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Abstract  

Species range limits are often associated with reduced adult densities, and this may 

reflect the failure of a particular life history stage. For benthic marine invertebrates, 

settlement is a time of great mortality that strongly influences adult population structure, 

at least at local spatial scales. In southeast Australia we determined that adult abundance 

of the intertidal barnacle Tesseropora rosea declines over a 450 km region of rocky 

shore from the middle to the southern limit of its range, and we tested the hypothesis 

that this biogeographic pattern reflects variations in the production, settlement or early 

post-settlement mortality of larvae or adult mortality. Sampling at two sites on 11 rocky 

shores in this region over two years revealed that none of the life history stages or 

demographic processes displayed a latitudinal gradient or clear decline towards the 

south, and settlement and adult mortality were highly variable among locations. Indeed 

local variation in the early life-history processes and adult mortality appears to dictate 

regional variability and observed latitudinal patterns of adult abundance of T. rosea, but 

longer-term studies spanning at least a decade may determine if storage from one strong 

year in recruitment can set patterns of adult abundance.  

Keywords 

Abundant centre hypothesis, early post-settlement mortality; Tesseropora rosea, adult 

mortality, geographic distribution, latitudinal gradient. 
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INTRODUCTION 

Biogeographic theory predicts that the abundance of a species is generally greatest at 

the centre of its range and least at its edges (Brown, 1984; Caughley et al., 1988; 

Sagarin and Gaines, 2002a; Sagarin and Gaines, 2002b). This ‘abundant centre’ 

hypothesis has been supported for many species of terrestrial plants, with adult 

abundance declining towards their geographic range limits because physiological stress 

reduces reproductive output and survival (Pigott and Huntley, 1981; Parsons, 1991; 

Woodward, 1997; Dorken and Eckert, 2001; Jump and Woodward, 2003; Mathews and 

Bonser, 2005). As for terrestrial plants, many benthic marine invertebrates have sessile 

adults and dispersive propagules and, consequently, their geographic patterns of 

abundance might be expected to conform to abundant centre distributions as a result of 

decreased larval supply and increased early post-settlement mortality of larvae from the 

centres to the edges of their range (Zacherl et al., 2003; Bahn et al., 2006; Gilman, 

2006a; Gilman, 2006b; Sanford et al., 2006). Dispersal in the ocean and recruitment 

variability into the benthic habitat is potentially much greater for benthic invertebrates 

than for most plants. However, the relatively few studies to date indicate that 

geographic patterns of adult abundance for benthic marine invertebrates generally do 

not reflect abundant centre distributions (Sagarin and Gaines, 2002a). 

For many benthic marine invertebrates with sessile adults and dispersive larvae, 

recruitment is a key demographic process structuring adult populations (Connell, 1985; 

Gaines and Roughgarden, 1985; Minchinton and Scheibling, 1991; Caley et al., 1996; 

Hunt and Scheibling, 1997). Recruitment integrates the arrival, settlement and early 

post-settlement mortality of larvae (Thorson, 1950; Keough and Downes, 1982) and, 

although these supply-side processes are often highly variable in space and time (see 
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Underwood and Fairweather, 1989; Caley et al., 1996; Hunt and Scheibling, 1997), they 

sometimes reflect latitudinal gradients of temperature, currents, wave exposure and 

nutrient availability in the ocean (Connolly and Roughgarden, 1998; Connolly et al., 

2001; Zacherl et al., 2003; Sanford et al., 2006). Consequently, the geographic 

distribution of benthic marine invertebrates, particularly as a species approaches its 

range limit, may be strongly influenced by latitudinal gradients in the supply and early 

life history of larvae. Alternatively, processes operating at more local scales in the post-

recruitment environment (e.g. storm events, habitat, microclimates, predation) could 

override larger-scale patterns of recruitment, that might determine geographic patterns 

of adult abundance (Helmuth, 1998). Measuring settlement and early post-settlement 

mortality of benthic marine invertebrates is often difficult, however, because larvae are 

small and often die soon after settlement. Few studies have measured these early life-

history processes simultaneously across large geographic scales (but see Caffey, 1985; 

Connolly et al., 2001; Hughes et al., 2002), but such studies can yield important insights 

into the processes setting the range limits of species. 

