was more than double that of the stamens or petals (Grant et al., 

2008; Chapter 2) supporting the view that the receptacle is the predominant heating 

tissue. Previously, total respiratory rates were used to determine the role of the floral 

parts in whole flower heating with the receptacle responsible for 50% and both petals 

and stamens 25% (Seymour and Schultze-Motel, 1998). Here, we have used only AOX 

respiratory flux to estimate the amount of heat produced by the various floral tissues. 

Our results suggest that the petals contribute a relatively constant 45% of the heat, 

matching that contributed by the receptacle, whilst stamens contribute up to 16% in 

stage 1 and 8% or less during stages 2 and 3 (Table 4.3). This indicates an important 

role for the petals in floral heating rather than the trivial role previously proposed 

(Schneider and Buchanan, 1980; Skubatz et al., 1990; Vogel and Hadacek, 2004). 

Supporting this, a recent study demonstrated the importance of petals for reproductive 

success in N. nucifera (Li and Huang, 2009). Seed set from hand pollinated N. nucifera 

flowers without petals, was significantly lower than that of intact flowers (Li and 

Huang, 2009). Considering that N. nucifera petals contribute approximately 45% of 

floral heat, this suggests that the role of heating in this species may not be 

predominantly to attract insect pollinators as previously thought (Seymour and 

Schultze-Motel, 1998), but a mechanism to provide the optimum temperature for 

reproductive success. In most thermogenic species heating is associated with 

reproductive floral parts rather than non-reproductive parts such as the petals. 
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Furthermore, most explanations for the evolution of thermogenesis focus on the 

attraction of insect pollinators to these reproductive parts (Meeuse, 1975; Seymour and 

Schultze-Motel, 1998), which may be the reason heating of the petals has been 

overlooked.  

 

The increase in AOX flux in stamens and petals was followed by an increase in AOX 

protein, which reached a maximum in stage 2 stamens and stage 3 petals. The build-up 

of AOX protein in each tissue was not synchronised within the flower, but it closely 

preceded reproductive maturity of the stigma in the receptacle (Grant et al., 2008; 

Chapter 2) and pollen in stamens (Fig. 4.2) indicating a possible role of thermogenesis 

in reproductive maturity. In the petals, AOX protein was found in the base of the petal, 

where the petal tissue becomes yellow and spongy similar to the receptacle. This is also 

where the bulk of the heating occurs, as shown by thermal images (Fig. 4.1). If heating 

in the sacred lotus is important for the attraction of invertebrate pollinators (Seymour, 

2001a), the presence of AOX in the base of the petals and associated heat may assist to 

lure insect pollinators towards the bottom of the floral chamber to the mature pollen. 

Alternatively heating in all parts of the flower may be important in maintaining the 

correct temperature for floral development. Recently it was shown that low 

temperatures during the fertilisation period significantly decreased seed set in N. 

nucifera, indicating that thermogenesis in this species may indeed be important for 

successful pollen germination or pollen tube growth (Li and Huang, 2009). Specific 

temperatures have been shown to increase pollen performance in a number of different 

plant species (Galen and Stanton, 2003; Van Der Ploeg and Heuvelink, 2005; Maeda et 

al., 2008), with unfavourable temperatures usually leading to low germination. COX 

protein and flux through the cytochrome pathway remained constant during 

development and heating stages in all flower parts and plant uncoupling proteins 

(pUCP) were not detected (data not shown),  providing further evidence that pUCPs are 

not likely to be involved in thermogenesis in the sacred lotus (Watling et al., 2006; 

Grant et al., 2008; Chapter 2). 

 

Heating in the sacred lotus receptacle has been attributed to flux through the alternative 

pathway (Watling et al., 2006; Grant et al., 2008; Chapter 2), however the localisation 

of the AOX protein within the receptacle remained unclear. Here we report that 

throughout the sacred lotus receptacle the AOX protein is distributed evenly and the 
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activity of mitochondria is uniform (Table 4.2). In many thermogenic species AOX is 

localised within specific tissues, for example localisation of AOX in petals and pistil but 

not the anthers or filaments in the spadix of the skunk cabbage (Onda et al., 2008), and 

in the male and sterile florets but not the female florets in P. bipinnatifidum (Chapter 5). 

