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Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous
conditions

Abstract

Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is
unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low
hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis.
To examine enzyme function in the absence of solvation and bypass diffusional constraints we have
tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a
reaction system of defined water content and where the substrates and products are gaseous. At
hydrations of 3 (52) molecules of water per molecule of enzyme, activity is several orders-of-magnitude
greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast (%nanosecond) global
anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither
hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that
one of the biological requirements of water may lie with its role as a diffusion medium rather than any of
its more specific properties.
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ABSTRACT Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear.
Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents,
such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solva-
tion and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an
anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydra-
tions of 3 (£2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic
catalysis. Neutron spectroscopy indicates that the fast (<nanosecond) global anharmonic dynamics of the anhydrous functional
enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by
this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any

of its more specific properties.
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An understanding of the role of hydration in enzyme activity
is a central question in molecular biophysics (1-10).
Previous work has indicated that the hydration required
for activity is below the monolayer coverage (11-17). For
instance, pig liver esterase (PLE; molecular mass of mono-
meric form ~60,070 Da) has been found to have hydrolytic
activity at a hydration level of 0.03 g water/g enzyme (h) at
room temperature; i.e., ~100 water molecules per molecule
of protein (15). PLE is useful for low hydration studies
because water is neither a substrate nor a product in the
alcoholysis reactions catalyzed. For our study, the acyl
transfer between methyl butyrate and propanol was fol-
lowed by headspace analysis. The isotopic labeling of water
molecules and its quantification by mass spectrometry is one
of the most sensitive (18) methods of water determination.
This method is used here to quantify low levels of PLE
hydration and, accompanied by activity measurements and
neutron spectroscopic experiments, has allowed the correla-
tion of protein hydration with flexibility and activity. The
role of water as a reactant or as a diffusion medium for
the products and substrates of the reaction is precluded
here by the use of a gas phase transesterification catalytic
system.

Fig. 1 shows that enzyme activity is observed at all hydra-
tion levels investigated.

The lowest hydration achieved (see the inset to Fig. 1) is
3 (*+2) water molecules per molecule of protein. This
hydration level may relate to the presence of internal water

molecules that cannot be removed by the method we have
used, but with current analytical methods this is difficult
to verify experimentally, and there is a significant possibility
that the enzyme is actually anhydrous at this reported hydra-
tion. The hydration level at which activity is observed is thus
very much lower than the 0.2 g of water per g of protein (h),
i.e., amole ratio >600, conventionally taken to be necessary
for enzyme activity, and represents a qualitatively lower
hydration regime. The first stage of any protein sorption
isotherm consists of the hydration of the ionized groups at
the protein surface, up to ~0.05 & (19). The data here show
that enzyme activity occurs and increases up to this level of
PLE hydration. Although the enzyme rates are low, they are
at least one-order-of-magnitude higher than the uncatalyzed
rate. At very low hydrations there is no clear correlation
between activity and hydration, so although completely
anhydrous enzyme may not have been achieved, enzyme
activity at zero hydration seems likely. Water that interacts
directly with the protein surface has been generally thought
to play a major role in protein function (4). Because a water
content as low as 3 *= 2 water molecules per molecule of
PLE represents an insignificant coverage of the charged
groups of the protein surface, the evidence here indicates
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FIGURE 1 Enzyme activity with respect to propyl butyrate

(lines) and methanol (dashed lines) production in the gas phase,
as a function of the protein hydration. (/nset) Blow-up of the very
low hydration region of the plot.

that surface hydration water is not essential for PLE activity,
although it may facilitate it.

With PLE being active at hydration levels close to zero,
any motions required for the onset of enzyme activity are
not likely to be dependent on hydration. Although water
seems to play a major role in protein dynamics, previous
work on xylanase in cryosolvent has revealed that this
enzyme may be active while apparently rigid (20).

Thus, any correlation among enzyme hydration, dynam-
ics, and activity is still not clear (21,22). To examine the
fast motions of the enzyme, the average internal atomic
mean-square displacement of PLE, (1?), was determined
by neutron scattering with the INS time-of-flight spectrom-
eter (23) and the IN16 backscattering spectrometer (see the
Supporting Material) at the Institut Laiie-Langevin, Greno-
ble, France. These measurements were performed on dried
or hydrated powders for activity measurements.

In Fig. 2, () is shown as a function of temperature for
three different hydrations.

The curve for the fully hydrated control, (0.5 /), exhibits
a change in slope at ~220 K—this is the so-called dynamical
transition or glass transition of the protein, where the protein
motions apparently pass out of the timescale window of the
instrument (24,25). The activation of motions at the dynam-
ical transition has been associated with protein function.
For the two other lower-hydration samples, the anharmonic
motions that are reflected in the increased slope above the
dynamical transition are strongly suppressed, consistent
with their being largely solvent-driven (7,26,27). These
results are consistent with an interpretation that water
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FIGURE 2 (u?) of PLE as a function of the temperature for the
three hydrations measured and obtained from data collected
with IN16 and IN5 (23).

decreases the energy barriers between local minima, as is
required for the onset of diffusive motions of the protein
atoms (7,28). However, we note that NMR has shown that
the inherent inhomogeneous temperature dependence of
motion predicts the dynamical transition, consistent with it
not being a product of solvent slaving per se (29). Because
of the differing energy resolutions of the respective instru-
ments, IN16 (Fig. 2) probes motions on a nanosecond time-
scale whereas INS (Fig. 2) probes motion on a picosecond
timescale. With IN16, a steeper change in slope with hydra-
tion is observed than for IN5 (23), indicative of the effect of
the energy resolution on the mean-square displacement:
IN16 has a finer resolution and thus incorporates additional,
slower motions into the mean-square displacement.