Along the linear coastline of southeast Australia, there is great potential for the 

population size of sessile marine invertebrates with planktonically dispersing larvae to 

decline with increasing latitude. First, the unidirectional East Australian Current (EAC) 

runs north to south along the east coast of Australia, and then weakens and deflects 

away from the coast at the southeast corner of the mainland (Knox, 1963; Huyer et al., 

1988; O'Hara and Poore, 2000; Oke and Middleton, 2001; Roughan and Middleton, 

2004). Second, seawater and air temperatures decline with the transition from 

subtropical to temperate regions with increasing latitude. Together, these latitudinal 

variations in oceanographic conditions and potential physiological stresses in the 
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benthic habitat are predicted to reduce fecundity of adults, increase early post-settlement 

mortality of early juveniles and diminish reliability in the supply of larvae from 

northern to southern populations (Murray-Jones and Ayre, 1997; Hidas et al 2007). 

Indeed, due to the absence of small individuals in southern locations Hidas et al. (in 

press) suggest recruitment events are less frequent for the intertidal barnacle 

Tesseropora rosea (Krauss) towards its southern range limit. 

Here we investigate whether a latitudinal gradient of recruitment drives adult population 

structure for the intertidal barnacle Tesseropora rosea, a species that disperses via 

planktonic larvae and with adult abundances indicative of an abundant centre 

distribution, with declines from the middle to the southern limit of its range at the 

southeast corner of mainland Australia (Hidas et al., in press). The only study to have 

assessed large-scale patterns of settlement and early post-settlement mortality for T. 

rosea found no latitudinal trends in recruitment, but only populations within the middle 

of its geographic range were examined (Caffey, 1985). We measured fecundity of adults 

and settlement and early post-settlement mortality of larvae (i.e. recruitment) for a 

cohort of T. rosea on rocky intertidal shores spanning 450 km of coastline to determine 

how geographic variation in these demographic processes were related to the patterns of 

abundance of individuals within the cohort surviving to adulthood at the end of that 

year. We predicted that a combination of reduced larval production, settlement and 

increased early post-settlement mortality of larvae from north to south accounts for the 

latitudinal decline in the abundance of T. rosea adults as they approach their southern 

range limit. We also monitored for two years recruitment into and mortality of adult 

populations to determine how local or geographic variation in these processes might 

account for the latitudinal gradient in population size.  
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METHODS 

Study region and species 

We monitored the production, settlement, and early post-settlement mortality of larvae 

and mortality of adults of the intertidal barnacle Tesseropora rosea from February 2007 

to December 2008 in mid shore regions at 2 sites on 11 rocky shores along the southeast 

coast of Australia. Rocky shore locations extended from Garie Beach south of Sydney, 

New South Wales (34°09’S, 151°04’E), within the middle of the geographic range of T. 

rosea, to Mallacoota, Victoria (37°34’S, 149°45’E), at its southern range limit (Bennett 

and Pope, 1953; Edgar, 2008) (Fig. 1). Occasionally, individuals of T. rosea are found 

in central Victoria (Jones, 1990), but they do not persist, probably due to colder 

environmental conditions. The rocky shores were selected to have the same rock type 

(sandstone), degree of wave exposure (moderate to exposed), slope (gradually sloping 

platforms) and aspect (facing east to southeast) to ensure abiotic conditions such as 

substratum, hydrodynamic processes and exposure to sunlight remained equivalent 

amongst locations. In situ data loggers (Onset TidbiT v2 Temp logger), recording air 

and water temperatures every 10 min,were deployed within the mid shore region at both 

Garie Beach and Mallacoota (i.e. the most northern and southern locations respectively) 

and confirmed that a temperature gradient exists across the study region with the 

maximum (50.8ºC) and minimum (5ºC) air temperatures at Garie Beach being greater 

than the maximum (42.3ºC) and minimum (3.8ºC) air temperatures at Mallacoota 

recorded continuously between December 2007 and December 2008. 

