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A comparison of spatially explicit and classic regression modelling 1 

of live coral cover using hyperspectral remote sensing data in the 2 

Al Wajh lagoon, Red Sea 3 

Abstract 4 

Live coral is a key component of the Al Wajh marine reserve in the Red Sea, and the management of this reserve 5 

is dependent on a sound understanding of the existing spatial distribution of live coral cover and the 6 

environmental factors influencing live coral at the landscape scale. The present study uses remote sensing 7 

techniques to develop ordinary least squares and spatially lagged autoregressive explanatory models of the 8 

distribution of live coral cover inside the Al Wajh lagoon, Saudi Arabia. Live coral was modelled as a response 9 

to environmental controls such as water depth, the concentration of suspended sediment in the water column and 10 

exposure to incident waves. Airborne hyperspectral data were used to derive information on live coral cover as a 11 

response (dependent) variable at the landscape scale using linear spectral unmixing. Environmental controls 12 

(explanatory variables) were derived from a physics-based inversion of the remote sensing dataset and validated 13 

against field-collected data. For spatial regression, cases referred to geographical locations that were explicitly 14 

drawn on in the modelling process to make use of the spatially dependent nature of coral cover controls. The 15 

transition from the ordinary least squares model to the spatially lagged model was accompanied by a marked 16 

growth in explanatory power (R
2
=0.26 to R

2
=0.76). The theoretical implication that follows is that 17 

neighbourhood context interactions play an important role in determining live coral cover. This provides a 18 

persuasive case for building geographical considerations into studies of coral distribution. 19 

Keywords: Spatial regression, Saudi Arabia, spatial autoregression, spatial autocorrelation, 20 

live coral cover 21 

1 Introduction 22 

Coral reefs underpin tropical coastal ecosystems through the provision of ecological services (e.g., 23 

mangrove and seagrass growth promotion, structural habitat complexity for fish) and goods (e.g., 24 

primary production to support fish and invertebrate populations, calcification) (Côté and Reynolds, 25 

2006). To sustain these goods and services, marine protected areas have been proven a highly effective 26 

conservation measure for coral reefs (Roberts et al., 2003). At the heart of marine protected area 27 

planning is the need to understand both the existing spatial distribution of live coral and the 28 
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environmental factors influencing their distribution at the landscape scale (10 – 100 km
2
)  (Sobel & 29 

Dahlgren, 2004; Almany et al., 2009). One of the key challenges to the development of this 30 

understanding is the paucity of biophysical datasets available in these frequently large but remote 31 

environments.  Recent increases in the accuracy, precision and affordability of geospatial technologies 32 

(GIS, GPS and remote sensing) provide new opportunities for mapping and modelling live coral cover. 33 

Such technologies yield geographically-referenced datasets that allow mapping and modelling 34 

exercises to be conducted in a spatially explicit manner. This allows reef managers to  quantify spatial 35 

patterning in benthic communities, determine optimal sampling strategies for monitoring ecological 36 

health and avoid the incorporation of redundancy into datasets (which in turn violates statistical 37 

assumptions about the geographical independence of benthic communities across reefs) (Haining, 38 

2003). 39 

 40 

Mapping the distribution of live coral cover has largely been made possible through the development 41 

of optical satellite and airborne as well as acoustic remote sensing technology and the associated 42 

refinement of image processing routines for application to marine environments. Airborne 43 

hyperspectral remote sensing campaigns acquire imagery of the requisite spatial and spectral detail to 44 

accurately resolve live coral while accounting for the influence of the overlying atmospheric and water 45 

column layers on light transfer (Klonowski et al, 2007). The rich content of hyperspectral datasets 46 

allows their manipulation to retrieve information on water quality, bathymetry and benthic cover using 47 

physics-based inversion techniques (Brando et al., 2009; Hedley et al 2009), spectral unmixing 48 

(Goodman and Ustin, 2007), optimization and semi-analytical techniques (Lee et al. 1999; Wettle et 49 

al. 2006). Such mapping exercises yield spatially continuous, landscape scale datasets on the 50 

distribution of live coral that can be used as a foundation for modelling exercises that further our 51 

understanding of the relationship between live coral cover and local environmental influences. 52 