In the lotus, AOX is evenly spread through both the male and female floral tissue 

suggesting the capacity to heat is ubiquitous. Sacred lotus receptacles contain two 

isoforms of AOX (Grant et al., 2009; Chapter 3) and it maybe that only one of these 

isoforms is active in thermogenesis. Expression studies are needed to determine which 

isoform(s) of AOX are present in stamen and petal tissues.  

 

A large supply of energy is needed to fuel thermoregulation in plants and metabolic 

rates in these species may equal that of similar sized animals (Lamprecht et al., 2002b). 

Both carbohydrates (A. maculatum) and lipids (P. bipinnatifidum) have been found to 

fuel thermogenesis (ap Rees et al., 1977; Walker et al., 1983). Starch and soluble 

carbohydrate levels in the stamens showed similar patterns to that in the receptacle 

during development, although soluble carbohydrate levels in the stamens (Fig. 4.4) were 

double that of the receptacle (Grant et al., 2008; Chapter 2). The use of sucrose for 

thermogenesis could account for the 60% decrease in sucrose in the stamens on the 

onset of thermogenesis in stage 2 (Fig. 4.4). However we cannot attribute all changes in 

stamen carbohydrates with thermogenesis, as pollen development and maturation are 

taking place. After pollen maturation, an increase in soluble sugars and starch was 

reported in Lilium stamens (Clement et al., 1996). This was also seen in sacred lotus 

stamens with both soluble sugars and starch increasing post-pollen release in stage 3 

(Fig. 4.4). This may be because the remaining appendage and filament act as sink 

organs once anther maturation is complete (Clement et al., 1996).  

 

There was little change in total lipids in receptacle and staminal tissue. A 40% decrease 

in total receptacle TAG between stage 2 and 4 (peak and post-thermogenesis; Fig. 4.5) 

could indicate that lipids play a role in providing energy for thermogenesis in the 

receptacle. However, this decrease was not as prominent as the 89% decrease in starch 

in the receptacle between peak and post-thermogenesis (Grant et al., 2008; Chapter 2). 

Also, these tissues contained at least 5-fold more carbohydrate than lipid per gram fresh 

weight, suggesting that starch is the major source of fuel for thermogenesis in the sacred 

lotus flower. A similar carbohydrate/lipid ratio was reported in thermogenic Magnolia 
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tamaulipana flowers (Dieringer et al., 1999) where high carbohydrate values were 

attributed as a food supply for visiting invertebrates. However, in the lotus there was no 

evidence of invertebrate damage to floral tissue. The proportions of PL and TAG in 

sacred lotus floral tissues are similar to that found in the flower bud of cotton plants 

(Gossypium sp.; Thompson et al., 1968). 

 

There were, however, compositional changes in the polar (PL) and non-polar (TAG) 

lipids (Supplemental Table 4.1). The increase in linolenic acid (18:3) during 

development may reflect the greening of the organ as it becomes photosynthetic after 

petals and stamens abscise (Miller et al., 2009). Increases in linolenic acid (18:3) with 

greening of leaves have been shown in a number of higher plants including barley 

(Appelqvist et al., 1968), Ligustrum ovatifolium and Vicia faba (Crombie, 1958). The 

fatty acid 24:0 (lignoceric acid) was only found in the staminal TAG fraction and 

although it is classified as a minor plant fatty acid (Hitchcock and Nichols, 1971), it is 

not uncommon. The amount of lignoceric acid increased with floral development and 

thermogenesis (Supplemental Table 4.1). Although it was not detected in lotus 

receptacle, it has been reported in the female parts of other plants, for example in the 

stigma of Nicotiana tabacum (Cresti et al., 1986). Without double bonds or other 

functional groups this long chain fatty acid is nearly chemically inert and thus may 

remain unchanged when subjected to high temperatures. The thermophile fungi 

Aspergillus fumigatus contains lignoceric acid (Habe et al., 2008) as do sunflower seeds 

grown at elevated temperatures (Izquierdo and Aguirrezabal, 2008). However in 

sunflower seeds there was a decrease in long chain fatty acids, including lignoceric acid, 

with increased growth temperature indicating that the role of lignoceric acid in thermo-

tolerance remains unclear.  

 

Conclusion 

We provide evidence that the stamens and petals of the sacred lotus produce heat 

independently of the thermogenic receptacle. The petals and receptacle contribute the 

bulk of floral heat throughout floral development whilst the contribution of the stamens 

is highest during stage 1 suggesting that heating is linked to reproductive maturity of the 

two sexual tissues. Our data for AOX flux, AOX protein and substrates are consistent 

with AOX being the sole source of heating in sacred lotus flowers.  
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SUPPLEMENTAL MATERIAL  

Supplemental Figure 4.1. Photograph (left) and thermal image (right) of attached sacred lotus stamens 
immediately (upper panel) and 4 minutes after (lower panel) removal of the receptacle. 
 

