University of Wollongong

Research Online

Properties of the B+-H2 and B+-D2 complexes: a theoretical and spectroscopic study

B L. J Poad
University of Wollongong, bpoad@uow.edu.au

V Dryza
University of Melbourne
A A. Buchachenko
Moscow State University
J Kos
University of Maryland

E J. Bieske
University of Melbourne

Follow this and additional works at: https://ro.uow.edu.au/scipapers
Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Poad, B L. J; Dryza, V; Buchachenko, A A.; Kos, J; and Bieske, E J.: Properties of the B+-H2 and B+-D2 complexes: a theoretical and spectroscopic study 2012.
https://ro.uow.edu.au/scipapers/4764

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Properties of the $\mathrm{B}+-\mathrm{H} 2$ and $\mathrm{B}+-\mathrm{D} 2$ complexes: a theoretical and spectroscopic study

Abstract

The rotationally resolved infrared spectrum of the B+-D2 ion-neutral complex is recorded in the D-D stretch vibration region ($2805-2875 \mathrm{~cm}-1$) by detecting B+ photofragments. Analysis of the spectrum confirms a T-shaped equilibrium geometry for the $B+-D 2$ complex with a vibrationally averaged intermolecular bond length of $2.247 \AA$, around $0.02 \AA$ shorter than for the previously characterised $\mathrm{B}+-\mathrm{H} 2$ complex [V. Dryza, B. L. J. Poad, and E. J. Bieske, J. Am. Chem. Soc. 130, 12986 (2008)10.1021/ ja8018302]. The D-D stretch band centre occurs at $2839.76 \pm 0.10 \mathrm{~cm}-1$, representing a $-153.8 \mathrm{~cm}-1$ shift from the Q1 (0) transition of the free D2 molecule. A new three dimensional ab initio potential energy surface for the $\mathrm{B}++\mathrm{H} 2$ interaction is calculated using the coupled cluster $\operatorname{RCCSD}(\mathrm{T})$ method and is used in variational calculations for the rovibrational energies of $\mathrm{B}+-\mathrm{H} 2$ and $\mathrm{B}+-\mathrm{D} 2$. The calculations predict dissociation energies of $1254 \mathrm{~cm}-1$ for $\mathrm{B}+-\mathrm{H} 2$ with respect to the $\mathrm{B}++\mathrm{H} 2(\mathrm{j}=0)$ limit, and $1313 \mathrm{~cm}-1$ for $B+-D 2$ with respect to the $B++D 2(j=0)$ limit. The theoretical approach reproduces the rotational and centrifugal constants of the $B+-H 2$ and $B+-D 2$ complexes to within 3%, and the magnitude of the contraction of the intermolecular bond accompanying excitation of the H 2 or D2 sub-unit, but underestimates the $\mathrm{H}-\mathrm{H}$ and D-D vibrational band shifts by $7 \%-8 \%$. Combining the theoretical and experimental results allows a new, more accurate estimation for the $\mathrm{B}+\mathrm{H} 2$ band origin (3939.64 ± 0.10 $\mathrm{cm}-1$).

Keywords

complexes, theoretical, spectroscopic, study, b, properties, d2, h2

Disciplines

Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Poad, B. L. J., Dryza, V., Buchachenko, A. A., Kos, J. \& Bieske, E. J. (2012). Properties of the B+-H2 and B+D2 complexes: a theoretical and spectroscopic study. Journal of Chemical Physics, 137 (12),
124312-1-124312-8.

 Properties of the B+-H2 and B+-D2 complexes: A theoretical and

 Properties of the B+-H2 and B+-D2 complexes: A theoretical and spectroscopic study

 spectroscopic study}

B. L. J. Poad, V. Dryza, A. A. Buchachenko, J. Kłos, and E. J. Bieske

Citation: J. Chem. Phys. 137, 124312 (2012); doi: 10.1063/1.4754131
View online: http://dx.doi.org/10.1063/1.4754131
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v137/i12
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Properties of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes: A theoretical and spectroscopic study

B. L. J. Poad, ${ }^{1, a)}$ V. Dryza, ${ }^{1}$ A. A. Buchachenko, ${ }^{2,3, b)}$ J. Kłos, ${ }^{4, c}$) and E. J. Bieske ${ }^{1, d)}$
${ }^{1}$ School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
${ }^{2}$ Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
${ }^{3}$ Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow District 142432, Russia
${ }^{4}$ Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA

(Received 16 July 2012; accepted 27 August 2012; published online 28 September 2012)

Abstract

The rotationally resolved infrared spectrum of the $\mathrm{B}^{+}-\mathrm{D}_{2}$ ion-neutral complex is recorded in the D-D stretch vibration region (2805-2875 cm^{-1}) by detecting B^{+}photofragments. Analysis of the spectrum confirms a T-shaped equilibrium geometry for the $\mathrm{B}^{+}-\mathrm{D}_{2}$ complex with a vibrationally averaged intermolecular bond length of $2.247 \AA$, around $0.02 \AA$ shorter than for the previously characterised $\mathrm{B}^{+}-\mathrm{H}_{2}$ complex [V. Dryza, B. L. J. Poad, and E. J. Bieske, J. Am. Chem. Soc. 130, 12986 (2008)]. The D-D stretch band centre occurs at $2839.76 \pm 0.10 \mathrm{~cm}^{-1}$, representing a $-153.8 \mathrm{~cm}^{-1}$ shift from the $Q_{1}(0)$ transition of the free D_{2} molecule. A new three dimensional ab initio potential energy surface for the $\mathrm{B}^{+}+\mathrm{H}_{2}$ interaction is calculated using the coupled cluster $\operatorname{RCCSD}(\mathrm{T})$ method and is used in variational calculations for the rovibrational energies of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$. The calculations predict dissociation energies of $1254 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{H}_{2}$ with respect to the $\mathrm{B}^{+}+\mathrm{H}_{2}$ $(j=0)$ limit, and $1313 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{D}_{2}$ with respect to the $\mathrm{B}^{+}+\mathrm{D}_{2}(j=0)$ limit. The theoretical approach reproduces the rotational and centrifugal constants of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes to within 3%, and the magnitude of the contraction of the intermolecular bond accompanying excitation of the H_{2} or D_{2} sub-unit, but underestimates the $\mathrm{H}-\mathrm{H}$ and D-D vibrational band shifts by $7 \%-8 \%$. Combining the theoretical and experimental results allows a new, more accurate estimation for the $\mathrm{B}^{+}-\mathrm{H}_{2}$ band origin ($3939.64 \pm 0.10 \mathrm{~cm}^{-1}$). © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754131]