 53 

Spatial  modelling can be defined as an assemblage of empirical techniques in which a clear 54 

association is maintained and exploited between quantitative data and the spatial coordinates that 55 

locate them (Chorley 1972). Defined in this way, the application of spatial modelling has largely 56 

developed through the establishment of spatially explicit rule sets for defining segments of object-57 
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based image analysis techniques (Benfield et al. 2007) and the use of spatial metrics to quantify spatial 58 

patterning on reefs (Le Drew et al. 2000; Phinn et al. 2003; Purkis et al. 2007). In terms of inferential 59 

modelling that seeks to explain or predict observable patterns in live coral cover, classic (spatially 60 

implicit) statistical approaches have commonly been employed at the landscape scale, such as ordinary 61 

least squares regression (Harborne et al, 2006) and generalised additive models (Garza Perez, 2004). 62 

Such approaches do not account for the inherent spatial structure of ecosystems (Fortin and Dale, 63 

2005) that is manifest on a coral reef as a result of the autocorrelated distribution of the environmental 64 

characteristics that determine coral survival.  65 

 66 

The objective of this study is to use hyperspectral remote sensing techniques to implement and 67 

compare two different multivariate regression models that seek to explain the spatial distribution of 68 

live coral cover inside a lagoon at the landscape scale. A wide variety of controls could potentially 69 

influence the proportion of live coral cover inside the Al Wajh lagoon.  These include, but are not 70 

limited to, water depth, wave power, suspended sediment concentration, the frequency and intensity of 71 

high energy storm events, the availability of antecedent platform and suitable substrate for larval 72 

settlement (for a comprehensive summary of environmental controls of coral distribution, see Done, 73 

2011). These controls operate across a range of scales and while some are subject to local fluctuations 74 

that produce interrelationships, synergies and feedbacks, others (e.g. salinity) can be considered 75 

uniform across the extent of the study area and treated as constant terms. Of these variables, water 76 

depth, wave power and suspended sediment concentration were selected for the models because they 77 

have been suggested as determinants of coral community structure inside the Al Wajh lagoon 78 

(Sheppard et al. 1992; De Vantier 2000). They also exhibit variation at the scale of the study area and 79 

information on these variables can be derived at the landscape scale across the study area using GIS 80 

and remote sensing techniques.  81 

 82 

A key aim of this study is to establish which type of regression modelling is most appropriate for 83 

explaining the distribution of live coral inside the Al Wajh lagoon.  One model uses ordinary least 84 

squares regression while a second introduces a spatially lagged autoregressive term to build a spatial 85 
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component into the model. The null hypothesis for these models is that none of the variables have any 86 

influence on the distribution of live coral cover inside the Al Wajh lagoon. 87 

2 Methodology 88 

2.1 Study Area 89 

The Al Wajh Bank is situated along the north-eastern part of the Red Sea coastline of the Kingdom of 90 

Saudi Arabia (Figure 1), it is the most extensive of a series of reef platforms that comprise a reserve 91 

network designated by the National Commission for Wildlife Conservation and Development in 2000.  92 

The modelling exercise aimed to develop an understanding of the environmental controls on live coral 93 

distribution to inform reserve management. It was applied to a sub-area of interest at the northern end 94 

of the lagoon which traversed environmental gradients of water depth, suspended sediment 95 

concentration and wave exposure (see inset box on Figure 1). 96 

 97 

The barrier reef system is comprised of a continuous line of reefs stretching for approximately 100 km 98 

and separated by several narrow (< 200 m width) channels. The outer edge of the bank lies 99 

approximately 26 km offshore and runs parallel to the shoreline for approximately 50 km before 100 

curving landward to enclose the reef system around a central lagoon (Fig. 1). The depth of the lagoon 101 

floor ranges from 30-60 m, becoming progressively shallower towards the coastline that comprises an 102 

alluvial sandy plain. The present living reefs, both along the barrier and inside the lagoon, have 103 

developed during the past 6000 years as Holocene sea levels have risen on top of topographic highs 104 

formed by earlier reef structures (Sheppard et al. 1992; De Vantier 2000). The shelf inside the barrier 105 

supports a range of islands and associated reef formations including platform or patch reefs, lagoon 106 

pinnacles, reticulate reef systems, submerged reef ridges and cay reefs.  107 

 108 
[Figure 1 here ] 109 

2.2 Methodology  110 

The methodological components of this study can be subdivided into two sections: i. the derivation 111 

and validation of variables using remote sensing techniques and ii. The construction and comparison 112 

of two different types of regression model (classic and spatially explicit) for live coral cover.   113 
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[Figure 2 here .] 114 
 115 

