
AUTHOR’S ACCEPTED MANUSCRIPT

Learning to Code Through Web Audio: A
Team-Based Learning Approach*

ANNA XAMBÓ,1 ROBIN STØCKERT,2 ALEXANDER REFSUM JENSENIUS,3 AND SIGURD SAUE2

(anna.xambo@dmu.ac.uk) (robin.stockert@ntnu.no) (a.r.jensenius@imv.uio.no) (sigurd.saue@spotics.no)

1Music, Technology and Innovation - Institute for Sonic Creativity (MTI2), De Montfort University, Leicester, UK
2Department of Music, Norwegian University of Science and Technology, Trondheim, Norway

3RITMO, Department of Musicology, University of Oslo, Oslo, Norway

In this article, we discuss the challenges and opportunities provided by teaching program-
ming using web audio technologies and adopting a team-based learning (TBL) approach among
a mix of co-located and remote students, mostly novices in programming. The course has been
designed for cross-campus teaching and teamwork, in alignment with the two-city master’s
programme in which it has been delivered. We present the results and findings from: (1) stu-
dents’ feedback; (2) software complexity metrics; (3) students’ blog posts; and (4) teacher’s
reflections. We found that the nature of web audio as a browser-based environment, coupled
with the collaborative nature of the course, were suitable for improving the students’ level
of confidence about their ability in programming. This approach promoted the creation of
group course projects of a certain level of complexity, based on the students’ interests and
programming levels. We discuss the challenges of this approach, such as supporting smooth
cross-campus interactions and assuring students’ pre-knowledge in web technologies (HTML,
CSS, JavaScript) for an optimal experience. We conclude by envisioning the scalability of this
course to other distributed and remote learning scenarios in academic and professional settings.
This is in line with the foreseen future scenario of cross-site interaction mediated through code.

0 INTRODUCTION

Programming can be considered an essential component
of technology literacy, which is one of the identified skills
of the 21st century [1]. There are no written rules on how
to teach programming, but there exist studies with recom-
mended teaching techniques, especially looking at how
novices learn to program [2]. Motivation is a relevant factor,
which can be enhanced with more interdisciplinary ways
of learning, such as through so-called STEAM-based ed-
ucation, i.e. combining science, technology, engineering,
arts, and mathematics [3]. It has been reported that teach-
ing programming based on STEAM principles promotes a
higher level of creativity [4]. It can also attract the interest
of underrepresented populations in computing fields [5],
which can provide a more diverse environment.

*This is the Author’s Accepted Manuscript. This manuscript
has been accepted for publication on 2 September 2020: Anna
Xambó, Robin Støckert, Alexander Refsum Jensenius, and Sigurd
Saue, “Learning to Code Through Web Audio: A Team-Based
Learning Approach,” J. Audio Eng. Soc., vol. 68, no. 10, pp. 727–
737, (2020 October.). Please refer to the published version here:
http://www.aes.org/e-lib/browse.cfm?elib=20989.

The educational research project Student Active Learning
in a Two Campus Organization (SALTO)1 aims to promote
cross-campus learning as a future scenario in education [6].
Novel teaching strategies are investigated, such as team-
based learning (TBL) [7], active learning [8] and flipped
classroom [9]. A new international master’s programme
is related to this educational scheme named Music, Com-
munication and Technology (MCT),2 which is a collabo-
ration between the Norwegian University of Science and
Technology (NTNU) in Trondheim and the University of
Oslo (UiO). The combination of simultaneous co-located
vs remote learning is mediated through high-quality and
low-latency audiovisual communication technologies [10].
The students are recruited with a broad range of artistic, sci-
entific, and technological backgrounds. In the MCT courses,
students often work together in interdisciplinary teams be-
tween the two campuses.

This article builds on our previous research [11], where
we focused on understanding how to teach programming
to novices within a TBL context more effectively. Here,
we focus instead on the nature of the collaboration in a
TBL context and how web audio programming can be a

1https://www.ntnu.edu/salto
2https://www.ntnu.edu/studies/mmct

http://www.aes.org/e-lib/browse.cfm?elib=20989
https://www.ntnu.edu/salto
https://www.ntnu.edu/studies/mmct


XAMBÓ ET AL. AUTHOR’S ACCEPTED MANUSCRIPT

useful and affordable strategy to support both co-located
and distributed collaboration when learning to code. The
research question that this article addresses is: What are the
challenges and opportunities of using web audio to teach
programming to a mixed cohort of co-located and remote
students, who are mostly novices in programming, by adopt-
ing a team-based learning approach? We hypothesise that
using web audio technologies in a TBL context is a suitable
approach to learning to code in a cross-campus scenario.
The contributions of this article include a follow-up data
analysis from [11], which investigates software complexity
and students’ blog posts in addition to students’ feedback
and teacher’s reflections. Overall, the results and findings
indicate that the nature of web audio as a browser-based en-
vironment, and the collaborative nature of the course, were
suitable for improving the students’ level of confidence
about their ability in programming. The students were sat-
isfied with their final course group projects, which had a
certain level of complexity, and were related to the students’
interests and programming levels. To conclude, we discuss
the scalability of this course to other distributed and remote
learning scenarios.

1 RELATED WORK

Our previous research highlighted how collaborative mu-
sic live coding, which refers to the combination of the music
improvisation practice of live coding and collaborative pro-
gramming, is a promising learning strategy of programming
[12]. In a more recent study on teaching physical computing
to mostly novices [13], we also found that programming
is a difficult skill to learn in a short period, as opposed to
prototyping.

Web audio technologies have been successfully used in
programming courses based on STEAM principles. For ex-
ample, it was used in a summer programming music camp
[14] to teach creative coding concepts through music by
using different web audio libraries and frameworks, such
as Gibber [15] and Tone.js [16]. Other courses are more
focused on a particular library or environment. The Quint.js
is a JavaScript library that combines visuals and audio to
create interactive audiovisual programs and was used to
teach music technology concepts to fine arts students [17].
EarSketch is a learning environment and curriculum that
promotes coding through music-making, and is reported to
have broadened participation in computing and music, par-
ticularly women [5]. Codecircle is a browser-based system
for learning creative coding that supports real-time graphics
and sound [4].