I. INTRODUCTION

Interactions between dihydrogen and metal ions play a central role in hydrogen storage in porous materials, including zeolites, metal-organic frameworks, and nanostructures doped with light elements. ${ }^{1-5}$ Chemists are developing these materials to reversibly bind and store hydrogen in a form that is safer than compressed H_{2} gas and which can be used for mobile applications. To optimise these materials it is crucial to understand the nature of the $\mathrm{M}^{+} \ldots \mathrm{H}_{2}$ interaction. Perhaps the clearest view of the bond between a metal cation and a hydrogen molecule is gained by forming and spectroscopically characterising $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes in the gas phase. This has motivated us to characterise a series of $\mathrm{M}^{+}-\mathrm{H}_{2}$ systems including, $\mathrm{Li}^{+}-\mathrm{H}_{2}$ and $\mathrm{Li}^{+}-\mathrm{D}_{2},{ }^{6,7} \mathrm{Na}^{+}-\mathrm{H}_{2}$ and $\mathrm{Na}^{+}-\mathrm{D}_{2},{ }^{8,9}$ $\mathrm{Mg}^{+}-\mathrm{H}_{2}$ and $\mathrm{Mg}^{+}-\mathrm{D}_{2},{ }^{10,11} \mathrm{Al}^{+}-\mathrm{H}_{2},{ }^{12} \mathrm{Cr}^{+}-\mathrm{D}_{2},{ }^{13} \mathrm{Mn}^{+}-\mathrm{H}_{2},{ }^{14}$ $\mathrm{Zn}^{+}-\mathrm{D}_{2},{ }^{15}$ and $\mathrm{Ag}^{+}-\mathrm{H}_{2} .{ }^{16}$ For several of these systems $\left(\mathrm{Na}^{+}-\mathrm{H}_{2},{ }^{8} \mathrm{Mg}^{+}-\mathrm{H}_{2},{ }^{11}\right.$ and $\left.\mathrm{Al}^{+}-\mathrm{H}_{2}{ }^{12}\right)$ we have also developed a three-dimensional (3D) potential energy surface (PES) that was used for calculating rovibrational energies.

Among the prospective storage materials are compounds containing boron dopants, which hold promise of high per-

[^0]centage weight storage of H_{2} and binding energies in a favourable range for absorption and release. ${ }^{3,4}$ In order to guide the rational design of these materials, it is desirable to understand the $\mathrm{B}^{+} \ldots \mathrm{H}_{2}$ interaction. Previous studies suggest that the $\left[\mathrm{BH}_{2}\right]^{+}$system possesses two stable structures, the electrostatically bound $\mathrm{B}^{+}-\mathrm{H}_{2}$ complex (Figure 1(a)), and a covalently bound HBH^{+}form (Figure 1(b)). ${ }^{17-19}$ The electrostatic complex has a $\mathrm{C}_{2 v}$ equilibrium structure, as favoured by the charge-quadrupole interaction between the B^{+}cation and the H_{2} molecule. Interconversion between the electrostatic complex (Figure 1(a)) and the more stable covalent form (Figure 1(b)) entails surmounting a $252 \mathrm{~kJ} \mathrm{~mol}^{-1}$ barrier associated with a change in electron configuration. ${ }^{18}$ Whereas, for $\mathrm{B}^{+}-\mathrm{H}_{2}$ the valence electron configuration is $2 a_{1}^{2} 3 a_{1}^{2}$ (corresponding to ground state B^{+}interacting with ground state H_{2}), the covalently bound HBH^{+}molecule has an $2 a_{1}^{2} 1 b_{2}^{2}$ electron configuration and correlates with an electronically excited B^{+}ion ($2 \mathrm{~s}^{1} 2 \mathrm{p}_{z}^{1}$ configuration).

There have been several previous experimental studies of the $\mathrm{B}^{+}+\mathrm{H}_{2}$ system, including ion-molecule reactions, ${ }^{20}$ reactive scattering, ${ }^{21-23}$ and chemiluminescence. ${ }^{24}$ Most relevant to the current work are thermochemical clustering studies through which the dissociation energy for $\mathrm{B}^{+}-\mathrm{H}_{2}$ was determined $\left(D_{0}=1330 \mathrm{~cm}^{-1}\right) .{ }^{19}$ Corresponding computational investigations have explored the structural properties of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and interconversion to the covalent BH_{2}^{+}form, ${ }^{17,18}$ and also the anharmonic vibrational frequencies of $\mathrm{B}^{+}-\mathrm{H}_{2} .{ }^{25}$
(a)

(b)

FIG. 1. (a) $\mathrm{B}^{+}-\mathrm{H}_{2}$ complex; (b) Covalently bound BH_{2}^{+}molecule. Structural parameters are derived at the MP2/aug-cc-pVTZ level and energies with respect to the $\mathrm{B}^{+}+\mathrm{H}_{2}$ limit at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ level. Data are from Ref. 18.

To explore the fundamental $\mathrm{B}^{+} \ldots \mathrm{H}_{2}$ interaction, we have previously recorded the infrared (IR) spectrum of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ complex in the H-H stretch region. ${ }^{26}$ The spectrum, in which rotational substructure is clearly resolved, is consistent with a T-shaped equilibrium geometry and a vibrationally averaged intermolecular bond length of $2.26 \AA$ (Figure 1). Unfortunately, the information that could be extracted from the spectrum was limited by the fact that only the $K_{a}=1-1$ subband was observed (corresponding to complexes containing ortho H_{2}). For this reason we could only estimate the $\nu_{H H}$ band origin as $3940.6 \pm 1.5 \mathrm{~cm}^{-1}$.

Here we extend the earlier work by presenting an IR spectrum of the corresponding $\mathrm{B}^{+}-\mathrm{D}_{2}$ isotopologue and a three-dimensional $\mathrm{B}^{+}+\mathrm{H}_{2}$ potential energy surface computed $a b$ initio using the coupled cluster $\operatorname{CCSD}(\mathrm{T})$ method. The PES is used for variational calculations to derive accurate rovibrational energies for the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and the $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes which are analysed and fitted in a similar fashion to the experimental transition energies, allowing direct comparison between theory and experiment and a direct test of the new PES.

One striking property of $\mathrm{B}^{+}-\mathrm{H}_{2}$, compared to other $\mathrm{M}^{+}{ }_{-}$ H_{2} complexes studied thus far, is its relatively large vibrational band shift for the $\mathrm{H}-\mathrm{H}$ stretch vibration $\left(\Delta v_{H H}\right.$ $=-221.5 \mathrm{~cm}^{-1}$) given its relatively low binding energy ($1330 \mathrm{~cm}^{-1}$). In comparison, the $\mathrm{Li}^{+}-\mathrm{H}_{2}$ complex is more strongly bound ($D_{0}=1675 \mathrm{~cm}^{-1}$) yet has a much smaller shift for the $\mathrm{H}-\mathrm{H}$ stretch mode $\left(\Delta \nu_{H H}=-107.8 \mathrm{~cm}^{-1}\right)$.