2.3 The derivation and validation of variables using remote sensing techniques 116 
 117 

2.3.1 Acquisition of airborne hyperspectral imagery 118 
 119 
Hyperspectral data inside the Al Wajh barrier were acquired on 9th May 2008 using an AISA Eagle 120 

imaging sensor mounted to a Cessna seaplane. The AISA Eagle instrument measured 128 contiguous 121 

spectral bands from 400 to 994 nm at a spectral and spatial resolution of 5 nm and 1 m respectively. 122 

The image covered approximately 20 km2 (1.5 km wide by 13 km in length) and was located along the 123 

northern coast of the inner Wajh Barrier.  124 

 125 

2.4 Derivation of information on explanatory variables: Water depth, suspended 126 

sediment concentration and wave exposure 127 

2.4.1 Water depth and suspended sediment concentration 128 

 129 
An atmospheric correction was carried out on the raw hyperspectral imagery using the fast-line-of-130 

sight atmospheric analysis of spectral hypercubes (FLAASH) module™ within the software 131 

environment for visualising images (ENVI) 4.5. Standard atmospheric water column amounts were 132 

calculated for a tropical atmosphere with a maritime aerosol model to represent the boundary layer 133 

above oceans, accounting for sea spray (Cooley et al. 2002).  134 

 135 
A semi-analytical optimization model was used to simultaneously derive bathymetry, water optical 136 

properties and subsurface remote sensing reflectance from the atmospherically corrected hyperspectral 137 

image. The semi-analytical model algorithm was based on quasi-single-scattering theory (Gordon, 138 

1994), and was implemented through a series of simulations that populated parameters to estimate 139 

subsurface remote sensing reflectance from surface remote sensing reflectance (Lee et al. 1998 and 140 

1999). To perform the optimisation it was necessary to impose a series of constraints on input 141 

parameters, the derivation of which are outlined by Goodman et al. (2008), who describe the 142 

application of this approach to a coral reef environment (Table 1). For the purpose of this analysis, the 143 

model was applied to coral spectra to yield information on bottom albedo, the particle-backscattering 144 

coefficient (from which a measure of suspended sediment could be derived) and water depth.   145 
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 146 
Table 1. Constraints employed for optimisation of the semi-analytical inversion model, as defined in 147 
Goodman (2008).  148 
 149 

 150 
 151 

2.42 Field measurement of water depth and suspended sediment 152 

A dataset of 188 bathymetric readings across the study area was collected using a Norcross X single 153 

beam bathymetric sounder in conjunction with the water sampling for validating the output 154 

bathymetry from the semi-analytical model. The suspended sediment concentration (SSC) was 155 

measured in-situ by extracting 50 water samples of 200 mL volume from transects ran perpendicular 156 

to the coastline across the coastal shelf. Sample collection was timed to coincide with acquisition of 157 

the airborne remotely sensed imagery and extractions were taken from just below the wave base at a 158 

depth of 1 m using a length of piping with a pre-rinsed sample bottle attached to the end of it. The 159 

location of each sample was recorded using a dGPS (accuracy < 1 m).  160 

 161 

Suspended sediment was measured from the field samples in a laboratory using filtration methods. For 162 

estimation of SSC across the study area, the dataset of fifty water samples was divided randomly so 163 

that 25 of the samples could be used to establish a simple power relationship between the particle 164 

backscattering coefficient (derived from the semi-analytical optimization modelling) and suspended 165 

sediment. This relationship was then used to predict suspended sediment concentration across the 166 

study area using ArcGIS Model Builder. The remaining 25 samples were used to test the accuracy of 167 

this relationship once it had been extrapolated over the study area. This validation proceeded by 168 

plotting the locations of the field samples taken and comparing suspended sediment measured in the 169 

laboratory with that modelled from the remote sensing image. 170 

 171 

2.4.3 Wave Exposure model 172 

To estimate wave exposure, the fetch-based method of Ekebom et al. (2003) was employed using 173 

linear wave theory to estimate incident power on the basis of fetch and wind power statistics, with 174 

bathymetric information incorporated to account for the influence of refraction and shoaling (for 175 
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further details of method see Hamylton, 2011b). A 30 m grid was placed over the study area and the 176 

radiating lines extension tool in ArcView (Jenness 2006) was used to generate 8 lines of length 30 km, 177 

spaced 45 degrees apart, originating from each grid point. All fetch-limited lines (i.e., those 178 