CONCLUSIONS

Our work shows clear evidence that the activity of PLE does
not necessarily require that the enzyme be significantly
hydrated: within the limits of the water detection method
used, activity at very near zero hydration has been observed.
Itis important to realize that the hydration level of 3 + 2 isan
average, and that those enzyme molecules in the sample
exhibiting the residual activity might be significantly more
highly hydrated. Whether our results can be generalized to
all enzymes is an open question. Perhaps pig liver esterase
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is comparatively rigid, requiring only stabilization of the
transition state of the catalyzed reaction, consistent with
the idea that electrostatic preorganization accounts for the
observed catalytic effects of enzymes, rather than dynamical
effects (30). Other enzymes such as those involving mechan-
ical displacements may require higher hydration levels.
Our results raise general questions concerning the role of
surface hydration in enzyme activity. Clearly hydrolysis
reactions require the participation of water molecules, and
some proteins contain strongly-bound structurally important
water molecules that may be difficult to remove by drying.
However, the results show that, in principle, although hydra-
tion facilitates activity (probably due to the dynamical effects
manifested above the glass transition in the neutron spectra in
Fig. 2), significant solvation is not an absolute requirement.
Given that water is the only readily-available terrestrial
liquid solvent, it is unsurprising to find its incorporation
in proteins, and dependence upon it as diffusion medium.
Howeyver, our results are consistent with the main role of water
in enzymology being a (nonspecific) solvent and diffusion
medium rather than a chemically unique essential component.

SUPPORTING MATERIAL

One figure and additional details are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(10)00975-6.
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Supplementary material

Protein preparation

Pig liver esterase (PLE) (150 units/mg, EC 3.1.1.1) was obtained from Sigma, and further partially purified
using Fast Flow Q Sepharose. The enzyme powder was dried over high grade phosphorus pentoxide P,Os >
99.99 % (Aldrich). To reach different hydration levels, the equilibration time of the protein over P,O5 has been
extended (one, two or four weeks) and the temperature changed eventually from room temperature to 65°C over
two weeks drying for the second lowest hydration point.

Water quantification

The protein powder was equilibrated against 1 g of pure '*O-labeled (‘0 atom >95%), Cambridge Isotope
Laboratories (CIL, USA) water for 2 to 3 days in a confined environment until a hydration level of 30-40 %
(w/w) was reached. After drying, the enrichment in 'O of the protein sample was determined by mass
spectrometry.

Gas phase activity measurements

The alcoholysis reaction studied here is the transfer of a butyl group between methyl butyrate and propanol
catalysed by the pig liver esterase:

Methyl butyrate + propanol = methanol + propyl butyrate

The mechanism of this reaction catalysed by PLE implies the formation of an acyl-enzyme intermediate and
the release of the product alcohol, followed by the release of the product ester as described in the figure below.
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Figure 1: Alcoholysis supposed reaction mechanism.

In a elementary reaction, the ratio of the number of molecules of products produced should be one BUT the
alcoholysis reaction is a two step réaction and each step has its own rate and its own regulation. Usually the
second step is the limiting step. It is not surprising to find that water act differently on each step of the reaction.
In addition, methanol which is the first product released is known to activate the first step. Thus methanol
probably promotes its own synthesis here. Another reason to this observation is that we are measuring initial
rates (Greenzaid P. & Jencks W.P. 1971. Biochemistry.10(7):1210-22)

The enzyme catalysed rate of butyl transfer between the methyl butyrate and propanol was measured using
gas phase chromatography in a dual-mininert” system, allowing the drying of 5 mg of enzyme powder and
isolation of the drying agent before measurement of the enzyme activity. The gas phase chromatograph (Varian
3000) was equipped with a flame ionization detector and a slightly polar packed column (Chromosorb 101,
Supelco). The column was maintained at 170 °C. The flow rates were 30 mL/min for the dry N, and H,, and 300
mL/min for the dry air. The control (non-enzymic) rate was zero in the conditions of our experiments (less than
0.5 pmol/min/mg).

Neutron Scattering

The samples were prepared and analysed in the manner described in (24). The incident neutron wavelengths
were 5.1 A and 6.27 A on IN5 and IN16, respectively. All data were collected with the sample holder oriented at
135° relative to the incident beam. The samples were contained in aluminium flat-plate cells, of 0.3 mm
thickness. Spectra were measured with a temperature ramp starting at 80 K and increasing to 300 K in steps of
10 K every half an hour. The measured transmission for all the samples was 0.96 indicating that multiple
scattering was negligible.
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