II. POTENTIAL ENERGY SURFACE FOR B+ ${ }^{+} \mathrm{H}_{\mathbf{2}}$

Ab initio calculations for the PES were performed employing electronic structure methods within the MOLPRO 2006 suite. ${ }^{27}$ The calculations were done with an augmented, correlation-consistent basis set of quadruple-zeta quality (aug-cc-pVQZ) for the hydrogen and B atoms, ${ }^{28,29}$ with the 1 s orbital on the B atom unfrozen. The basis was augmented with an additional set of $3 s 3 p 2 d 2 f 1 g$ bond functions placed in a mid-distance between B^{+}and the H_{2} center-of-mass. ${ }^{30}$ The reference wave function for subsequent coupled-cluster calculations has been obtained at the restricted Hartree-Fock level. The electronic correlation energy is accounted for by using a partially spin-restricted coupledcluster approach including single and double excitations and
perturbational triple excitations $[\operatorname{RCCSD}(\mathrm{T})$] with explicit correlation of all electrons. ${ }^{31,32}$

The PES for the $\mathrm{B}^{+}-\mathrm{H}_{2}$ system is expressed in terms of the Jacobi coordinate system (r, R, θ), where \boldsymbol{r} denotes the internuclear vector for the H_{2} molecule, \boldsymbol{R} is the vector joining the H_{2} center-of-mass and the B^{+}ion (defining the z axis of the body-fixed frame), and θ is the angle between \boldsymbol{r} and \boldsymbol{R}. The interaction energy was calculated using a supermolecular approach: ${ }^{33}$

$$
\begin{align*}
V(r, R, \theta)= & E_{\mathrm{B}^{+}-\mathrm{H}_{2}}(r, R, \theta) \\
& -E_{\mathrm{B}^{+}}^{D C B S}(r, R, \theta)-E_{\mathrm{H}_{2}}^{D C B S}(r, R, \theta), \tag{1}
\end{align*}
$$

where $E_{\mathrm{B}^{+}-\mathrm{H}_{2}}(r, R, \theta)$ is the total molecular energy, while $E_{\mathrm{B}^{+}}^{D C B S}(r, R, \theta)$ and $E_{\mathrm{H}_{2}}^{D C B S}(r, R, \theta)$ are the total monomer energies of B^{+}or H_{2} calculated in the basis set of all bodies the dimer centered basis set (DCBS). This form for the interaction energy explicitly corrects the basis set superposition error using the standard counter-poise correction scheme.

The PES points were calculated over a grid in which r varies from 1.0 to 2.8 bohr in steps of 0.2 bohr, θ has five values $\left(0^{\circ}, 22.5^{\circ}, 45^{\circ}, 67.5^{\circ}\right.$, and 90°), and R ranges from 3.0 to 40 bohr in 42 steps. $A b$ initio points are available from the authors upon request. The total PES is represented by the sum of the interaction PES, $V(r, R, \theta)$, described above, and the accurate potential for the H_{2} diatomic monomer $\left.U(r)\right)^{34}$

An analytic representation of the three-dimensional PES was obtained using a reproducing kernel Hilbert space (RKHS) method. ${ }^{35}$ The procedure was the same as described previously for the $\mathrm{Mg}^{+}-\mathrm{H}_{2}$ system. ${ }^{11}$

The intermolecular PES for the $\mathrm{B}^{+}+\mathrm{H}_{2}$ interaction, with the $\mathrm{H}-\mathrm{H}$ bond length fixed to $0.747 \AA$ is shown in Figure 2. The form of the PES is dictated by the electrostatic charge-quadrupole and induction charge-induced-dipole interactions between the B^{+}and H_{2} components. The minimum in the T-shaped configuration, favoured by both electrostatic and induction interactions, corresponds to $r_{H H}=0.757 \AA$, $R=2.249 \AA$, and an energy $1557 \mathrm{~cm}^{-1}$ below the $\mathrm{B}^{+}+\mathrm{H}_{2}$ asymptote. The linear configuration, where the electrostatic interaction is repulsive and the induction interaction is attractive, represents a saddle point $\left(r_{H H}=0.747 \AA\right.$,

FIG. 2. Contour plot of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ potential energy surface for a fixed $\mathrm{H}-\mathrm{H}$ bond length of $0.757 \AA$. The contour interval is $200 \mathrm{~cm}^{-1}$.

TABLE I. Structural and energetic parameters for equilibrium configurations of the H_{2} molecule and $\mathrm{B}^{+}-\mathrm{H}_{2}$ electrostatic complex.

	This work	Ref. 18^{a}	Ref. 25
\mathbf{H}_{2}			
$r_{H H} / \AA$	0.741	0.7430	0.743
$\mathbf{B}^{+}-\mathbf{H}_{2}$			
$r_{H H} / \AA$	0.757	0.7563	0.756
R / \AA	2.249	2.2546	2.242
D_{e} / cm^{-1}	1557	1490	1410

${ }^{a} \operatorname{CCSD}(\mathrm{~T})$ /aug-cc-pVTZ calculations.
${ }^{\mathrm{b}} \mathrm{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ calculations.
$R=2.514 \AA$), corresponding to an energy of $-507 \mathrm{~cm}^{-1}$, and a $1050 \mathrm{~cm}^{-1}$ barrier to internal rotation. Equilibrium parameters of our PES are compared with other literature $a b$ initio results in Table I. Agreement is very good, although our calculations predict slightly larger elongation of H-H bond ($0.016 \AA$) upon interaction with the B^{+}ion and larger bond energy owing to the use of better saturated basis set.

III. ROVIBRATIONAL CALCULATIONS FOR B ${ }^{+}-\mathrm{H}_{2}$ AND $\mathrm{B}^{+}-\mathrm{D}_{2}$

A. Rotational energy levels

The interaction PES described above was used to calculate rovibrational energy levels as described in Ref. 36. Complete details of the calculated rovibrational energy levels for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ are provided as supplementary material. ${ }^{37}$ In brief, the full three-dimensional Hamiltonian expressed in Jacobian coordinates is simplified by separating diabatically the fast H_{2} vibrational motion. ${ }^{38}$ The resulting twodimensional (2D) problem with effective potentials for each vibrational state of H_{2} fragment, $n_{H H}=0$ and 1 , is solved variationally using the basis set constructed from numerical radial functions and analytical symmetry adapted free-rotor spherical functions. ${ }^{36}$ The latter brings the full Hamiltonian matrix for each total angular momentum quantum number J (excluding nuclear spin) into four blocks (two and three blocks for $J=0$ and 1 , respectively) according to two parity indexes, p_{i} related to the inversion parity $p=p_{i}(-1)^{J}$, and the permutation parity $p_{j} .{ }^{39} p_{j}=+1$ and -1 correspond to complexes containing para H_{2} (ortho D_{2}) and ortho H_{2} (para D_{2}), respectively.

The calculations were performed for each $J p_{i} p_{j}$ block and were converged for the six lowest vibrational energy levels. The levels are classifiable using the nomenclature for an asymmetric top ($J_{K_{a} K_{c}}$), and according to the number of quanta in the H_{2} stretch mode ($n_{H H}=0$ or 1) and in the intermolecular stretching and bending vibrational modes (n_{s} and n_{b}, respectively).

To test the 2D approach, we also calculated $J=0$ to 5 energies for the lower vibrational levels with $n_{H H}=0$ using a full 3D approach. Generally, there is a good agreement between the two methods, both for the rotational energy of the ground vibrational state and also for the energies of the higher intermolecular stretching and bending vibrational states. The main difference is that the 2D approach tends to slightly un-

TABLE II. Comparison of experimental spectroscopic constants for $\mathrm{B}^{+}-\mathrm{H}_{2}$ from Dryza et al. ${ }^{26}$ with theoretical constants obtained by fitting the calculated energy levels derived from the PES presented in the current work to a Watson A-reduced Hamiltonian. Units are cm^{-1} unless otherwise indicated.