intersecting an overlaid coastline shapefile) were trimmed at the point of intersection with the 179 

coastline. Polyline lengths were then calculated and input as fetch distances from each direction into 180 

the linear wave transform model. 181 

 182 

Data on the speed and frequency of direction from which winds blew in the study area were extracted 183 

from the Indian Ocean volume of the Marine Climatic Atlas of the World (United States Navy 1995) 184 

for input into the linear wave transform model. This atlas reported wind speed and frequency data 185 

from a meteorological station at 10m above sea level approximately 50 km north of the study site 186 

located on Bahrein Island, Saudi Arabia (26
o
16’N, 50

 o
 37’E). Data were averaged across a time period 187 

that spanned from January 1991-October 1995. 188 

 189 

Fetch lengths and wind data were input into the significant wave height and wave period equations 190 

which were used to calculate wave energy from linear wave theory (Ekebom et al. 2003; Hamylton, 191 

2011b). As the study area was inside an enclosed lagoon, fetch-limited equations were employed for 192 

each cardinal and subcardinal direction and summed to provide an overall measure of exposure at each 193 

grid point, which was then interpolated to a continuous surface of 1 m resolution. 194 

2.5 Derivation of information on the Dependent variable: live coral cover 195 

 196 
2.5.1 Field sampling of image spectra and coral community surveys 197 

Field spectra of four benthic coverages (live coral, dead coral, macroalgae and sand) were collected 198 

for input to the spectral unmixing algorithm using a TRIOS™ Ramses ARC sensor. These coverages 199 

were representative of the community components falling inside the study area on habitat maps 200 

previously prepared by the Japanese International Cooperation Agency through interpretation of aerial 201 

photography. The spectrometer measured light in the wavelength range 300 - 920 nm, with an optical 202 

resolution of ~5 nm (Datentechnik GmbH, 2004). Underwater measurements were taken across an 203 

integration time of 63 ms with 50 replications collected for each benthic coverage within each of five 204 
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sample sites. Average endmember spectra  for each target were smoothed for the elimination of high 205 

frequency noise (Savitzky-Golay, 1964) and interpolated to yield reflectance at 1 nm intervals with a 206 

cubic spline (Karpouzli et al., 2004). 207 

 208 

Additional coral community records were collected in the form of six detailed 20 x 2 m phototransects 209 

established across a range of inshore - offshore and sheltered – exposed locations. This methodology 210 

yielded 20 photographs per transect line, i.e., 120 photographs overall, each of which were visually 211 

assessed for percentage of live coral cover using Coral Point Count with single random point 212 

specification (Kohler and Gill 2006).   213 

 214 
2.5.2 Spectral unmixing of the hyperspectral imagery 215 

 216 
A brief summary of the unmixing routine applied to the hyperspectral imagery is provided here as a 217 

detailed description has been published elsewhere (Hamylton, 2011a). Pre-processing steps included 218 

atmospheric and water column correction (see section 2.4.1), geometric correction and data subsetting 219 

via multiple discriminant function analysis. Multiple discriminant function analysis was applied to the 220 

collected field spectra to define an optimal subset of wavelengths for resolving benthic coverages and 221 

spectral unmixing was performed on this subset to decompose the reflectance of the materials with 222 

different spectral properties inside the ground field of view of a single pixel (1 x 1 m resolution) 223 

(Kruse et al. 1993). On the basis of the image reflectance for each pixel and the field collected spectra 224 

of the individual benthic coverages, the proportions of the individual elements falling inside each pixel 225 

were derived by solving a set of simultaneous linear equations. The linear mixture model assumed 226 

that, for a given wavelength, the total number of photons reflected from a single pixel and detected by 227 

the sensor was a linear function of the reflectance of the individual components and the fractional area 228 

of the pixels they cover: 229 

rx = axi f j + ex

j=1

n

∑             Equation 1 230 

 
 231 
where         rx = reflectance of a given pixel in the xth of z spectral bands 232 

n = the number of mixture components  233 

fj = the jth fractional component in the makeup of rx  234 

Page 8 of 23International Journal of Geographical Information Science



9 

 

axj  = the reflectance of mixture component j in spectral band x  235 

ex = the difference between the pixel reflectance and that computed from the model.  236 

Unmixing accuracy was assessed using a combination of the root mean square error model and 237 

comparison against the field data collected using the phototransects. The overall root mean square 238 

error was calculated as the difference between the reflectance measured by the sensor and that 239 

computed from the unmixing algorithm, this was averaged for each waveband independently. 240 