Adult T. rosea are hermaphroditic planktivores that release planktotrophic larvae 

predominantly from January to June with the larvae estimated to remain within the 
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water column for approximately 13 days (Wisely and Blick, 1964; Anderson and 

Buckle, 1983; Egan and Anderson, 1988). Although larval settlement may occur 

throughout the year, the vast majority settle between January and July with two peaks, 

one during January and February and then a second during May and June, with the peak 

in January to February generally being more prominent at northern locations, and vice-

versa for more southern locations (Caffey, 1985). We found that recently settled T. 

rosea grow quickly and become reproductively mature two to three months after 

settlement, with some individuals with aperture lengths as small as 1.5 mm possessing 

either gonads or mature or developing embryos (but see Egan and Anderson, 1988). 

Embryos are internally fertilised and brooded within the mantle cavity until they are 

ready to be released. Mature embryos are recognised as eyed nauplii (embryo stage V) 

(Anderson, 1969). From our observations embryo development in the mantle cavity is 

relatively synchronised so that the majority of embryos reach maturity at approximately 

the same time. We therefore scored individuals as being mature if eyed nauplii were 

present in the mantle cavity, or developing if embryos were present but immature 

(stages II-IV) (Anderson, 1969; see further details below). 

Sampling design and variables  

At each rocky shore location, we established two sites that extended 30 m alongshore 

and were separated by 10 to 30 m. At each site, 30, 10 cm  10 cm permanent quadrats 

were randomly located within the mid shore region characteristically dominated by T. 

rosea (0 to 1.6 m above the mean low water mark of neap tides: MLWN). Quadrats 

were positioned on horizontal to slightly sloping surfaces and separated by 0.5 m to 1 

m. A stainless steel screw was drilled into the centre of each quadrat to ensure that they 

could be accurately resampled over time. 
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We tracked individual barnacles in these 30 quadrats over time using digital 

photographs taken with a high-resolution digital camera (Fujifilm S9600), and 

comparisons of in situ counts and photographs showed this method to be accurate 

(Lathlean unpublished data). We photographed each quadrat monthly (February to July 

2007) during the main period of settlement for T. rosea (see Wisely & Blick, 1964; 

Caffey, 1985) then approximately quarterly until December 2008 (i.e. August and 

December 2007, February, May, August and December 2008). Recently settled T. rosea 

(individuals < 1 week old) could not always be distinguished from recently settled 

individuals of the barnacle Catomerus polymerus, but Catomerus polymerus recruits 

(individuals greater than 1 month old) were rarely observed, and constituted < 1% of the 

total number of barnacle recruits; therefore, any misidentification is unlikely to 

influence results. 

Geographic patterns of demography and population structure 

During 2007, settlement, recruitment, and adult density at each site were determined in 

separate quadrats, with 10 of the 30 quadrats randomly assigned to one of three 

treatments: ‘recleared’ quadrats, were cleared of all T. rosea at each sampling time and 

used to estimate settlement, ‘cumulative’ quadrats, which were cleared initially and then 

allowed to accumulate T. rosea recruits and used to estimate recruitment, and 

‘untouched’ quadrats, which were not cleared at any time and used to estimate adult 

density (see details below). From these estimates of abundance, mortality at each life 

history stage (early post-settlement mortality, post-recruitment mortality, adult 

mortality) was calculated (see details below). This approach differed somewhat from 

Caffey (1985) such that we did not alternatively clear quadrats once every 2-months. In 

doing so we were able to estimate the percentage of recruits surviving for more than 2-
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months and assess the likelihood that these recruits reach reproductive maturity and 

contribute to the size of the adult population.  