	Expt. $^{\mathrm{a}}$	Theory 2D	Theory 3D
	$K_{a}=1-1$	$K_{a}=0,1^{\mathrm{b}}$	$K_{a}=0,1^{\mathrm{c}}$
$A^{\prime \prime}$	\ldots	$72.49(1)$	$72.35(1)$
$B^{\prime \prime}$	$1.9565(10)$	$1.9128(5)$	$1.932(2)$
$C^{\prime \prime}$	$1.8498(10)$	$1.8124(5)$	$1.829(2)$
$\bar{B}^{\prime \prime}$	$1.9032(10)$	1.8626	$1.8805(2)$
$\Delta_{J}^{\prime \prime} \times 10^{4}$	$2.3(1)$	$2.45(4)$	$2.4(5)$
$\Delta_{J K}^{\prime \prime} \times 10^{3}$	\ldots	$-8.6(3)$	$-8.9(9)$
A^{\prime}	\ldots	$68.96(1)$	
B^{\prime}	$2.0276(10)$	$1.9830(5)$	
C^{\prime}	$1.9045(10)$	$1.8700(5)$	
\bar{B}^{\prime}	$1.9660(10)$	1.9265	
$\Delta_{J}^{\prime} \times 10^{4}$	$2.3(1)$	$2.31(5)$	
$\Delta_{J K}^{\prime} \times 10^{3}$	\ldots	$-11.2(2)$	
ΔA	\ldots	-3.53	
$\nu_{s u b}$	$3936.11(1)$		
ν_{0}	3939.64	3957.34	
$\mathrm{rms} \times 10^{3}$	6	7	
$\Delta v_{H H}$	-221.5	-203.8	
$\omega_{s}^{\prime \prime}$	$346(15)$	$325(5)$	
ω_{s}^{\prime}	$363(16)$	$352(8)$	
$k_{s}^{\prime \prime}$	$12.0(10)$	$10.6(03)$	$11.1(44)$
k_{s}^{\prime}	$13.2(12)$	$12.4(06)$	
$R_{0}^{\prime \prime} \AA \AA$	2.262	2.287	
R_{0}^{\prime} / \AA	2.224	2.247	
a^{\prime}			

${ }^{a}$ Reference 26.
${ }^{\mathrm{b}}$ Fits to $J=0-10$ levels.
${ }^{\text {c }}$ Fits to $J=0-5$ levels.
derestimate the rotational constants compared to the more accurate 3D approach.

The rotational levels for each rovibrational manifold of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ were fitted by the A reduced Watson Hamiltonian to give rotational and centrifugal distortion constants that are directly comparable with corresponding values obtained from analysis of the experimental spectra. The resulting parameters for B^{+} $\mathrm{H}_{2}\left(n_{H H}=0\right.$ and $n_{H H}=1$ manifolds $)$ and $\mathrm{B}^{+}-\mathrm{D}_{2}\left(n_{D D}\right.$ $=0$ and $n_{D D}=1$ manifolds) are reported in Tables II and III, respectively.

The rovibrational calculations provide accurate values for the zero-point vibrational energies and dissociation energies of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$. The $J=0$ vibrational ground state level of $\mathrm{B}^{+}-\mathrm{H}_{2}$ (para) lies $1254 \mathrm{~cm}^{-1}$ below the $\mathrm{B}^{+}+\mathrm{H}_{2}(j=0)$ limit, whereas the lowest level of $\mathrm{B}^{+}-\mathrm{H}_{2}$ (ortho) $(J=1$, $K_{a}=1$ level) lies $1298 \mathrm{~cm}^{-1}$ below the $\mathrm{B}^{+}+\mathrm{H}_{2}(j=1)$ limit. The $j=0$ and $j=1$ levels correspond to the para and ortho nuclear spin modifications of H_{2}, which have relative statistical weights of 3:1 and are essentially non-interconverting.

The $\mathrm{B}^{+}-\mathrm{D}_{2}$ complex is predicted to be slightly more strongly bound than $\mathrm{B}^{+}-\mathrm{H}_{2}$ (by $59 \mathrm{~cm}^{-1}$) due to its lower vibrational zero-point energy associated with the intermolecular stretch and bend vibrational modes. The lowest level of $\mathrm{B}^{+}-\mathrm{D}_{2}$ (ortho) lies $1313 \mathrm{~cm}^{-1}$ below the $\mathrm{B}^{+}+\mathrm{D}_{2}(j=0)$ limit,

TABLE III. Spectroscopic constants for $\mathrm{B}^{+}-\mathrm{D}_{2}$ obtained by fitting the $\mathrm{D}-$ D stretch band transitions (Fig. 3) and the calculated energy levels derived from the PES to a Watson A-reduced Hamiltonian. Units are cm^{-1} unless otherwise indicated.
\(\left.\begin{array}{lccc}\hline \hline \& Expt. \& Theory 2D \& Theory 3D

\& K_{a}=0,1 \& K_{a}=0,1^{\mathrm{a}}\end{array}\right]\)| $K_{a}=0,1^{\mathrm{b}}$ |
| :--- |

${ }^{\text {a }}$ Fits to $J=0-10$ levels.
${ }^{\mathrm{b}}$ Fits to $J=0-5$ levels.
whereas the lowest level of $\mathrm{B}^{+}-\mathrm{D}_{2}$ (para) (the $J=1, K_{a}=1$ level) lies $1338 \mathrm{~cm}^{-1}$ below the $\mathrm{B}^{+}+\mathrm{D}_{2}(j=1)$ limit.

Assignment of most low lying energy levels is straightforward. However, analysis of several higher intermolecular stretch and bend levels is complicated by Fermi and Coriolis interactions. Specifically, for $\mathrm{B}^{+}-\mathrm{H}_{2}$, there is a Coriolis interaction between the $n_{H H}=0, n_{b}=1, K_{a}=1$ levels and adjacent $n_{H H}=0, n_{s}=2, K_{a}=0$ levels. Although the vibrational energy of the $n_{H H}=0, n_{b}=1, K_{a}=1$ state is lower than that of the $n_{H H}=0, v_{s}=2, K_{a}=0$ state ($543.3 \mathrm{~cm}^{-1}$ compared to $563.4 \mathrm{~cm}^{-1}$), the rotational constant is larger, leading to a crossing of the zero order manifolds at $J^{\prime \prime}=9-10$. Similarly, there are Coriolis interactions between the $n_{H H}=1, n_{s}=1$, $K_{a}=1$ levels and nearby $n_{H H}=1, n_{b}=1, K_{a}=0$ levels. In this case the vibrational energies are very similar ($398.1 \mathrm{~cm}^{-1}$ and $399.2 \mathrm{~cm}^{-1}$) and the zero order manifolds are nearly resonant for $J^{\prime}=1$.