Comparisons against field data proceeded via a linear regression between the actual proportion (as 241 

estimated from the phototransect mosaic) and the estimated proportion (from spectral unmixing).  242 

The output image depicting the derived spatial patterns of abundance for live coral across the study 243 

area was treated as a representation of the response variable for input into the regression models.  244 

 245 

2.6 The construction and comparison of classic and spatially explicit regression models 246 

for live coral cover.   247 

The spatial structure of the coral coverage dataset was explored by converting the unmixed coral cover 248 

layer to a point file and computing the local Geary’s C statistic as a measure of spatial autocorrelation 249 

between all pairs of points.  A semivariogram was generated to determine the optimum sampling grid 250 

size at which there was no spatial dependence between the data points and therefore no internal 251 

redundancy. An exponential model was found to best fit the dataset with spatial dependency reaching 252 

a sill at 30 m distance between points. To represent coral cover (the dependent variable of the model), 253 

a 30m grid of coverage values was therefore extracted by overlaying a grid of points spaced 30 m 254 

apart and taking an average value of a 3 by 3 cell window from the unmixed coral cover layer (1m 255 

resolution) as input to the regression modelling exercise. Corresponding values were extracted for 256 

each of the explanatory variables (water depth, suspended sediment concentration and wave exposure) 257 

at each grid point location, each of which represented a data case. 258 

 259 

Two regression procedures were carried out using the derived data cases in the software GeoDa 260 

(Anselin, 2003). These were ordinary least squares (classic) regression and spatially lagged 261 

autoregression. After confirmation that the raw data complied with the assumptions of regression, the 262 
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two types of regression analysis were carried out in sequence to measure the proportion of variation in 263 

coral cover accounted for by each model. In the second regression model, spatial structure was 264 

included via the introduction of a spatially lagged autoregressive term as an explanatory variable. This 265 

approach drew explicitly on the location of each individual case through the construction of a spatial 266 

weights matrix (w(i,j)) that expressed for each data case whether or not other cases  belonged to its 267 

neighbourhood, such that wij=1 when i and j were neighbours and wij=0 otherwise (Anselin and Bera 268 

1998). The values of the dependent variable at neighbouring locations were therefore introduced into 269 

the standard regression equation: 270 

 271 

µ(i) = β0 + β1X1( i)
+ β2X2(i)

+ β3X3(i)
+ ρ w(i, j)Y ( j) + e(i) i =1, ... , n

j∈N ( i)
∑     Equation 2 272 

where  n = the number of points or areas 273 

X1 – X3 are the explanatory variables,  274 

e(i) = independent, normally distributed error term  275 

β0 to βk  = coefficients estimated using the model.  276 

ρ = a parameter associated with the interaction effect.  277 

 278 

To estimate the spatial autoregressive terms in the spatial lag model, all cases and the spatial weights 279 

matrix were input into a maximum likelihood procedure that generated consistent estimates of ρ and β. 280 

A distinguishing feature of the likelihood for linear regression parameters with a spatial autoregressive 281 

component is a Jacobian term of the form I − ρW , an evaluation of which was carried out based on 282 

the characteristic polynomial of the spatial weights matrix, W, to maximise the likelihood function of 283 

this term. This approach was originally suggested by (Ord 1975) and was developed into an efficient 284 

computer algorithm in the software GeoDa (Smirnov and Anselin 2001). After each regression 285 

analysis, diagnostics were recorded (including the Moran’s I statistic, t-test, and measures of fit) and 286 

the spatial distribution of model residuals was mapped. A model building approach was taken whereby 287 

a range of independent variables were employed in the initial runs, with analysis of the t-statistic 288 

providing justification for retaining some variables and excluding others future runs. For example, 289 

both phytoplankton backscatter and dissolved organic matter were taken out of the model after initial 290 

runs as they did not make a statistically significant contribution to the performance of the model. 291 
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 292 