Settlement at a site was estimated by counting the number of recently settled T. rosea, 

as well as any empty tests from recent deaths of settlers, in the 10 ‘recleared’ quadrats. 

To ensure that we counted only recently settled individuals, recleared quadrats were 

cleared of all organisms at the start of the study in February 2007 and then again after 

each census. A metal brush was also used to remove any existing layer of biofilm within 

these recleared quadrats at each census. This may have caused us to potentially 

underestimate settlement, as settlement increases with the amount and age of biofilm 

(Qian et al., 2003; Thiyagarajan et al., 2006 but see Olivier et al., 2000) but was 

necessary to remove any confounding effects of increased amounts of biofilm within 

southern locations where adult densities were lower. Therefore, because we sampled 

only once per month our ‘settlers’ could be 1 to 30 days old. Undoubtedly, at this 

sampling frequency we missed some individuals that settled and died before they could 

be counted, and this could have resulted in an underestimation of the absolute 

magnitude of settlement and early mortality (see Minchinton and Scheibling, 1993). 

Nevertheless, Caffey (1985) found that for this species this frequency suitably 

differentiated settlement from recruitment. Settlement at a site was calculated as the 

sum of the number of T. rosea that settled in each of the 10 recleared quadrats for all 

months between February and December 2007.  

Recruitment at a site was estimated in the 10 ‘cumulative’ quadrats. These quadrats 

were cleared of all organisms once, in February 2007, and then settling barnacles were 

allowed to accumulate for the entire 2-year sampling period. Recruitment at a site was 
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calculated by summing the peak, or maximal, number of T. rosea recruits (i.e. 

individuals >30 days old) recorded within each of the 10 cumulative quadrats at any 

sampling interval between February and December 2007. Early post-settlement 

mortality was calculated as the percentage difference between settlement and 

recruitment. Likewise, post-recruitment mortality was calculated as the percentage 

difference between recruitment and the number of T. rosea remaining within cumulative 

quadrats in December 2007.   

Adult density at a site was calculated as the sum of the number of T. rosea adults (i.e. 

individuals with an aperture length >1.5 mm) within each of the 10 untouched quadrats 

in December 2007. Maximal adult density at a site was calculated as the sum of the 

maximal number of T. rosea adults recorded within each of the 10 untouched quadrats 

between February and December 2007. Adult mortality at a site was calculated as the 

percentage difference between ‘maximal’ adult density and adult density in December 

2007.  

Following the methods of Egan and Anderson (1988), the potential for larval production 

at each location was determined by quantifying the percentage of adults with developing 

(creamy to bright yellow coloured embryos) or mature ready to spawn (i.e. brown-eyed 

nauplii) larvae over time (Wisely & Blick, 1964; Egan & Anderson, 1988). Quantitative 

assessment of fecundity proved difficult because mantle cavities were often damaged 

when adults were prised from the substratum for examination. We collected at least 40 

adult T. rosea (i.e. individuals with an aperture length > 1.5 mm) once per month during 

the main breeding season (i.e. February to July, 2007), then again in August and 

December 2007, from areas outside the permanent quadrats and spread across both sites 
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at each location.  Adults were preserved, transported to the laboratory and the presence 

of developing larvae was assessed using a dissecting microscope. The proportion of 

adults at each location with either mature or developing larvae was calculated for all 

adults sampled over the entire year.  

Changes to population structure 

We monitored latitudinal changes in population structure by comparing densities of T. 

rosea within both the cumulative and untouched quadrats at each site at the beginning 

of the sampling period in February 2007 and again in both December 2007 and 2008. 

This allowed us to determine whether recruitment processes (i.e. settlement and post-

settlement mortality within cumulative quadrats) would return each population to its 

former abundance, or whether the adult population abundance initially observed persists 

through time (i.e. untouched quadrats). 