The rotational levels of the $\nu_{s}, 2 \nu_{s}$, and ν_{b} manifolds (available as supplementary material ${ }^{37}$) were also fitted to the expression $E(J)=E_{0}+B J(J+1)-D[J(J+1)]^{2}$ to give rotational and centrifugal distortion constants that are listed in Table IV.

The rovibrational calculations for $\mathrm{B}^{+}-\mathrm{H}_{2}$ enable the $\nu_{H H}$ band centre to be defined more precisely than in the original spectroscopic study, in which only the $K_{a}=1-1$ sub-band, associated with complexes containing ortho H_{2}, was observed. ${ }^{26}$ Fits to the calculated levels allow the separation of $K_{a}=0$ 0 and $K_{a}=1-1$ sub-bands to be predicted $\left(-3.53 \mathrm{~cm}^{-1}\right)$ so that the experimental $\nu_{H H}$ band center can be estimated as

TABLE IV. Intermolecular vibrational energies and rotational constants for $K_{a}=0$ states of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ determined from 2D rovibrational calculations and 3D calculations (in brackets). Units are cm^{-1}.

	$E_{0}^{\prime \prime}$	$\bar{B}^{\prime \prime}$	$D^{\prime \prime}$	E_{0}^{\prime}	\bar{B}^{\prime}	D^{\prime}
$\mathrm{B}^{+}-\mathrm{H}_{2}$						
$\mathrm{GS}\left(K_{a}=0\right)$	0	1.854	2.4×10^{-4}	0	1.915	2.3×10^{-4}
$v_{s}\left(K_{a}=0\right)$	$304(311)$	1.705	2.6×10^{-4}	330	1.774	2.5×10^{-4}
$\nu_{b}\left(K_{a}=0\right)$	$418(425)$	1.822	2.8×10^{-4}	399	1.917	2.7×10^{-4}
$2 v_{s}\left(K_{a}=0\right)$	$563(572)$	1.539	3.0×10^{-4}	615	1.615	2.8×10^{-4}
$\mathrm{~B}^{+}-\mathrm{D}_{2}$						
$\mathrm{GS}\left(K_{a}=0\right)$	0	1.0838	8.0×10^{-5}	0	1.1087	7.7×10^{-5}
$v_{s}\left(K_{a}=0\right)$	$239(243)$	1.0163	8.7×10^{-5}	253	1.0427	8.4×10^{-5}
$\nu_{b}\left(K_{a}=0\right)$	$323(325)$	1.06630	9.1×10^{-5}	314	1.0998	9.0×10^{-5}
$2 v_{s}\left(K_{a}=0\right)$	$454(460)$	0.9460	9.3×10^{-5}	480	0.9743	8.9×10^{-5}

$3939.64 \pm 0.10 \mathrm{~cm}^{-1}$. The fact that the rovibrational calculations for $\mathrm{B}^{+}-\mathrm{D}_{2}$ predict the experimentally observed spacing between the $K_{a}=0-0$ and $K_{a}=1-1$ sub-bands to within $0.01 \mathrm{~cm}^{-1}$ gives credence to the predictions for the $\mathrm{B}^{+}-\mathrm{H}_{2}$ sub-band spacing and $v_{H H}$ band centre.

IV. IR SPECTRUM OF $\mathrm{B}^{+}-\mathrm{D}_{\mathbf{2}}$

The arrangement for recording IR spectra of mass selected ions has been described previously. ${ }^{6,40}$ The precursor $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes were formed by introducing B^{+}ions from a laser ablated boron nitride rod into a supersonic expansion of D_{2} gas. After passing through a skimmer, the $\mathrm{B}^{+}-\mathrm{D}_{2}$ ions were mass selected by a primary quadrupole and deflected by 90° into an octopole ion guide where they encountered the counter-propagating output of the tuneable IR light-source (Continuum Mirage 3000 , line-width $0.017 \mathrm{~cm}^{-1}$). The B^{+} fragment ions resulting from resonant absorption of an IR photon were mass selected by a second quadrupole mass filter and finally sensed using a micro-channel plate coupled to a scintillator and a photomultiplier tube. Typically, populations of charged complexes formed in the supersonic expansion ion source have a rotational temperature of $30-40 \mathrm{~K}$. Transition wavenumbers are corrected for the small Doppler shift arising from the ions' kinetic energy (10 eV) in the octopole guide where they overlap with the IR radiation.

The IR spectrum of $\mathrm{B}^{+}-\mathrm{D}_{2}$ in the D-D stretch (2800$2880 \mathrm{~cm}^{-1}$) is shown in Figure 3. The form of the spectrum, which displays three overlapping $\mathrm{K}_{a}=0-0,1-1$, and 2-2 sub-bands, accords with expectations for a T-shaped complex and is consistent with the previously recorded infrared spectrum of $\mathrm{B}^{+}-\mathrm{H}_{2} \cdot{ }^{26}$ Excitation of the H-H or D-D sub-unit leads to a transition dipole moment lying along the principle axis of the molecule (intermolecular bond), and a parallel IR transition. Asymmetry doublets are clearly resolved for the $\mathrm{K}_{a}=1-1$ sub-band (see enlargement of the Q-branch region in Figure 3), but not for the $\mathrm{K}_{a}=2-2$ sub-band for which the spacing is predicted to be much smaller.

Altogether, in the $\mathrm{B}^{+}-\mathrm{D}_{2}$ spectrum, 23 lines were identified for the $K_{a}=0-0$ sub-band, 30 lines for the $K_{a}=1-1$ sub-band, and 20 lines for the $K_{a}=2-2$ sub-band. The $\mathrm{K}_{a}=0-0$ and $\mathrm{K}_{a}=2-2$ transitions overlap at higher J in the R-branch. The line wavenumbers were fitted to a

FIG. 3. IR spectrum of the $\mathrm{B}^{+}-\mathrm{D}_{2}$ complex in the D-D stretch region (upper), along with an expanded view of the Q branch region (lower). $K_{a}=0-0$ transitions are indicated by filled circles $(\bullet), K_{a}=1-1$ transitions by filled triangles $(\mathbf{\Delta})$ and $K_{a}=2-2$ transitions by filled squares ($\left.\boldsymbol{\square}\right)$.

Watson A-reduced Hamiltonian for an asymmetric rotor, ${ }^{41}$ yielding the band centre for the $\nu_{D D}$ transition, ground and excited state B and C rotational constants, and Δ_{J} and $\Delta_{J K}$ centrifugal distortion terms. For fitting individual sub-bands, both $A^{\prime \prime}$ and A^{\prime} were constrained to $29.907 \mathrm{~cm}^{-1}$, the ground state rotational constant of the bare D_{2} molecule. ${ }^{42}$ When two or more sub-bands were fitted together, $A^{\prime \prime}$ was constrained to $29.907 \mathrm{~cm}^{-1}$ whereas A^{\prime} was allowed to vary. It is worth noting that values of the other constants are relatively insensitive to substantial variations in $A^{\prime \prime}$ or A^{\prime}. Spectroscopic constants obtained from the fits are presented in Table III. The supplementary material ${ }^{37}$ includes a complete list of the observed transitions, assignments in terms of a near prolate asymmetric rotor model, and deviations from the line positions predicted using the parameters in Table III.