In this article, we present our strategies for teaching an
audio programming course to an interdisciplinary group
of students who are mostly novices in programming. We
used a similar approach to [14] of exposing the students
to different libraries and frameworks related to web audio,
with the final aim of creating their project. This was also
inspired by [18], who recommended to expose students to as
many computer music languages as possible as a foundation
for their future careers.

Te
am

 B Oslo

Trondheim

Te
am

 C

Te
am

 A

Fig. 1: The distribution of teams across the two campuses.

2 THE COURSE

2.1 Context
The MCT4048 Audio Programming course is an elective

master course run in the Spring semesters. The aim is to
provide a solid foundation in digital signal processing and
audio-based application development. The integration of
relevant technologies and platforms plays an important part
to develop user-ready applications. There were several rea-
sons for choosing web audio technologies for this course,
namely:

• It is written in JavaScript, a modern programming
language.

• It showcases the fundamental concepts of audio pro-
gramming.

• It is relatively fast to get prototypes built.
• It can be widely distributed and freely accessed.
• It gives room for artistic expression.
• It is an employable skill.

2.2 Students
For the course edition analysed in this article, the number

of students was 11 between the two campuses (2 women and
9 men), with 4 students in Oslo and 7 students in Trondheim.
The group was international with students from Europe
and Asia. English is the language required in the master’s
programme, so all students were fluent in English. Their
backgrounds in programming were varied, predominantly
novices. Three teams (Teams A–C) were formed during the
second part of the course to create a final group project (see
Figure 1). Two of the teams were cross-campus while one
group was co-located. It is beyond the scope of this article to
analyse the differences between both conditions. We focus
instead on discussing a teaching approach that suits both
scenarios, where it is assumed that a cross-campus scenario
is more demanding compared to a co-located scenario.

2.3 Curriculum
We proposed a course model that works with the assump-

tion that students have basic knowledge of web technologies
(HTML, CSS, JavaScript) and some background in music
(performance, production, theory). The course design also
assumed that there is enough time for the students to de-
velop both individual and group programming skills.

The course combined lectures and hands-on activities.3

The lectures provided an overview of the fundamental con-
cepts of audio programming. The hands-on workshops were
based on building web applications using web audio tech-

3Slides and code are available online at: https://github.com/
axambo/audio-programming-workshop

https://github.com/axambo/audio-programming-workshop
https://github.com/axambo/audio-programming-workshop


AUTHOR’S ACCEPTED MANUSCRIPT LEARNING TO CODE THROUGH WEB AUDIO

Fig. 2: Illustrations of the final student projects in the course. From left to right: (a) Touch the Alien, an interactive
synthesizer, (b) Magic piano, a piano for children, and (c) Convolverizer, live processing of sound (artwork by Shreejay
Shrestha).

nologies, both individually and in teams. The assessment of
the course included the daily activity of the students and the
results of two mini-projects that incorporated theory and
practice seen in class.

Since it is part of a research-based master’s programme,
this course combined research-based activities with devel-
opment activities. The course spanned 7 hours per day for 8
days (56 hours in 2 weeks). Each session began with setting
up the students’ computers with the tools for the tutorial of
the day.

The first week was named “The Fundamentals,” during
which the students were asked to develop an individual mini-
project. This allowed each student to work individually, fa-
miliarise themselves with the programming environment
and find their way of expression (as if they were learning to
play a musical instrument). The second week was named
“The Extensions,” during which the students were asked to
develop a group mini-project. The students were exposed to
additional features that could be useful to develop a more
complex and complete prototype. It was expected that dur-
ing the second week, the students should be more fluent in
programming. The allocated class time for the mini-projects
was 9.5 hours for the individual mini-project and 12.5 hours
for the group mini-project. The general outline of the course
was as follows:

• The Fundamentals & Individual Project (Week 1):
• Introduction Day: Paper discussion about lan-

guages for computer music [19]. Discussion
about the different languages and why to use
the Web Audio API. Discussion and exercise
about pseudocode.

• Day 1: Warm-up discussion activity about the
pros and cons of Web Audio (the outcome can
be found in our previous related paper in the
form of a mind map [11]). Tutorial of playing
sounds. Individual mini-project development
(3.5 hours).

• Day 2: Warm-up discussion activity on an item
learned the previous day in class. Tutorial of
dealing with time using Tone.js [16]. Individ-
ual mini-project development (2 hours). Speedy
presentations of the projects.

• Day 3: Web Audio Conference (WAC) paper
presentations part 1 (first half of the group,

one paper per student). Tutorial of dealing with
sound effects. Individual mini-project develop-
ment (2 hours). Speedy presentations of the
projects.

• Day 4: WAC paper presentations part 2 (sec-
ond half of the group, one paper per stu-
dent). Tutorial of graphical user interfaces using
NexusUI.js [20]. Individual mini-project devel-
opment (2 hours). Final project presentations.
Personal blog post writing on the project.

• The Extensions & Group Project (Week 2):
• Day 5: Recap quiz of week 1. Tutorial on in-

teractivity using Web MIDI API.4 Group mini-
project development (2.5 hours).

• Day 6: Warm-up discussion activity on live
coding. Tutorial of live coding using Gibber
[15]. Group mini-project development (2 hours).
Speedy presentations of the projects.

• Day 7: Tutorial of mobile music and respon-
sive design. Group mini-project development (4
hours). Speedy presentations of the projects.

• Day 8: Tutorial of AudioWorklets [21]. Group
mini-project development (4 hours). Final
project presentations. Group blog post writing
with reflections on the project.

At the beginning of the course, the teacher and students
decided to work with the same code editor (Visual Studio
Code) and web browser (Chrome). This facilitated that all
students could follow the hands-on tutorials and could de-
bug in collaboration or show their problems to the teacher
or group if needed.