Statistical analysis 

We expected substantial variation among quadrats at a site and, given that our aim here 

was to determine how demographic and population parameters varied with latitude, we 

pooled densities of settlers, recruits and adults among recleared, cumulative and 

untouched quadrats, respectively, to yield one estimate of each for each site (i.e. n = 2 

sites per location). Due to extreme weather events and ephemeral algae or sand 

obscuring quadrats, we were unable to sample all sites in each month. For the months 

when sites were covered by sand, we assumed new settlers and recruits would have died 

and, therefore, we assigned values of zero for that month (and subsequent observations 

showed that this was generally the case). For months when sites could not be sampled 

due to bad weather or were obscured by algae, we excluded that site for that month and 
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sampled as previously described in the following month. This did not occur often, with 

only 7.8% of sites not sampled during the entire 2-year sampling period. Larval 

production, settlement, recruitment, early post-settlement mortality, post-recruitment 

mortality, adult mortality and adult densities were correlated with latitude to test for the 

presence of latitudinal gradients.  

We performed one-way ANOVA on (i) settlement, (ii) recruitment, (iii) early post-

settlement mortality, (iv) early post-recruitment mortality, (v) adult mortality, and (vi) 

adult density for the 11 locations. Where significant differences were found, a Student 

Neuman-Keuls (SNK) test was used to determine which locations had significantly 

different settlement, recruitment, early post-settlement mortality, post-recruitment 

mortality, adult mortality or adult densities. We confirmed that data were approximately 

normally distributed and with equal variance using the Shapiro-Wilks and Cochran’s 

test respectively. 

RESULTS 

Geographic patterns of demography  

The vast majority of adult T. rosea brooded developing and mature embryos at all 

locations throughout the range, but the proportion of adults with eyed nauplii did not 

vary across the geographic range or show any significant relationship to latitude (r2 = 

0.052, n = 10, P = 0.501) (Fig. 2a). 

Settlement at most locations was typically derived from single large pulses of larvae 

settling on shore sporadically from late summer to late autumn. Indeed, although not 

significantly different, densities of settlers varied greatly between sites at a location and 
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by more than an order of magnitude among locations (F10,11 = 2.37, P = 0.086), and 

there was no significant relationship between settlement and latitude (r2 = 0.013, n = 21, 

P = 0.613) (Fig. 2b). 

There was great early post-settlement mortality at all locations, with an average of 

79.4% of newly settled T. rosea dying by December 2007 (Fig. 2c), and as for 

settlement no latitudinal decline in early post-settlement mortality was detected (r2 = 

0.005, n = 21, P = 0.752). Densities of recruits varied significantly among locations 

(F10,11 = 3.20, P = 0.035) with an SNK test indicating that the number of recruits at 

Mimosa Rocks was greater than at all other locations (Fig 2d). Interestingly, recruitment 

of T. rosea was largely reflective of settlement as locations that received large numbers 

of settlers generally had a larger number of recruits. For example, Mimosa Rocks 

received the greatest number of settlers and subsequently had the greatest number of 

recruits (Fig. 2b and d). Additionally, though not as great as early post-settlement 

mortality, post-recruitment mortality was also great and varied significantly among 

locations (F10,11 = 5.86, P = 0.004), with an average of 70% of recruits dying by 

December 2007, with a SNK test finding substantially lower mortality at Gerroa, 

Haycock Point and Mimosa Rocks (Fig 2e).  

Adult mortality was substantial at all locations, with on average 72.5% of adult 

barnacles dying during 2007 (Fig. 2f). Nevertheless, adult mortality was highly variable 

between sites and not significantly different among locations (F10,11 = 0.857, P = 0.953), 

being greatest at Kioloa (95.3%) and least at Wollongong (43.7%). Similar to larval 

production, settlement, early post-settlement mortality, recruitment and post-recruitment 
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mortality, no latitudinal gradient was found for adult mortality (r2 = 0.07, d.f. = 21, P = 

0.231).  