 
 
 
 
 

Flower imaged directly after receptacle removal 

Flower imaged 4 min after receptacle removal 

Stamens  28.2 oC 
Ambient 14.3 oC 

Stamens  24.2 oC 
Ambient 14.3 oC 
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 Supplemental Table 4.1. Fatty acid content (percent of total) in sacred lotus receptacle and 
stamens tissue during floral development. Both phospholipid (PL) and triacylglycerides (TAG) 
fractions were analysed. Data are means ± sd n=5. Entries within rows with different letters are 
significantly different, ns = no significant difference. 

               Percent of total (% ± sd)    Analysis of variance 

  
Fraction Fatty acid Pre-

thermogenic 
(stage 0) 

Thermogenic 
(stage 2) 

Post-
thermogenic 

(stage 4) 
  

P-value 
 

F2,14 stat 

        

PL 16:0  
(palmitic acid) 34.6 ± 3.3 30.7 ± 0.9 32.5 ± 1.3  ns 4.1 

 18:0 
(stearic acid) 5.8 ± 0.5 4.7 ± 1.2 5.8 ± 1.2  ns 1.6 

 18:1             
(oleic acid) 7 ± 1.0 7.4 ± 0.5 7.6 ± 0.8  ns 0.6 

 18:2         
(linoleic acid) 32.6 ± 2.5a 30.4 ± 1.1ab 28.1 ± 0.5b  0.008 8.3 

 18:3  
(linolenic acid) 14.6 ± 2.6 a 22.6 ± 1.7b 20 ± 1.4b  0.0004 18.7 

        

TAG 16:0  
(palmitic acid) 28.9 ± 0.6a 24.3 ± 2.0b 31.4 ± 2.0a  0.0001 21.8 

 18:0  
(stearic acid) 8.4 ± 2.7a 3.9 ± 0.5b 7.0 ± 2.7ab  0.019 5.8 

 18:1  
(oleic acid) 3.9 ± 2.1a 7.4 ± 0.8b 7.1 ±0.8b  0.004 9.5 

 18:2  
(linoleic acid) 44.6 ± 4.0a 38.5 ± 2.7b 30.2 ± 2.1c  0.0001 26.8 

R
ec

ep
ta

cl
e 

 

 18:3  
(linolenic acid) 8.4 ± 8.3a 23.6 ±1.7b 22.1 ± 3.6b  0.0017 12.0 

         
         

  
Pre-

thermogenic 
(stage 0) 

Thermogenic 
(stage 2) 

Post-pollen 
(stage 3)    

PL 16:0  
(palmitic acid) 30.2 ± 2.2a 34.4 ± 1.1b 35.3 ± 1.3b  0.0013 12.9 

 18:0  
(stearic acid) 2.9 ± 0.3a 2.3 ± 0.2b 2.4 ± 0.4ab  0.0298 4.9 

 18:1  
(oleic acid) 3.7 ± 0.7 2.6 ± 0.5 3.5 ± 0.7  ns  

 18:2  
(linoleic acid) 36.7 ± 3.3a 21.6 ± 1.2b 21.9 ± 0.9b  0.0001 76.3 

 18:3  
(linolenic acid) 22.8 ± 3.1a 33.3 ± 0.5b 31 ± 2.4b  0.0001 24.5 

        

TAG 16:0  
(palmitic acid) 25.2 ± 5.7a 36.0 ± 0.9b 35.2 ± 1.5b  0.0005 15.2 

 18:0  
(stearic acid) 3.3 ± 0.8a 2.4 ± 0.1b 2.4 ± 0.4ab  0.0298 4.8 

 18:1  
(oleic acid) 6.1 ± 1.5 4.1 ± 0.3 5.1 ± 1.4  ns  

 18:2  
(linoleic acid) 44.3 ± 3.3a 23.4 ± 0.9b 22.3 ± 2.4b  0.0001 125.6 

St
am

en
s 

 

 18:3  
(linolenic acid) 15.2 ± 0.8a 22.2 ± 1.9b 17.8 ± 1.5a  0.0001 28.5 
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