V. DISCUSSION

Here we consider the nature of the $\mathrm{B}^{+} \ldots \mathrm{H}_{2}$ interaction in light of the IR spectra of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ and the new $\mathrm{B}^{+}+\mathrm{H}_{2}$ PES and rovibrational calculations. The $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ spectra, with their prominent $\Delta K_{a}=0$ sub-bands are qualitatively consistent with the ab initio PES, which features a pronounced minimum in the T-shaped configuration lying $1050 \mathrm{~cm}^{-1}$ below the linear configuration (Fig. 2). The vibrationally averaged intermolecular bond length for $\mathrm{B}^{+}-\mathrm{D}_{2}$ deduced from the ground state rotational constant $\left(\bar{B}^{\prime \prime}\right)$ is $2.247 \AA$, slightly less than for $\mathrm{B}^{+}-\mathrm{H}_{2}(2.262 \AA)$, reflecting the reduced amplitude of the zero-point stretching motion resulting from the larger mass of the D_{2} sub-unit.

Despite the substantial barrier for internal rotation the bending wave function has significant amplitude in configurations well away from the T-shaped minimum, a consequence of the low mass of the $\mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$ sub-unit. The IR spectrum provides subtle evidence for the large amplitude bending vibrations of $\mathrm{B}^{+}-\mathrm{D}_{2}$ and $\mathrm{B}^{+}-\mathrm{H}_{2}$, particularly through the ex-
aggerated spacing of the $\mathrm{K}_{a}=1-1$ asymmetry doublets and large differences in the B and C rotational constants. As noted for other $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes, the value of the A rotational constant derived from B and C constants, assuming a zero inertial defect as expected for a rigid, planar molecule ($1 / A$ $=1 / C-1 / B)$, is inconsistent with a reasonable $\mathrm{H}-\mathrm{H}$ bond length. For example, the $\mathrm{H}-\mathrm{H}$ and D-D bond lengths deduced from the rotational constants listed in Tables II and III are $0.99 \AA$ and $0.89 \AA$, respectively. Obviously, the H-H and D-D bond lengths should be very similar and much smaller - the $a b$ initio equilibrium separation is around $0.76 \AA$. In fact, the complexes are floppy and undergo large amplitude vibrational excursions along the bend coordinates leading to a non-zero inertial defect. These large amplitude motions are accounted for explicitly in the rovibrational calculations.

A. Vibrational band shifts

A characteristic feature of the $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes is that interaction with the metal cation leads to a reduction in vibrational frequency for the H_{2} and D_{2} sub-units and increase in the $\mathrm{H}-\mathrm{H}$ and D-D bond lengths. ${ }^{16,43}$ The $v_{D D}$ band origin for $\mathrm{B}^{+}-\mathrm{D}_{2}$ occurs at $2839.75 \mathrm{~cm}^{-1}$, corresponding to a shift of $-153.8 \mathrm{~cm}^{-1}$ with respect to the $Q_{1}(0)$ transition of the free D_{2} molecule. The relative shift of the D-D stretch band $\left(\Delta v_{D D} / v_{D D}=-0.053\right)$ is almost identical to the corresponding relative shift for the $\mathrm{H}-\mathrm{H}$ stretch transition of $\mathrm{B}^{+}-\mathrm{H}_{2}\left(\Delta v_{H H} / v_{H H}=-0.051\right) .{ }^{26}$ The vibrational shifts for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ are larger than for other $\mathrm{M}^{+}{ }_{-}$ H_{2} and $\mathrm{M}^{+}-\mathrm{D}_{2}$ complexes having comparable dissociation energies. For example, the shifts for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ are nearly double those for $\mathrm{Li}^{+}-\mathrm{H}_{2}$ and $\mathrm{Li}^{+}-\mathrm{D}_{2}$ (for both of which $\Delta v / v=-0.026$), despite the fact that the dissociation energies for $\mathrm{Li}^{+}-\mathrm{H}_{2}$ and $\mathrm{Li}^{+}-\mathrm{D}_{2}$ are around $300 \mathrm{~cm}^{-1}$ higher than for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$. This implies that the
vibrational redshift is not entirely determined by long range electrostatic and induction interactions, a significant implication given that the magnitude of the vibrational redshift is sometimes used to infer the H_{2} binding energy in porous hydrogen storage materials. ${ }^{43}$ The same exceptions have been noted in Ref. 25.

Data for other $\mathrm{M}^{+}-\mathrm{H}_{2}$ and $\mathrm{M}^{+}-\mathrm{D}_{2}$ complexes suggest that the electronic structure of the metal cation influences the vibrational shift. Complexes containing metal cations with s^{0}, s^{1} and s^{2}, and d^{5} and d^{10} valence electronic structures each display different relationships between the vibrational band shift and dissociation energy. ${ }^{15,16}$ In the case of $\mathrm{B}^{+}-\mathrm{H}_{2}$, a natural bond orbital analysis suggests that the pronounced lengthening and softening of the $\mathrm{H}-\mathrm{H}$ bond and resulting large $\Delta \nu_{H H}$ shift are associated with the transfer of electron density from the $\mathrm{H}_{2} \sigma_{g}$ bonding orbital to the opposite side of the B^{+} cation, facilitated through hybridisation of the B^{+}valence 2 s orbital with the low lying $2 p_{z}$ orbital. ${ }^{26}$

The relatively large vibrational redshifts for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$, are also reflected in a substantial lengthening of the $\mathrm{H}-\mathrm{H}$ and D-D bonds accompanying formation of the complexes (by $0.016 \AA$), larger than for comparable complexes, including $\mathrm{Li}^{+}-\mathrm{H}_{2}(0.010 \AA), \mathrm{Na}^{+}-\mathrm{H}_{2}(0.005 \AA)$ and $\mathrm{Mg}^{+}-\mathrm{H}_{2}$ (0.008 A).

B. Intermolecular vibrational modes

The $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ IR spectra currently provide little direct information on the intermolecular bend $\left(v_{b}\right)$ or stretch $\left(v_{s}\right)$ vibrational modes and resort must be made to theory for their frequencies. Calculated frequencies and rotational constants for $v_{s}, 2 v_{s}$, and v_{b}, derived from the 2D and 3D rovibrational calculations are reported in Table IV. Generally, the assignments for the calculated vibrational levels are compatible with the rotational constants for the manifolds. For example, the rotational constants for the v_{s} and $2 v_{s}$ levels are less than for the ground state, due to increases in the vibrationally averaged intermolecular separation. The intermolecular bend mode, on the other hand, has a very similar rotational constant to the ground state, indicating that, as is apparent from Figure 2, the radial separation does not change markedly along the bending coordinate. Note however, that the centrifugal distortion constants for the v_{b} states are systematically larger than the ground state, reflecting the fact that the intermolecular interaction becomes weaker as the system moves towards the linear configuration.