3 THE FINAL STUDENTS’ PROJECTS

During the first week, the students developed a total num-
ber of 10 individual mini-projects, whilst in the second
week, the students developed three group mini-projects. A
total number of 13 blog posts about each mini-project were
written. The blog posts were delivered as assignments with
a suggested structure to follow (see Section 4.3). In most
cases, the students explained how the system worked tech-

4http://webaudio.github.io/web-midi-api

http://webaudio.github.io/web-midi-api


XAMBÓ ET AL. AUTHOR’S ACCEPTED MANUSCRIPT

nically and conceptually. They often also shared their code
via a code repository and demonstrated how the system
worked with embedded videos or live demos. Next, a brief
description of the three group mini-projects is provided.

3.1 Touch the Alien
As shown in Figure 2a, this project is a web audio syn-

thesiser offering touchscreen functionality suitable for a
smartphone or tablet. The audio engine is a combination of
oscillators and effects (e.g. delay, phaser, chorus). It is possi-
ble to control the filters via an interactive canvas, combined
with buttons and sliders. The technologies used include
Javascript with the Web Audio API, CSS, HTML5, and the
audio effects library Tuna.5 The aim was to combine visu-
als with sounds based on the work that the team members
did during their individual mini-projects in the previous
week. In addition to Visual Studio Code as their code editor,
GitHub was used to share their code.

3.2 The Magic Piano
This project is based on a piano for children that plays

the right notes of the chosen melody irrespective of whether
the player hits the right or wrong key (Figure 2b). The
prototype was inspired by one student who wanted to design
a ‘magic’ piano for his daughter. The technologies used
include Web MIDI API, NexusUI.js, Tone.js, JSON, CSS
and a MIDI keyboard. Currently, the prototype supports two
songs: ABCD and Alle fugler. Visual Studio Live Share was
used to view and discuss the same code in real time, GitHub
was used for sharing the code among them when they were
working offline, and Zoom was used to communicate and
share their screens.

3.3 Convolverizer
This project was built around real-time processing of am-

bient sound, voice or live instruments using a convolution
effect based on a pre-loaded sound file (e.g. a drum solo).
The prototype has a toggle button and slider which provides
the user with control of the application, whilst a canvas is
used for live visualisation (see Figure 2c). The technologies
used include P5.js,6 an audio interface, a guitar, and a micro-
phone. The motivation was to create a modular solution for
live performance, suitable for different string instruments
(e.g. guitar, bass guitar) related to the team members’ music
interests. Apart from Visual Studio Code, the working tools
included Zoom and Discord.

4 RESEARCH METHODS

Based on our research question, we analysed: (1) stu-
dents’ feedback; (2) software complexity metrics; (3) stu-
dents’ blog posts; and (4) teacher’s reflections.

5https://github.com/Theodeus/tuna
6https://p5js.org

4.1 Students’ Feedback Questionnaire
Adapted from our previous physical computing course

[13], we distributed a voluntary pre-questionnaire and post-
questionnaire with the same 5-point Likert-item questions
to the students. The questions ranged from asking the level
of confidence (1 = not at all confident; 2 = a little confident;
3 = somewhat confident; 4 = highly confident; 5 = extremely
confident) about their ability for programming (Q1), compu-
tational thinking (Q2), prototyping (Q3), instrument build-
ing (Q4), reflective practice (Q5), teamworking (Q6), and
individual working (Q7). There were also questions about
the level of agreement (1 = strongly disagree; 2 = disagree;
3 = neutral; 4 = agree; 5 = strongly agree) with a set of
statements on their intention to continue courses related to
STEM fields (Q8), to continue their education in STEM
fields (Q9), and to use their STEM knowledge in their fu-
ture careers (Q10). The students were also asked about
their level of agreement of the extent to which they can
understand the purpose of audio programming (Q11), can
describe the process of programming an interactive musical
prototype (Q12), and can apply the technique of program-
ming an interactive musical prototype to their work (Q13).
The post-questionnaire also included three open questions
about what the students liked best and least about the course,
and how the course could be improved for future editions.

The data analysis was done using R.7 Bar plots for the
Likert items were produced (likert8 package). A two-tailed
Wilcoxon signed-rank test [22] was conducted to examine
whether there was a significant difference between the pre-
and post-questionnaires (R stats package and coin9 package)
as well as the Wilcoxon effect size (rstatix10 package). The
open questions were analysed with a bottom-up thematic
analysis [23] approach to identify common themes.

4.2 Software Complexity Metrics
To analyse the overall level of complexity of the code

developed by the students, we used established software
complexity metrics. This included JavaScript implementa-
tions of Halstead metrics [24] and the cyclomatic complex-
ity metric defined by Thomas McCabe [25]. The JavaScript
implementations used were plato,11 halstead-metrics-cli,12

and complexity-report.13

Software complexity metrics are traditionally used to
help programmers to improve the efficiency of their code or
to prevent plagiarism in the classroom [26]. Here we used it
to identify whether there is any general difference between
the individual and group projects in terms of complexity
of the code. We acknowledge that complexity is not the
same as understandability or learnability, and therefore we
combine these results with the accounts of the students’ blog

7https://www.r-project.org
8https://cran.r-project.org/web/packages/likert
9https://cran.r-project.org/web/packages/coin
10https://cran.r-project.org/web/packages/rstatix
11https://github.com/es-analysis/plato
12https://www.npmjs.com/package/halstead-metrics-cli
13https://github.com/escomplex/complexity-report

https://github.com/Theodeus/tuna
https://p5js.org
https://www.r-project.org
https://cran.r-project.org/web/packages/likert
https://cran.r-project.org/web/packages/coin
https://cran.r-project.org/web/packages/rstatix
https://github.com/es-analysis/plato
https://www.npmjs.com/package/halstead-metrics-cli
https://github.com/escomplex/complexity-report


AUTHOR’S ACCEPTED MANUSCRIPT LEARNING TO CODE THROUGH WEB AUDIO

posts to characterise the quality of the team-based learning
experience. We also recognise that, by course design, it is
expected a better work delivered in the second week.