Changes to population structure 

There was a significant linear relationship between the density of adult Tesseropora 

rosea and latitude at the start of sampling in February 2007, with adult abundance 

declining substantially from the middle to the edge of its range (r2 = 0.36, n = 21, P = 

0.003) (Fig. 3c). But as a result of the consistently high and variable early post-

settlement mortality, post-recruitment mortality and adult mortality, by the end of 

sampling in December 2008 there was no latitudinal gradient in adult abundance within 

either untouched (r2 = 0.17, n = 21, P = 0.054) or cumulative quadrats (r2 = 0.028, n = 

21, P = 0.455) suggesting the original latitudinal decline in adult abundance neither 

persists nor becomes re-established in time (Fig. 3b and e).  Indeed, there were no 

latitudinal patterns for any demographic process examined, with local variability in 

adult mortality appearing to drive geographic patterns of adult abundance. 

DISCUSSION 

At the start of the study populations of the rocky shore barnacle Tesseropora rosea 

displayed abundant-centre patterns of geographic distribution with an inverse 

relationship between density and latitude from the middle to the southern limits of its 

range.  Contrary to expectations, however, we detected no latitudinal gradients in the 

key demographic processes expected to contribute to this pattern, including larval 

production, settlement, early post-settlement mortality or recruitment. Indeed, it appears 

that variations in recruitment and adult mortality due to local forces might make the 
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greatest contribution to geographic patterns of abundance and apparent latitudinal 

trends. 

Larval production was relatively uniform among locations, suggesting that the reduction 

in seawater and air temperatures towards the southern range limit does not limit the 

ability of T. rosea to produce larvae. This is perhaps surprising because studies have 

shown that such differences in seawater temperatures can influence the reproductive 

ability of benthic marine invertebrates (Brey, 1995; Vilchis et al., 2005), and field 

investigations have detected reduced fecundity at range limits due to changes in 

seawater temperature (Barber and Blake, 1983; Amaro et al., 2005). However, Helmuth 

et al. (2006) assessed body temperatures of the intertidal mussel Mytilus californianus 

across a latitudinal gradient in sea surface temperatures and found that body 

temperatures were often hotter or colder than was predicted from sea surface 

temperatures. Consequently, the lack of a latitudinal decline in larval production within 

the present study may reflect complex interactions between air and sea surface 

temperatures. Larval production has also been shown to be directly associated with food 

availability (Leslie et al., 2005). Therefore, more quantitative sampling of larval 

production could reveal differences among locations that either experience different air 

or sea temperatures or food concentrations. Similarly, we expected the reduction in 

seawater temperatures towards the southern range limit of T. rosea to reduce larval 

settlement and increase early mortality (Gaylord and Gaines, 2000; Sprung, 2001; 

Zacherl et al., 2003). Instead, settlement was largely sporadic and unpredictable, with 

locations separated by hundreds of kilometres simultaneously receiving large pulses of 

newly settled T. rosea while adjacent locations receiving relatively few settlers. This 

supports work by Caffey (1985), who found highly variable settlement of T. rosea at 
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large spatial scales and no clear latitudinal trend for this species in the central region of 

its geographic distribution.  

The lack of latitudinal trends in the production and settlement of larvae suggests that 

populations in the middle and edge of the range receive similar levels of larval supply 

and settlement success (Hughes et al., 2002). This contrasts with expectations that larval 

supply would be reduced as T. rosea approaches it’s the southern range limit due to a 

combination of reduced larval production and increasingly unreliable larval transport by 

the East Australian Current from north to south.  Indeed, there is no evidence indicating 

that recruitment limitation, either through limited larval supply and settlement or 

increased early mortality, is influencing local populations at the southern range limit of 

T. rosea. 

Early post-settlement mortality of T. rosea was found to be consistently high among all 

locations and was on average 79%, which is considerably higher than the average of 

66.5% detected by Caffey (1985). Likewise, the adult mortality among all locations was 

extremely high for a 1-year period when compared to similar studies undertaken over 

shorter sampling periods (Denley and Underwood, 1979; Caffey, 1985; Jernakoff, 1985; 