Although we do not measure v_{s} directly, estimates for the harmonic intermolecular stretch frequency $\left(\omega_{s}\right)$ derived from the rotational constant and centrifugal distortion constant (\bar{B} and Δ_{J}) by treating the system as a pseudodiatomic are around 10% larger than the stretching frequencies predicted through the rovibrational calculations (Tables II and III).

Vibrational excitation of the diatomic H_{2} or D_{2} sub-unit leads to a contraction of the intermolecular bond (by 0.038 and $0.027 \AA$ for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$, respectively) and an increase in the predicted intermolecular stretch frequency (304 to $330 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and 239 to $253 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{D}_{2}$). The shortening and stiffening of the intermolecular bond, which is
quantitatively reproduced by theory, is in line with increases of the vibrationally averaged polarisability and quadrupole moment of the H_{2} or D_{2} molecule accompanying vibrational excitation of the diatomic molecule.

Although the v_{s} mode increases in frequency upon excitation of the diatomic sub-unit, somewhat surprisingly, the intermolecular bending mode decreases in frequency (Table IV). This reduction has neither been predicted nor observed for other $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes, and is possibly connected with the fact that as the H-H bond is stretched the angular potential progressively becomes more isotropic. Indeed, analysis of the PES shows that when r exceeds $\sim 1.1 \AA$, the linear HHB^{+}structure actually becomes favoured over the T-shaped structure.

C. Assessing the $B^{+}+H_{2}$ potential energy surface

One of the main goals of this work is to develop a reliable PES for the $\mathrm{B}^{+}+\mathrm{H}_{2}$ interaction, capable of describing the properties of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes. Points of contact between theory and experiment include the dissociation energy and the measured and calculated spectroscopic parameters listed in Tables II and III.

The PES does a good job of predicting the binding energy of $\mathrm{B}^{+}-\mathrm{H}_{2}$, with a calculated dissociation energy of $1254 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{H}_{2}$ (para) and $1298 \mathrm{~cm}^{-1}$ for $\mathrm{B}^{+}-\mathrm{H}_{2}$ (ortho) reproducing the measured value ($D_{0}=1330 \pm 70 \mathrm{~cm}^{-1}$; Ref. 19) very well.

The measured rotational and centrifugal distortion constants for $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ are also reproduced quite well by the 2D and 3D rovibrational calculations. The 3D calculations underestimate $B^{\prime \prime}$ by $1 \%-2 \%$, corresponding to an overestimation of the vibrationally averaged intermolecular bond length by $0.01-0.02 \AA$, perhaps an indication that the PES slightly underestimates the strength of the intermolecular interaction. Furthermore, the 2D rovibrational calculations correctly predict the magnitude of contraction and stiffening of the intermolecular bond following excitation of the diatomic sub-unit. Furthermore, the calculations predict the spacings between the $\mathrm{K}_{a}=0-0,1-1$, and 2-2 sub-band origins for $\mathrm{B}^{+}-\mathrm{D}_{2}$ to within $0.01 \mathrm{~cm}^{-1}$.

Perhaps the largest discrepancies are for the vibrational band shifts of $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$, which the new PES and 2D rovibrational calculations predict to be -204 and $-142 \mathrm{~cm}^{-1}$, underestimating the experimental shifts (-224 and $-154 \mathrm{~cm}^{-1}$) by around 8% in both cases.

The same discrepancy was found in previous variational calculations for other $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes. ${ }^{8,11,12}$ Although inaccuracy of the PES cannot be ruled out as a possible origin, we tend to attribute it to the use of 2D approximation, which expresses the 2D intermolecular PES as an average over the vibrational motion of the unperturbed H_{2} molecule in the $n_{H H}=0$ and $n_{H H}=1$ states. This approach becomes less accurate for systems in which the interaction with the metal cation significantly affects the $\mathrm{H}-\mathrm{H}$ potential. One therefore finds better agreement between the 2D and 3D results for complexes with smaller distortion of the H_{2} fragment. It is difficult to quantify the defect of 2 D approximation for the $n_{H H}=1$ levels because they are not amenable to 3D
variational calculations as they are metastable with respect to vibrational predissociation.

De Silva et al. have performed ab initio calculations at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ level for the $\mathrm{B}^{+}-\mathrm{H}_{2}$ complex, using a vibrational self consistent field (VSCF) method to account for vibrational anharmonicity. ${ }^{25}$ Generally, the VSCF anharmonic frequencies are much closer than the harmonic frequencies to the values predicted from our rovibrational calculations. The predicted redshift for $\nu_{H H}$ is $-202 \mathrm{~cm}^{-1}$ (similar to our prediction of $-204 \mathrm{~cm}^{-1}$), whereas the VSCF frequency for v_{s} is $306 \mathrm{~cm}^{-1}$, again similar to our prediction ($311 \mathrm{~cm}^{-1}$ from the 3D calculations). On the other hand, the VSCF frequency for $v_{b}\left(480 \mathrm{~cm}^{-1}\right)$ is somewhat larger than our value ($425 \mathrm{~cm}^{-1}$ from the 3D calculations). The same trends hold for other $\mathrm{M}^{+}-\mathrm{H}_{2}$ complexes considered in Ref. 25. Potentially the VSCF approach, which relies on derivatives of the potential energy at the equilibrium configuration, may not adequately describe the large amplitude bending mode that corresponds to a frustrated internal rotation.

The zero-point corrected dissociation energy, $1116 \mathrm{~cm}^{-1}$, is around 11% less than our value ($1254 \mathrm{~cm}^{-1}$) and 16% less than the measured value. Ultimately, direct spectroscopic measurements of the v_{s} and v_{b} modes would provide firmer tests of our PES and rovibrational calculations and the VSCF calculations.

VI. CONCLUDING REMARKS

The experimental and theoretical data confirm that the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes essentially consist of a B^{+} cation attached to a slightly perturbed H_{2} or D_{2} molecule, notwithstanding the fact that the predicted lowest energy form of the $\left[\mathrm{BH}_{2}\right]^{+}$system is the linear, covalently bound HBH^{+} molecule. The main evidence for the weak nature of the $\mathrm{B}^{+} \ldots \mathrm{H}_{2}$ bond is that the H-H and D-D stretch bands of $\mathrm{B}^{+}$$\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ are only mildly shifted from the vibrational transitions of the free H_{2} and D_{2} molecules (by -221.5 and $-153.8 \mathrm{~cm}^{-1}$, respectively) and that the spectra are consistent with T-shaped equilibrium structures, favoured by the electrostatic charge-quadrupole interaction, with intermolecular separations of approximately $2.25 \AA$. Both experiment and theory demonstrate the importance of large amplitude motions in the intermolecular stretch and bend modes in influencing the measured spectroscopic constants.