4.3 Students’ Blog Posts
The writing of blog posts, and consequent reflections

on their individual and group projects, were mandatory
activities in the course. The students were provided with a
suggested structure for the blog post: description, timeline,
division of labour, challenges, achievements, and future
work. It was also recommended to add links to the source
code and a live demo. Publishing blog posts during the
course was helpful not only for the students; it also worked
as a tool for the teacher to address any issues and enquiries
while running the course.

We analysed the three group blog posts with a top-down
thematic analysis [23] perspective using the NVivo soft-
ware.14 Here, we mainly looked into how the students re-
ported about: (1) collaboration strategies and tools; (2) di-
vision of labour; (3) individual vs group learning; (4) chal-
lenges; and (5) achievements.

4.4 Teacher’s Reflections
The reflections of the teacher (the first author) were in-

vestigated using a bottom-up approach to thematic analysis
[23]. The reflections included notes about the realisation of
the course: emerging issues discussed, relevant decisions
taken, and lessons learned.

5 RESULTS

5.1 Students’ Feedback
A total of 11 students responded to the pre- and post-

questionnaires, out of which 9 students responded to the
paired questionnaire (n=9). For the general questions
about the course, the 10 students who replied the post-
questionnaire (referred to as U1–U10) reported that they
liked best:

• Learning content (4 occurrences): “broadening
the perspective” (U8); “learning new libraries and
frameworks” (U4); “learning the basic building
blocks of the Web Audio API” (U2); “learning live
coding” (U2).

• Learning process and course outcomes (3 occur-
rences): “more security and confidence in program-
ming” (U3); “build applications” (U1); “collabora-
tive working” (U5).

• Course design (4 occurrences): “freedom for creativ-
ity” (U7); “work hands-on on the code and learn it”
(U10); “the combination of lessons and hands-on
practice and prototyping” (U9); “fun to learn how to
code” (U6).

The students liked least:

14https://www.qsrinternational.com/nvivo

• Be a novice programmer (4 occurrences): “lack of
basic programming skills” (U8); “not knowing how
to program” (U3); “individual working was hard
without asking permanently for help” (U5); “as a
beginner the need of basic content for a longer period
of time” (U9).

• Intensive course format and remote program-
ming in teams (4 occurrences): “too short and con-
densed” (U1); “a bit too fast and packed” (U10);

“only 2 weeks in the whole semester seems to be a pity!”
(U9); “hard to collaborate with coding over distances”
(U6).

• Research-based web programming course (2 oc-
currences): “added complexity of working with other
web technologies, which can take a bit of focus away
from audio programming” (U2); “too much focus on
other things than programming (blog, presentation)”
(U4).

The students suggested several aspects to be improved in
future runs of the course, including:

• Avoid intensive course format (4 occurrences):
“making it less intense and more spread during the
term” (U8); “extend to more than 2 weeks workshop”
(U1); “adding another week and slowing down the
process will help for absolute beginners a lot” (U10);

“we could have learnt more if the course had run for a
longer period of time” (U9).

• Request pre-knowledge in programming and web
technologies (3 occurrences): “having a basic level
of training in the beginning” (U8); “required pre-
knowledge in programming from all students” (U4);

“an introductory lecture or two in the absolute basics
in coding” (U7).

• Satisfy both novices and experts (3 occurrences):
“the course was well taught, even though the level was
very high, more time [was] needed to evaluate” (U3);

“the way it was this year would suit more for students
with prior understanding of programming to some
level” (U9); “define more clearly incremental tasks
related to the curriculum, which should also have the
possibility of extra challenges for those who are on a
higher level” (U2).

Figure 3 shows the percentages of the level of confi-
dence and agreement, which tended to be more positive in
the post-questionnaire (Mdn=4, M=3.47) than in the pre-
questionnaire (Mdn=3, M=3.09). These results align with
the results from our previous course in physical computing
[13], which indicate that the pedagogical techniques are
perceived positively.

We acknowledge that our statistical analysis is based
on a small sample, and therefore the results should be
considered as a general indicator. The results of the two-
tailed Wilcoxon signed-rank test were only significant in
Q1 about the students’ level of confidence of programming:
V=0, z=−2.7136, p<.05, where a large effect size was
detected, r=0.917. This indicates that the median of the

https://www.qsrinternational.com/nvivo


XAMBÓ ET AL. AUTHOR’S ACCEPTED MANUSCRIPT

0%

11%

0%

0%

33%

56%

22%

33%

33%

22%

78%

56%

33%

89%

67%

56%

56%

44%

33%

33%

22%

22%

22%

11%

11%

11%

11%

22%

44%

44%

22%

11%

44%

44%

44%

56%

11%

33%

56%

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

100 50 0 50 100
Percentage

Response 1 2 3 4 5

(a) Bar plot of the pre-questionnaire responses.

0%

0%

11%

22%

22%

11%

11%

33%

11%

11%

22%

33%

33%

89%

89%

89%

56%

56%

56%

44%

44%

44%

33%

33%

22%

22%

11%

11%

0%

22%

22%

33%

44%

22%

44%

56%

44%

44%

44%

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

100 50 0 50 100
Percentage

Response 1 2 3 4 5

(b) Bar plot of the post-questionnaire responses.

Fig. 3: Bar plot for the results of thirteen (Q1–Q13) 5-point Likert-item questions (n=9). Questions: Q1 programming; Q2
computational thinking; Q3 prototyping; Q4 instrument building; Q5 reflective practice; Q6 teamworking; Q7 individual
working; Q8 continue STEM courses; Q9 continue STEM education; Q10 future use of STEM knowledge; Q11 under-
standing of audio programming; Q12 understanding of programming interactive musical prototypes; and Q13 programming
interactive musical prototypes. The detailed questions can be found in Section 4.1.

post-questionnaire (Mdn=3) was significantly higher than
the median of the pre-questionnaire (Mdn=2). This con-
trasts with the level of confidence of programming achieved
in the physical computing course, which was one of the less
developed skills.