3 Results  293 

3.1 Derivation of information on explanatory variables: Water depth, suspended 294 

sediment concentration and wave exposure 295 

The bathymetric map revealed that water depths inside the study area ranged between 0.2m above reef 296 

patches and 30m inside the channel towards the northern end of the study area. These closely 297 

approximated the 188 values measured in-situ with a bathymetric sounder (R2 0.95). In the broader 298 

context of the Al Wajh reef system, the deep channel towards the north of the study area leads to a 299 

large opening in the northern barrier wall, one of only two sites of water exchange between the lagoon 300 

and outside ocean waters. The shallower areas of the study site coincided with the platform in the 301 

north, the ridge network and the tops of the patches in the south. 302 

 303 

Suspended sediment values measured from the water samples extracted inside the lagoon ranged 304 

between 5 and 73 mg L
-1

. The distribution indicated that suspension of sediments coincided with 305 

shallower areas. The association between the particle backscatter coefficient estimated from the 306 

imagery and sediment content of the water was strong (R2 0.91 based on the 25 samples). 307 

 308 

The wave power model distribution was elevated over the ridge towards the north of the study area 309 

immediately below an opening in the Wajh Bank. The majority of the study area was fetch-limited, 310 

being surrounded by the Wajh Bank to the west and the mainland to the east. However, one small area 311 

in the north of the study area is non fetch-limited in a northerly direction. Power levels ranged between 312 

2 and 699 Jm
-3 

throughout the study area. 313 

3.2 Derivation of information on the Dependent variable: live coral cover 314 

 315 

The two hundred and fifty reflectance spectra collected showed considerable variability between the 316 

spectra of the different benthic coverages, each of which had their own unique reflectance curve. The 317 
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airborne dataset was reduced from 128 bands to 27 discriminant functions composed of reflectance 318 

and first order derivative spectra, as identified by the multiple discriminant function analysis. For the 319 

field sites where the coral community was sampled via phototransects, the cover of live coral ranged 320 

from 30-74% (Figure 3).  321 

 322 

[Figure 3 here] 323 

 324 
On the spectrally unmixed output coverage, white areas that indicated high coral cover coincided with 325 

coral that was visible on the three band pseudocolour image  (Fig. 4a) and the overall root mean 326 

square error was low (<0.01). Estimates of live coral cover correlated strongly with field assessments 327 

(R
2
 0.89) and were elevated in three general areas. Firstly, to the north of the study area around the 328 

periphery of the shallow bank (although not across the shallow top of this, an area which is exposed at 329 

low tide). Secondly, several prominent ridges of high live coral cover stood out among the network 330 

across the centre of the study site. Thirdly, areas of interspersed high coral cover were present in 331 

conjunction with the patches in the south of the study site. 332 

 333 

[Figure 4 here ] 334 

3.3 The construction and comparison of classic and spatially explicit regression models 335 

for live coral cover.   336 

 337 
All of the input variables were significant and the ordinary least squares and spatially lagged 338 

regression models explained 26 % and 76 % respectively of the variation in live coral cover inside the 339 

study area. For both models, water depth was negatively correlated and suspended sediment and wave 340 

exposure were positively correlated with live coral cover. Suspended sediment had the highest t-341 

statistic in both cases, which was notably higher in the ordinary least squares model, with depth and 342 

wave power contributing less explanatory power. Nonetheless, the t-test values suggested that each 343 

variable was significant (p<0.001) and it follows that their contribution to the overall live coral 344 

coverage model was valuable, providing a statistical justification for rejecting the null hypothesis. The 345 
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test for multicolinearity revealed minimal association between these distinct explanatory variables of 346 

the dataset. The residuals from the ordinary least squares regression model displayed strong positive 347 

spatial structure, which was corroborated by the Moran statistic (Table 2). For the spatially lagged 348 

model, weak negative autocorrelation was apparent. 349 

Table 2 Summary of results and diagnostics for the two types of regression. 350 

4 Discussion 351 

The moderate T-statistic for water depth was not in agreement with other coral reef studies which 352 

identify this as a key determinant of coral cover (Done, 2011; Kleypas et al. 1999). This is perhaps 353 

because of its status as an indirect variable, or environmental proxy, in marine environments. Potential 354 

controlling variables for which depth could act as a surrogate include temperature, light availability 355 

and degree of atmospheric exposure. These may mask or altogether counteract each other by exerting 356 

opposing influences on live coral cover. Processes may also interact in a non-linear manner along a 357 

depth gradient to cancel each other out in terms of their effects on live coral coverage.  For example, 358 

coral cover may be highest at a depth where the mechanical disturbance caused by wave interaction is 359 

moderate at an intermediate disturbance level (Aronson and Precht 1995). Such a pattern could not be 360 