Otway and Underwood, 1987). For example, Otway & Underwood (1987) found adult 

mortality of T. rosea to vary between only 14% and 18% over 13-months, while 

Jernakoff and Fairweather (1985) found adult mortality to vary between 0.5% and 2.5% 

over a 3-month period. Numerous factors such as biological and physical disturbances, 

physiological stress, predation and competition are known to influence the mortality of 

newly settled benthic marine invertebrates at small spatial scales (for review see Hunt 

and Scheibling, 1997). For T. rosea specifically the major causes of early post-
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settlement mortality are algal growth, ‘bulldozing’ by grazing limpets and intraspecific 

competition (Denley and Underwood, 1979; Underwood et al., 1983; Jernakoff, 1985), 

with the predatory whelks Morula marginalba and Dicathais orbita being the most 

likely causes of adult mortality (Underwood et al., 1983; Fairweather, 1984; Moran, 

1985). However, whether predation by M. marginalba and D. orbita continues to 

influence populations over large spatial scales has yet to be answered. In addition, it is 

unlikely that interspecific competition between T. rosea and Catomerus polymerus, 

another intertidal barnacle more commonly found within southern parts of Australia, 

contributed to the high levels of early post-settlement mortality and adult mortality of T. 

rosea documented within this study as (i) larval settlement between these two species 

occur at different times of the year (Wisely and Blick, 1964), (ii) C. polymerus 

abundance was generally low and (iii) free-space did not appear to be a limiting factor 

within southern locations where densities of C. polymerus were somewhat greater. 

However, further research is required to understand what role, if any, competition 

between T. rosea and C. polymerus plays in determining the southern range limit of T. 

rosea. 

Latitudinal gradients in settlement and recruitment may be attributed to differential 

coastal upwelling, as increased upwelling reduces larval concentrations within coastal 

waters and subsequently reduces settlement as more larvae are transported offshore, 

limiting contact with their preferred substrata (Gaines et al., 1985; Roughgarden et al., 

1988; Connolly et al., 2001; Menge et al., 2004). Consequently, the highly variable 

patterns of settlement detected within the present study could reflect variable upwelling 

along the southeast coast of Australia (Roughan and Middleton, 2004) and geographical 

variation in topographic features that assist in retaining larvae (Jenkins and Hawkins, 
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2003; Mace and Morgan, 2006). However, since many oceanographic studies have 

revealed only weak upwelling along this coast (Roughan and Middleton, 2004), it is 

unlikely that variable upwelling is the only contributing factor to variable settlement. 

This highly variable settlement could also suggest that larval physiological condition 

varies significantly within the study region as recent studies have shown larval 

condition, which can be determined by variable temperature and food concentrations 

(Desai and Anil, 2004), to strongly influence the settlement (Thiyagarajan et al., 2002; 

Tremblay et al., 2007) and early post-settlement growth and survival (Thiyagarajan et 

al., 2005; Emlet and Sadro, 2006) of larvae. Therefore, local processes may be equally 

important as regional processes in setting patterns of adult abundance and potentially 

the geographic distribution and southern range limit of T. rosea. 

The absence of latitudinal gradients in larval production, settlement, early post-

settlement and adult mortality suggest that these life history processes are not 

responsible for the latitudinal decline in adult abundance or the southern range limit of 

T. rosea. However, the exceptionally high mortalities of both recently settled and adult 

T. rosea significantly reduced adult densities such that by the final census adult 

densities no longer declined towards the southern range limit suggesting an 

exceptionally large disturbance had occurred, obscuring important relationships. Indeed, 

the shift from an El Niño to a La Niña pattern during 2007 may have attributed to 

several atypical oceanographic features, including four unusually large consecutive low 

pressure systems crossing the Tasman Sea in June 2007, causing strong predominantly 

southerly swells over the study area, at times in excess of 7 m (Australian Bureau of 