For the rest of the questions, no significant difference
was found. Although the level of confidence of prototyp-
ing (Q3) and instrument building (Q4) slightly improved,
the difference was not significant. The focus of the course
was on audio programming, so, understandably, these other
desired skills remained secondary. Similarly, the intention
to continue STEM courses (Q8) and STEM education (Q9)
improved slightly, but with no significant difference, which
points to the need of more time to stimulate students’ inter-
est into STEM careers. The understanding of audio pro-
gramming (Q11) polarised a little bit more in the post-
questionnaire, probably associated with the need of learning
additional tools related to web development (as discussed
earlier in the open questions). The level of confidence of
teamworking (Q6) and reflective practice (Q5) slightly in-
creased from an already high score, two aspects that are
explicitly promoted across the different courses in the MCT
program. The level of confidence of individual work (Q7)
changed from extreme to moderate positive and negative
opinions, yet with no statistical difference. Individual work
was an essential component of this course during the first
week, and it seems to be valued by the students, but it needs
to be better integrated so that both experts and novices ac-
knowledge an improvement.

5.2 Code Complexity
Table 1 compares the code complexity metrics at an in-

dividual vs group level, sorted by teams. Before detailing
the code complexity analysis, it is worth describing how
each team compiled the code for the final group project.
Team A decided to divide the work by functionality so
that each team member developed their own piece of code.
This was merged by one of the students on the last day by
keeping the code in separate JavaScript files and tweaking
as necessary. Team B collaboratively worked on a GitHub
repository where it is reported that the three team members
contributed with 31 commits, 19 commits and 13 commits,
respectively. This team also reported a division of labour by
functionality, yet collaborative coding and troubleshooting
were highlighted as common tasks. Team C approached the
project with a collaborative coding style, where the work
was divided into sub-tasks. The code was uploaded on a
GitHub repository by one of the team members, yet it does
not identify code authorship.

Regarding code complexity, Team A had consistent
progress from individual work in the first week to group
work in the second week, where data is excluded from the
fourth student of this team who could not contribute to the
two projects. Two of the three students were already fa-
miliar with web technologies. The group’s approach was
additive, where the final project had 515 lines of code in
total (almost the double of each of the individual projects).
The average maintainability of the code slightly evened out
to 66.5, which indicates that the code from individual and



AUTHOR’S ACCEPTED MANUSCRIPT LEARNING TO CODE THROUGH WEB AUDIO

Table 1: Code complexity metrics by teams

Team Lines of Code Maintainability Cyclomatic Complexity Difficulty Time Required to Program (h) # Delivered Bugs

A 515 66.5 22 125.77 29.84 5.17

A individual ∗ Mdn=220 Mdn=72.4 Mdn=5 Mdn=108.01 Mdn=14.07 Mdn=3.13

M=206.67, SD=88.75 M=69.13, SD=6.74 M=12, SD=13.89 M=95.29, SD=35.88 M=11.13, SD=6.4 M=2.6, SD=0.91

B 255 60.91 22 105.3 16.83 3.53

B individual Mdn=209 Mdn=68.5 Mdn=27 Mdn=101.7 Mdn=9.83 Mdn=2.47

M=306, SD=214.62 M=63.29, SD=9.68 M=24.33, SD=12.22 M=148, SD=116.79 M=45.23, SD=64.63 M=5.77, SD=6.33

C 108 64.95 6 37.24 1.71 0.77

C individual ∗∗ Mdn=136 Mdn=67.46 Mdn=3 Mdn=71.72 Mdn=5.6 Mdn=1.7

M=197, SD=110.01 M=60.58, SD=12.1 M=18.67, SD=28.01 M=94.77, SD=58.34 M=16.47, SD=20.79 M=3.08, SD=2.83

∗ Data is excluded from a student of this team who could not contribute to the individual and group projects.
∗∗ Data is excluded from a student of this team who could not contribute to the individual project.

group work has good maintainability. The complexity of
the program measured as cyclomatic complexity evened
out to 22.0, which indicates that there has been an improve-
ment in reducing the complexity of the code and making it
more maintainable. The difficulty of the program rated the
maximum value of 125.8, which is expected by the course
design. The estimation of the time required to program in
hours raised to 29.8 hours. This aligns with the increased
number of lines of code and is also expected. The number
of delivered bugs or errors almost doubled to 5.2, which is
not expected. This points to a lack of time in debugging the
final code, as it was merged on the last day (see Section 6.1
for further details).

Team B evened out the code complexity results (e.g. lines
of code, average maintainability, cyclomatic complexity,
program difficulty, number of delivered bugs) yielded from
one more experienced programmer and two novices. This
indicates that all team members contributed to the final
project, irrespective of their programming level. These re-
sults suggest that the code from individual and group work
has good maintainability, there has been an improvement
in reducing the complexity of the code and making it more
maintainable, all the team members contributed and col-
laborated as expected from a course design viewpoint, and
there was a general reduction of bugs. The benefits for the
novices were a clear improvement in their code. For the
expert programmer the benefits were three-fold: a reduction
of the number of bugs (due to probably more group testing),
an even distribution of the work (also evidenced in the code
repository), and an improvement of the maintainability of
the code.

Team C was the only group with all members being pro-
gramming novices. In the individual projects, one of the stu-
dents borrowed the code from one of the most experienced
students in the class, which can be seen as an outlier in the
individual results. The individual results should, therefore,
be considered with a pinch of salt. As for the final project,
this team preferred to use an easy to use, pre-built library
(P5.js), which was covered in a previous MCT course [13].
The code complexity result is relatively low as the effort
of coding is little compared to what was expected. The
time required to program resulted in 1.7 hours, although

the group worked as hard as the others during class time.
As we will discuss later, the team succeeded in completing
the final project, but they virtually ‘skipped’ lower-level
programming, which is reflected in the code complexity
score. This team was more concerned with having some-
thing working using a high-level approach to programming
than in developing complex code. This confirms that, for an
optimal experience, this course should be taken by students
with pre-knowledge in web technologies so that the students
can focus more on the task of audio programming. Teaming
novices with experts should also help, but this is not always
feasible.