captured in a regression model.  361 

 362 
The concentration of suspended sediment explained the highest proportion of variation, with higher 363 

concentrations associated with greater proportions of live coral cover. Although the presence of 364 

sediments is generally an impediment to coral survival because of abrasion and smothering, they are 365 

less likely to stress corals when strong currents are present (Rogers, 1990). Fine material (<0.15 mm 366 

diameter) rarely settles in waters of velocity 25 cms
-1

, rather it stays uniformly entrained throughout 367 

the fluid (Komar 1976). Wajh lagoon sediments (which were consistently found to be <0.15 mm in 368 

diameter) likely stay suspended in shallower water of elevated velocity at a concentration too low to 369 

impede photosynthesis. Furthermore, the association of food particulates that favour coral growth such 370 

as zooplankton and dissolved organic matter with suspended sediment might benefit heterotrophic 371 

corals that feed directly from the water column (Johannes et al. 1970).  372 

 373 
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Wave power explained the least amount of variation in live coral cover, likely because of a trade-off 374 

between the constructive and destructive influence of water movement on coral. While circulation 375 

replenishes food and oxygen provision and removes metabolic waste products (Birkeland 1996), it 376 

also presents a mechanical stress whereby shallow benthic communities must withstand the force of 377 

breaking waves to persist (Massel 1996).  378 

 379 

In the presence of spatial dependence, the initial ordinary least squares model inflated the goodness of 380 

fit measure and underestimated the standard error, increasing the likelihood of a Type I error (Cliff 381 

and Ord 1981). Failure to include spatial autocorrelation in the specification meant that some of the 382 

effect due to interaction would have been allocated to the existing covariates, particularly those with a 383 

similar spatial structure to the response variable. Respecification to incorporate a neighbourhood 384 

context effect operating through a spatially lagged expression of the response variable itself allowed 385 

this to be addressed. This neighbourhood context effect might be underpinned by either ecological 386 

factors, such as coral community reproduction, geomorphological ones, such as the presence of 387 

antecedent platform. In the Red Sea, endogenous influences could include a relatively short planktonic 388 

life cycle phase of around 35-40 days (Rinkevich and Loya 1979) and structural support provided by 389 

the existing structure of primary reef framework (Goreau 1959). Over longer timescales this latter 390 

influence may be perpetuated by regional variability of eustatic sea level, which spreads alluvial 391 

material from adjacent mountain ranges smothering reef and encouraging contemporary corals to grow 392 

on the elevated platforms of their Pleistocene counterparts (Shaked and Genin, 2011; Hayward 1982). 393 

Scaling up to the interaction of multiple corals, ecological processes such as the spread of disease and 394 

competition for light are known to have a characteristic spatial structure (Fortin and Dale, 2005). The 395 

action of any of these influences would associate the presence of nearby live corals on the reef with 396 

existing live coral coverages, as demonstrated by the autoregressive model. 397 

 398 

The study exemplifies the degree to which hyperspectral data can be manipulated to support spatially-399 

explicit modelling in coral reef environments. Extended coverage of the electromagnetic spectrum 400 

underpinned much of the modelling process with different dimensions of this dataset to providing 401 

critical information on water depth, suspended sediment concentration and coral cover. Unmixing 402 
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algorithms that treated the data as spectrally continuous yielded outputs at the ratio level of 403 

measurement (i.e. a continuous map of the percentage of live coral cover across the study area). This 404 

added versatility to the modelling process by extending the range of statistical techniques available for 405 

realising explanatory power through the model. The value of introducing a spatial component was 406 

demonstrated for a number of reasons, including i. identification of an appropriate sampling scale for 407 

model development, ii. use of spatially lagged information (i.e., from a neighbouring site) on the 408 

response variable itself to increase explanatory model power, and iii. detection of spatial dependence 409 

(autocorrelation) in the model. Nonetheless, each of the image processing steps from which the 410 

dependent and explanatory variables were derived (pre-procesing, inversion, unmixing etc.) 411 

introduced an element of uncertainty into the models applied. While validation and accuracy 412 

assessment exercises permitted comparison of model outputs with values observed in-situ, an 413 

awareness of the cumulative influence of uncertainty along the analysis chain, for example, error in 414 

inversion and unmixing closure, is important. The study presented here could profitably be improved 415 

by a further error propagation or sensitivity analysis (Schott 2007).  416 

 417 

Conclusion  418 

A key aim of this study was to establish which type of regression modelling is most appropriate for 419 

explaining the distribution of live coral inside the Al Wajh lagoon. To do so, it is useful to distinguish 420 

between determinants that reflect endogenous interaction between the sites and those that respond to 421 

some other exogenous variable. Assessing the relative contribution of effects caused by a reaction to 422 

external forces and effects that are a reaction to neighbouring individuals determines the 423 

appropriateness of the model specified. When external forces are the major influence, a classic 424 

ordinary least squares regression model is appropriate, whereas interactive effects suggest a need for a 425 

model with a spatially dependent covariance structure (Hamylton, 2011c; Cliff and Ord 1981). 426 