Meteorology, 2007). Increased sand scour caused by such an oceanographic regime 

would presumably have had a significant impact on large-scale patterns of settlement, 
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early post-settlement and adult mortality of T. rosea. Such large southerly swells are 

seasonally common during winter along the southeast coast of Australia (Short and 

Trenaman, 1992). Therefore, T. rosea recruits may experience increased mortality 

during winter each year, with survival favouring earlier settling individuals that 

managed to reach a specific size. Alternatively, the average life expectancy of adult T. 

rosea is only 4-years (Caffey, 1985). Consequently the high adult mortality detected in 

this study may be reflective of the senescence of a large cohort that gave rise to the 

initial latitudinal decline in adult abundance simultaneously dying off. However, adult 

mortality appeared to occur irrespective of size or age, suggesting mortality was high 

across several cohorts within each location. Regardless, demographic processes 

operating over 2 years have greatly influenced the population structure of T. rosea, 

suggesting that infrequent events could potentially have longer lasting impacts than 

patterns of settlement, early post-settlement and adult mortality combined over 

numerous years. 

Geographic patterns of adult abundance might of course reflect environmental cycles 

with longer periodicity than most studies, including this one.  For example, geographic 

patterns might develop over time due to changing environmental conditions, such as the 

prolonged El Niño conditions in southeast Australia from 2001 to 2006 (Australian 

Bureau of Meteorology, 2007), influencing demographic processes gradually. 

Alternatively, observed patterns of decreasing adult abundances with latitude might 

reflect “stored” patterns determined by a year of great recruitment combined with 

different environmental conditions to those observed during this study. Such large 

recruitment events appear common for T. rosea and might lock in latitudinal patterns of 

adult abundance for the lifespan of the species, which can be 10 years (Denley, 1981; 
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Caffey, 1985). Only massive mortality such as observed in the present study might 

disrupt such geographic trends.  Clearly longer-term observations are needed in both 

cases; importantly, however, results here indicate that such latitudinal patterns are 

dynamic.  The great variability in settlement and early mortality over geographic scales 

observed here suggest that, for sessile marine invertebrates with planktonic dispersing 

larvae, factors that act at a local scale (e.g. recruitment, mortality, natural disturbance), 

scale might be more important in setting geographic patterns of distributions than 

differences in larval supply, settlement and early mortality with latitude.  

Conclusion 

The latitudinal decline in adult abundance of T. rosea towards its southern range limit 

does not appear to be governed by latitudinal gradients in early life-history processes or 

adult mortalities. Therefore, either processes affecting the life-history stages of T. rosea 

do not influence the abundance at its southern range limit, or these life-history processes 

must be extremely variable between years such that (i) large-scale patterns of larval 

production, settlement, early post-settlement and adult mortality during a single year 

dictate demographic patterns for numerous years, or (ii) the combined affect of life-

history processes over numerous years determines large-scale demographic variability. 

Regardless, it is evident that more long-term, large-scale studies are required to 

confidently conclude which processes determine the southern range limit of T. rosea 

and the range limits of benthic marine invertebrates in general. 
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FIGURE CAPTIONS 

Figure 1. Map showing the coast of south eastern Australia and sampling locations 
separated by 10 to 80km. The inset map shows the geographic range of T. rosea (shaded 
area) and the Eastern Australian Current with shading black to white representing strong 
to weak influence. 

Figure 2. Latitudinal variation in the (a) proportion of adult T. rosea with either mature or 
developing larvae; (b) mean settlement; (c) mean percentage mortality of recently settled T. 
rosea, (d) mean recruitment, (e) mean post recruitment mortality, and (f) mean percentage adult 
mortality during 2007. Error bars represent standard errors due to variation between pairs of 
sites at each location. 

Figure 3. Latitudinal variation in the density of T. rosea for both cumulative and 
untouched treatments in February and December 2007, and December 2008. Error bars 
represent standard errors due to variation between pairs of sites at each location.  
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