6 FINDINGS

6.1 Students’ Blog Posts
We found the following number of occurrences for each

team and non-exclusive theme: collaboration strategies
and tools (T1) (17 occurrences: 7(A), 3(B), 7(C)); division
of labour (T2) (16 occurrences: 7(A), 4(B), 5(C)); indi-
vidual vs group learning (T3) (9 occurrences: 6(A), 1(B),
2(C)); challenges (T4) (17 occurrences: 3(A), 5(B), 9(C));
and achievements (T5) (11 occurrences: 7(A), 1(B), 3(C)).
Next, we summarise key points illustrated with exemplary
quotes, classified with the group name, theme number, and
reference number, e.g. “A-T1-Ref3”.

Team A decided to divide the work into smaller pieces to
be developed individually, and merged the code at the end:

“On the last day, we finished the prototype by combining
all codes together and made final touches on design and
functions. This meant tidying up some of our code, bug
fixing and making each intended function work properly.”
(A-T1-Ref5). The team acknowledged as an achievement

“to combine our three branches of code. (. . . ) It showed that
our organisation of labour worked out in the end!” (A-T5-
Ref6). The team recognised that “working on each other’s
code together was certainly both challenging and rewarding”
(A-T4-Ref2), but overall admitted as a success that “for the
workshop we materialised a working prototype!” (A-T5-
Ref1).

Team B worked continuously in collaboration, both syn-
chronously with live coding and asynchronously with a code



XAMBÓ ET AL. AUTHOR’S ACCEPTED MANUSCRIPT

repository: “We worked in a collaborative way where we
shared screens with each other and worked on the same
document and files. We set up the VS [Visual Studio] Live
Share to view the same code in real-time and to discuss
the code. We used GitHub for sharing the code among us
when we worked offline. We used Zoom to communicate and
share screens.” (B-T1-Ref2). Overall, the team recognised
the challenge and achievement of working in a group: “Col-
laborative coding was a great challenge, but we feel like we
managed to have a good workflow as a group. Our idea for
making an educational tool for beginners to learn playing a
simple melody on the piano, has developed into a prototype
that we are proud of.” (B-T5-Ref1).

Team C also worked continuously in collaboration, but
preferred not to divide the work into main roles: “Since the
level of programming expertise was more or less equally
low distributed throughout the group, we left the division of
roles open.” (C-T1-Ref2). The four members of this group
were on the same location: “We established a main hub
in one of the group rooms and put the code from Visual
Studio Code on the screen. From there, we brainstormed
and prototyped together.” (C-T1-Ref5). The team acknowl-
edged that “[ending] up with a working prototype after this
course is very pleasing.” (C-T5-Ref1), but also recognised
the struggle with their prior knowledge with programming:

“There was a bit of frustration tied with the difficulty of the
task we had at hand, but through that, we managed to have
a good working relationship and good teamwork.” (C-T1-
Ref7, C-T4-Ref7).

6.2 Teacher’s Reflections
The three group mini-projects were successful in comple-

tion. Although varied in theme, there are some similarities.
First, the teams built on the code developed individually
during the previous week, and they all faced challenges with
merging their code and working with collaborative coding
approaches. This was less of a problem for Team C, who
built on code from an existing library seen in a previous
MCT course [13] for the group project. Second, they all
used a range of web audio and web technologies, some of
them seen in class, but some of them explored autonomously
or in previous courses. This is an excellent example of how
the spirit of prototyping helps in finding the best tools and
combining them to convey a project idea. Finally, they all
combined software with hardware.

As discussed in our previous paper [11], we identified
five prominent themes, of which we could mention: (1) in-
dividual vs group work: promoting individual work before
group work facilitates the development of personal expres-
sion using code; (2) shared coding experiences: using the
same working tools (e.g. code editor, browser) throughout
the course ensures there is a common language and under-
standing irrespective of the student’s programming level;
promoting the use of real-time synchronous collaborative
tools (e.g. collaborative live coding features) and practices
(e.g. sharing the screen either peer-to-peer, peer-to-group,
and group-to-group) allows for smooth interactions irrespec-
tive of the physical distances among collaborators; and en-

couraging the use of asynchronous collaborative tools (e.g.
shared repositories) helps to keep the momentum beyond
the course time as well as documents the process of collab-
oration; and (3) web audio vs web technologies: making
sure that the students have the required pre-knowledge in
web technologies in order to balance better novices vs ex-
perts should be taken rigorously.

7 DISCUSSION

Overall, learning how to program is a slow endeavour [2],
but we have seen that learning to code through web audio—
through a TBL methodology—can be a suitable approach
for both cross-campus (Teams A and B) and co-located
(Team C) groups. We found that the nature of web audio as
a browser-based environment and the collaborative nature
of the course were suitable for improving the students’ level
of confidence about their ability in programming, both in co-
located and remote scenarios. The course design of starting
with individual work and then move on to cultivate group
work was also suitable for promoting the creation of final
projects with a certain level of complexity. This also helped
to relate the projects to the students’ interests, in alignment
with the principles of STEAM education [3].

On the challenging side, we identified the importance
of supporting smooth cross-campus interactions in both
the classroom and for the teams’ workspaces. It is still an
open question of what are the best tools that can be used to
provide a satisfactory experience for remote collaborations
mediated by code. The teacher and students of this course
were able to explore various options, but more research is
needed to find solutions to different demands. This should
be based on each student cohort, but also each team’s work-
flow and dynamics. Another open question is how to ensure
that the students have the required pre-knowledge and skills
with web technologies (HTML, CSS, JavaScript) before the
start of the course. Such pre-knowledge is crucial, since
it requires some time to develop, and is typically out of
the scope of the programme’s curriculum. Prolonging the
learning experience is another challenge and an important
one to tackle to improve the students’ interest in contin-
uing in STEM fields. This requires further development
of the curriculum (curated resources, meetups, and so on)
and better integration with TBL techniques. One approach
here could be the Readiness Assurance Process (RAP) [7].
Finally, it would be relevant to assess further the students’
level of self-confidence from a self-efficacy perspective in
order to identify the strength of their belief in their ability
in programming [27].