Transition to a model that incorporated spatial dependence was accompanied by a marked growth in 427 

explanatory power. The theoretical implication that follows is that neighbourhood interactions play a 428 

more important role than previously thought. This invites greater consideration of explanatory 429 
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variables that reflect interaction between sites, providing a persuasive case for explicitly building 430 

geographical considerations into studies of coral distribution. 431 

 432 
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 566 

Figure list 567 

 568 
Figure 1 Landsat TM image of the Al Wajh Bank, Saudi Arabia, Red Sea (25°39’N, 34°45’E) and the 569 
location of the study site (upper inset) and the Al Wajh Bank in the Red Sea (lower inset). 570 

 571 
[Figure 2. Schematic overview of the construction process for the live coral cover model at Al Wajh.] 572 
 573 
Figure 3.  Phototransects used for validating benthic estimations derived from the spectral unmixing 574 
algorithm, one shallow and one deep transect per site. Locations plotted on the RGB image composite 575 
of the study area 576 
 577 
Figure 4 (a) Hyperspectral colour composite imagery of the study area; (b) Gray scale unmixed image 578 
output depicting the abundance of coral, white areas indicate areas of high coral cover; (c-e) Spatial 579 
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distribution of the modelled values for the three explanatory variables: (c) Bathymetry, (d) Wave 580 
power, and (e) Suspended sediment concentration. 581 
 582 
Table 1. Constraints employed for optimisation of the semi-analytical inversion model, as defined in 583 
Goodman (2008). 584 

Parameter Constraint 
P (m-1) is the phytoplankton absorption coefficient at 440 nm 0.005 ≤ P ≤ 0.5 
G (m

-1
) = absorption coefficient for gelbstoff and detritus at 440 nm 0.002 ≤ G ≤ 3.5 

BP (m) particle-backscattering coefficient 0.001 ≤ BP ≤ 0.5 
B is the bottom albedo at 550 nm 0.01 ≤ B ≤ 0.6 
H (m) is the bottom depth 0.2 ≤ H ≤ 33.0 

 585 

Table 2 Summary of results and diagnostics for the two types of regression. 586 

CLASSIC ORDINARY LEAST SQUARES REGRESSION 

R2 (adjusted value) 0.27 (0.26) 

Moran’s I of residuals 0.73 

Variable β Coefficient Standard error t-statistic 

Depth -0.55 0.03 -12.31 (p<0.001) 

Suspended sediment 0.96 0.03 27.78 (p<0.001) 

Wave power 0.03 0.02 14.74 (p<0.001) 

SPATIAL MODEL 

R2 0.76 

Moran’s I of residuals -0.14 

Variable β Coefficient Standard error t-statistic 

Depth -0.088 0.02 -3.67 (p<0.001) 

Suspended sediment 0.168 0.02 8.80 (p<0.001) 

Wave power 0.040 0.01 4.15 (p<0.001) 

 587 
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Landsat TM image of the Al Wajh Bank, Saudi Arabia, Red Sea (25°39’N, 34°45’E) and the location of the 
study site (upper inset) and the Al Wajh Bank in the Red Sea (lower inset).  
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Schematic overview of the construction process for the live coral cover model at Al Wajh.  
162x132mm (300 x 300 DPI)  
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Phototransects used for validating benthic estimations derived from the spectral unmixing algorithm, one 
shallow and one deep transect per site. Locations plotted on the RGB image composite of the study area  
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a) Hyperspectral colour composite imagery of the study area (RGB wavebands at 767, 519 and 403nm) b) 
Gray scale unmixed image output depicting the abundance of coral, white areas indicate areas of high coral 
cover, c-e) Spatial distribution of the modelled values for the three explanatory variables: iii. Bathymetry, 

iv. Wave power, and v. Suspended sediment concentration.  
157x118mm (300 x 300 DPI)  
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