We envision that this course could be further developed
into a completely online activity, with students across the
globe. In this new scenario, we could replace the two physi-
cal classrooms used in the course with a virtual classroom
(e.g. a collaborative virtual learning environment), in which
dividing the students into smaller remote working groups
is possible. For the moment, we recommend to keep this
course at a scale of 10–20 students and create teams of 4–5
members, so that the current content and learning quality
experience keeps similar to the course discussed here. We



AUTHOR’S ACCEPTED MANUSCRIPT LEARNING TO CODE THROUGH WEB AUDIO

recommend encouraging students to use a shared tool for
online reflection (e.g. blogging) as a core part to reflect
on their learning process. The assessment of the course
should also be scalable using the same research methods
presented here, yet we foresee the need for more coders
for the thematic analysis, where intercoder agreement [28]
would be useful. We also envision that distributed and re-
mote professional settings might get inspired and use web
audio for prototyping audio programming ideas involving
mixed groups of team members, with different levels of
programming.

8 CONCLUSION

In this article, we presented an audio programming course
using web audio technologies targeted at an interdisciplinary
group of master students who are mostly novices in pro-
gramming. The collected data (including students’ feed-
back, software complexity metrics, students’ blog posts
and teacher’s reflections) indicated that web audio tech-
nologies using a TBL approach is a suitable programming
learning approach. However, web technologies (HTML,
CSS, JavaScript), and therefore basic programming con-
cepts, should be requested as prior knowledge for an optimal
experience. The final group projects showed the potential
of addressing complexity with creativity and collaboration,
which was partly possible due to the course design of first
starting with individual work. It is still challenging to teach
programming across two campuses, but applying techniques
from collaborative live coding (e.g. sharing the screen and
the code editor) can positively counterbalance the challenge.

In the future, we are interested in investigating whether
web audio works better for TBL activities compared
to native sound/music programming environments (e.g.
Max/MSP or SuperCollider). From a STEAM education
perspective, we also plan to deliver this course to students
who are not necessarily musicians. This can then be an entry
point not only to programming but also to computer music
and music software. We also hope to explore further the
potential of our approach but applied to distance learning,
which is a follow-up of our exploration of more sustainable
forms of education.

9 ACKNOWLEDGMENTS

The authors wish to thank the students who participated in the
course and to the reviewers of the manuscript for their valuable
suggestions. The authors are thankful to the jury members of the
WAC 2019 Best Paper Award, Jan Monschke, Garth Paine, and
Ariane Stolfi, for awarding our paper presented at WAC 2019,
and to the WAC community for informal feedback. Also, thanks
to the MCT teachers Daniel Formo, Anders Tveit and Kristian
Nymoen for their technical help during the realisation of the course
discussed in this article. This work was partially supported by the
NTNU SALTO project (80340480). Most of the data collection
and analysis of this research was carried out while the first author
was at the Norwegian University of Science and Technology.

10 REFERENCES

[1] B. Pearlman, “Making 21st Century Schools: Creat-
ing Learner-Centered Schoolplaces/Workplaces for a New
Culture of Students at Work,” J. Educ. Technol., pp. 14–19
(2009).

[2] A. Robins, J. Rountree, N. Rountree, “Learning and
Teaching Programming: A Review and Discussion,” Com-
put. Sci. Educ., vol. 13, no. 2, pp. 137–172 (2003), doi:
https://doi.org/10.1076/csed.13.2.137.14200.

[3] J. Maeda, “STEM + Art = STEAM,” The STEAM
Journal, vol. 1, no. 1, pp. 34:1–34:3 (2013), doi:https://doi.
org/10.5642/steam.201301.34.

[4] M. Yee-King, M. Grierson, M. d’Inverno, “STEAM
WORKS: Student Coders Experiment More and Experi-
menters Gain Higher Grades,” presented at the Proc. IEEE
Global Eng. Educ. Conf., pp. 359–366 (2017), doi:https:
//doi.org/10.1109/educon.2017.7942873.

[5] B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, S. Mccoid, A. Crews-Brown, “Earsketch:
A STEAM-based Approach for Underrepresented Popula-
tions in High School Computer Science Education,” ACM
Trans. Comput. Educ., vol. 16, no. 4, p. 14 (2016), doi:
https://doi.org/10.1145/2886418.

[6] R. Støckert, A. R. Jensenius, S. Saue, “Framework
for a Novel Two-Campus Master’s Programme in Music,
Communication and Technology Between the University of
Oslo and the Norwegian University of Science and Tech-
nology in Trondheim,” presented at the Proc. Int. Conf.
of Educ., Res. and Innov., pp. 5831–5840 (2017), doi:
https://doi.org/10.21125/iceri.2017.1526.

[7] L. K. Michaelsen, A. B. Knight, L. D. Fink, Team-
based Learning: A Transformative Use of Small Groups in
College Teaching (Stylus Publishing, Sterling, VA) (2004).

[8] C. J. Ballen, C. Wieman, S. Salehi, J. B. Searle, “En-
hancing Diversity in Undergraduate Science: Self-Efficacy
Drives Performance Gains with Active Learning,” CBE—
Life Sciences Education, vol. 16, no. 4, pp. 1–6 (2017),
doi:https://doi.org/10.1187/cbe.16-12-0344.

[9] J. Bergmann, A. Sams, Flip Your Classroom: Reach
Every Student in Every Class Every Day (The Association
for Supervision and Curriculum Development, Alexandria,
VA) (2012), doi:https://doi.org/10.1111/teth.12165.

[10] R. Støckert, G. A. Stoica, “Finding the Right Peda-
gogy and Related Prerequisites for A Two-Campus Learning
Environment,” presented at the Proc. Int. eLearn. & Softw.
for Educ., pp. 219–228 (2018), doi:https://doi.org/10.12753/
2066-026X-18-030.

[11] A. Xambó, R. Støckert, A. R. Jensenius, S. Saue,
“Facilitating Team-Based Programming Learning with Web
Audio,” presented at the Proc. of the Web Audio Conf. 2019,
pp. 2–7 (2019).

[12] A. Xambó, G. Roma, P. Shah, T. Tsuchiya, J. Free-
man, B. Magerko, “Turn-taking and Online Chatting in
Co-located and Remote Collaborative Music Live Coding,”
J. Audio Eng. Soc., vol. 66, no. 4, pp. 253–266 (2018), doi:
https://doi.org/10.17743/jaes.2018.0024.

[13] A. Xambó, S. Saue, A. R. Jensenius, R. Støckert,
Ø. Brandtsegg, “NIME Prototyping in Teams: A Participa-



XAMBÓ ET AL. AUTHOR’S ACCEPTED MANUSCRIPT

tory Approach to Teaching Physical Computing,” presented
at the Proc. New Interfaces for Musical Expression, pp. 216–
221 (2019), doi:https://doi.org/10.5281/zenodo.3672932.

[14] J. Allison, D. Holmes, Z. Berkowitz, A. Pfalz,
W. Conlin, N. Hwang, B. Taylor, “Programming Music
Camp: Using Web Audio to Teach Creative Coding,” pre-
sented at the Proc. Web Audio Conf. (2016).

[15] C. Roberts, J. Kuchera-Morin, “Gibber: Live Cod-
ing Audio in the Browser,” presented at the Proc. Int. Com-
puter Music Conf. (2012).

[16] Y. Mann, “Interactive Music with Tone.js,” pre-
sented at the Proc. Web Audio Conf. (2015).

[17] I. G. Burleigh, T. Schaller, “Quint.js: A JavaScript
Library for Teaching Music Technology to Fine Arts Stu-
dents,” presented at the Proc. Web Audio Conf. (2015).

[18] A. Pošćić, G. Kreković, “Ecosystems of Visual Pro-
gramming Languages for Music Creation: A Quantitative
Study,” J. Audio Eng. Soc., vol. 66, no. 6, pp. 486–494
(2018), doi:https://doi.org/10.17743/jaes.2018.0028.

[19] R. B. Dannenberg, “Languages for Computer Mu-
sic,” Frontiers in Digital Humanities, vol. 5, pp. 26:1–26:13
(2018), doi:https://doi.org/10.3389/fdigh.2018.00026.

[20] B. Taylor, J. T. Allison, W. Conlin, Y. Oh,
D. Holmes, “Simplified Expressive Mobile Development

with NexusUI, NexusUp, and NexusDrop,” presented at the
Proc. New Interfaces for Musical Expression, pp. 257–262
(2014), doi:https://doi.org/10.5281/zenodo.1178951.

[21] H. Choi, “AudioWorklet: The Future of Web Audio,”
presented at the Proc. Int. Computer Music Conf. (2018).

[22] F. Wilcoxon, “Individual Comparisons by Ranking
Methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83
(1945), doi:https://doi.org/10.2307/3001968.

[23] V. Braun, V. Clarke, “Using Thematic Analysis in
Psychology,” Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101
(2006), doi:https://doi.org/10.1191/1478088706qp063oa.

[24] M. H. Halstead, et al., Elements of Software Science
(Elsevier Science Inc., New York, NY) (1977).

[25] T. J. McCabe, “A Complexity Measure,” IEEE T.
on Software Eng., vol. SE-2, no. 4, pp. 308–320 (1976),
doi:https://doi.org/10.1109/tse.1976.233837.

[26] R. J. Leach, “Using Metrics to Evaluate Student
Programs,” SIGCSE Bull., vol. 27, no. 2, pp. 41–43 (1995),
doi:https://doi.org/10.1145/201998.202010.

[27] A. Bandura, Self-Efficacy: The Exercise of Control
(Worth Publishers, New York, NY) (1997).

[28] J. Saldaña, The Coding Manual for Qualitative Re-
searchers (Sage, London), 2nd ed. (2013).

THE AUTHORS

Anna Xambó Robin Støckert Alexander Refsum Jensenius Sigurd Saue

Anna Xambó is a Senior Lecturer in Music and Audio
Technology at De Montfort University. Her research and
practice focus on sound and music computing systems look-
ing at novel approaches to collaborative, participatory, and
live coding experiences. She has contributed to the Web
Audio Conference (WAC) as a program committee member
and author since 2016, and has served as music/artworks co-
chair of WAC 2016, and general co-chair of WAC 2019. She
has also a special interest in improving the representation
of women in music technology.r

Robin Støckert is an assistant professor at NTNU and
an AV expert with over 35 years of experience in the de-
sign and creation of arenas for interaction, experimentation,
collaboration and communication. He has been involved in

several EU-projects relating to the design, construction, and
use of future learning spaces and interactive tools in higher
education. He is the project manager for the SALTO project
and designer of its student portal.r

Alexander Refsum Jensenius is a music researcher and re-
search musician. His research focuses on why music makes
us move, which he explores through empirical studies using
different types of motion sensing technologies. He also uses
the analytic knowledge and tools in the creation of new mu-
sic, with both traditional and very untraditional instruments.
Alexander is Professor of music technology and Deputy
Director of RITMO Centre for Interdisciplinary Studies in
Rhythm, Time and Motion at the University of Oslo.



AUTHOR’S ACCEPTED MANUSCRIPT LEARNING TO CODE THROUGH WEB AUDIOr
Sigurd Saue just left the position as associate professor in

Music Technology at the Norwegian University of Science
and Technology (NTNU). He has a background in acoustics,
electrical engineering, music and theatre. Prior to his aca-

demic position, he worked partly with audio/seismic signal
processing for the oil industry and partly as developer in
electronic art projects in cooperation with composers and
artists. His academic focus was interactive audio in various
disguises: Sonification, real-time music performance, sound
installations and game audio.