The new $\mathrm{B}^{+}+\mathrm{H}_{2}$ PES provides a good description of $\mathrm{B}^{+}-$ H_{2} and $\mathrm{B}^{+}-\mathrm{D}_{2}$. The predicted dissociation energy of $\mathrm{B}^{+}-\mathrm{H}_{2}$ (para) is $1254 \mathrm{~cm}^{-1}$, agreeing with the experimental value ($D_{0}=1330 \pm 70 \mathrm{~cm}^{-1}$; Ref. 19). The predicted dissociation energy for $\mathrm{B}^{+}-\mathrm{D}_{2}$ (ortho) is slightly larger ($1313 \mathrm{~cm}^{-1}$) due to its lower zero-point energy. The calculations predict key features of the $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ complexes, including the shortening of the intermolecular bond following vibrational excitation of the diatomic sub-unit (by 0.038 and $0.027 \AA$, respectively), and the separation of the sub-bands in the $\mathrm{B}^{+}-\mathrm{D}_{2}$ spectrum. The calculations underestimate the rotational constants by around $1 \%-2 \%$, and underestimate the band shifts for the H-H and D-D transitions by $7 \%-8 \%$.

ACKNOWLEDGMENTS

This research was supported under the Australian Research Council's Discovery Project funding scheme (Project Nos. DP0986980, DP110100312, and DP120100100). J.K. acknowledges financial support from the U.S. National Science Foundation (Grant No. CHE-0848110) to Professor M. H. Alexander. Electronic structure calculations were performed on the OIT High Performance Computing Cluster (HPCC) of the University of Maryland.
${ }^{1}$ M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle, Phys. Chem. Chem. Phys. 9, 2643 (2007).
${ }^{2}$ M. Dinca and J. Long, Angew. Chem., Int. Ed. Engl. 47, 6766 (2008).
${ }^{3}$ L. Firlej, B. Kuchta, C. Wexler, and P. Pfeifer, Adsorption 15, 312 (2009).
${ }^{4}$ Y. Liu, C. Brown, J. Blackburn, D. Neumann, T. Gennett, L. Simpson, P. Parilla, A. Dillon, and M. Heben, J. Alloys Compd. 446-447, 368 (2007).
${ }^{5}$ S. Banerjee, S. Murad, and I. K. Puri, Proc. IEEE 94, 1806 (2006).
${ }^{6}$ C. D. Thompson, C. Emmeluth, B. L. J. Poad, G. H. Weddle, and E. J. Bieske, J. Chem. Phys. 125, 044310 (2006).
${ }^{7}$ C. Emmeluth, B. L. J. Poad, C. D. Thompson, G. H. Weddle, and E. J. Bieske, J. Chem. Phys. 126, 204309 (2007).
${ }^{8}$ B. L. J. Poad, P. J. Wearne, E. J. Bieske, A. A. Buchachenko, D. I. G. Bennett, J. Kłos, and M. H. Alexander, J. Chem. Phys. 129, 184306 (2008).
${ }^{9}$ B. L. J. Poad, V. Dryza, J. Kłos, A. A. Buchachenko, and E. J. Bieske, J. Chem. Phys. 134, 214302 (2011).
${ }^{10}$ V. Dryza, B. L. J. Poad, and E. J. Bieske, J. Phys. Chem. A 113, 199 (2009).
${ }^{11}$ V. Dryza, E. J. Bieske, A. A. Buchachenko, and J. Kłos, J. Chem. Phys. 134, 044310 (2011).
${ }^{12}$ C. Emmeluth, B. L. J. Poad, C. D. Thompson, G. H. Weddle, E. J. Bieske, A. A. Buchachenko, T. A. Grinev, and J. Kłos, J. Chem. Phys. 127, 164310 (2007).
${ }^{13}$ V. Dryza and E. J. Bieske, J. Chem. Phys. 131, 164303 (2009).
${ }^{14}$ V. Dryza, B. L. J. Poad, and E. J. Bieske, J. Phys. Chem. A 113, 6044 (2009).
${ }^{15}$ V. Dryza and E. J. Bieske, J. Chem. Phys. 131, 224304 (2009).
${ }^{16}$ V. Dryza and E. J. Bieske, J. Phys. Chem. Lett. 2, 719 (2011).
${ }^{17}$ J. Nichols, M. Gutowski, S. J. Cole, and J. Simons, J. Phys. Chem. 96, 644 (1992).
${ }^{18}$ S. Sharp and G. Gellene, J. Am. Chem. Soc. 120, 7585 (1998).
${ }^{19}$ P. Kemper, J. Bushnell, P. Weis, and M. Bowers, J. Am. Chem. Soc. 120, 7577 (1998).
${ }^{20}$ C. H. DePuy, R. Gareyev, J. Hankin, G. E. Davico, and R. Damrauer, J. Am. Chem. Soc. 119, 427 (1997).
${ }^{21}$ B. Friedrich and Z. Herman, Chem. Phys. 69, 433 (1982).
${ }^{22}$ K. Lin, H. P. Watkins, R. J. Cotter, and W. S. Koski, J. Chem. Phys. 60, 5134 (1974).
${ }^{23}$ N. A. Sondergaard, I. Sauers, A. C. Jones, J. J. Kaufman, and W. S. Koski, J. Chem. Phys. 71, 2229 (1979).
${ }^{24}$ C. Ottinger and J. Reichmuth, J. Chem. Phys. 74, 928 (1981).
${ }^{25}$ N. De Silva, B. Njegic, and M. S. Gordon, J. Phys. Chem. A 115, 3272 (2011).
${ }^{26}$ V. Dryza, B. L. J. Poad, and E. J. Bieske, J. Am. Chem. Soc. 130, 12986 (2008).
${ }^{27}$ H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al., MOLPRO, version 2006.1, a package of ab initio programs, 2006, see http://www.molpro.net/.
${ }^{28}$ R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
${ }^{29}$ D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
${ }^{30}$ S. M. Cybulski and R. R. Toczylowski, J. Chem. Phys. 111, 10520 (1999).
${ }^{31}$ P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993).
${ }^{32}$ P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 112, E3106 (2000).
${ }^{33}$ M. H. Alexander, J. Chem. Phys. 108, 4467 (1998).
${ }^{34} \mathrm{~W}$. Cencek, private communication (2011).
${ }^{35}$ T. S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).
${ }^{36}$ A. A. Buchachenko, T. A. Grinev, J. Kłos, E. J. Bieske, M. M. Szczȩśniak, and G. Chałasiński, J. Chem. Phys. 119, 12931 (2003).
${ }^{37}$ See supplementary material at http://dx.doi.org/10.1063/1.4754131 for calculated $\mathrm{B}^{+}-\mathrm{H}_{2}$ and $\mathrm{B}^{+}-\mathrm{D}_{2}$ rovibrational energy levels and for measured transition energies of $\mathrm{B}^{+}-\mathrm{D}_{2}$.
${ }^{38}$ G. Delgado-Barrio and J. A. Beswick, Structure and Dynamics of Non-rigid Molecular Systems (Kluwer, Dordrecht, 1994), p. 203.
${ }^{39}$ B. P. Reid, K. C. Janda, and N. Halberstadt, J. Phys. Chem. 92, 587 (1988).
${ }^{40}$ D. A. Wild and E. J. Bieske, Int. Rev. Phys. Chem. 22, 129 (2003).
${ }^{41}$ J. K. G. Watson, J. Chem. Phys. 46, 1935 (1967).
${ }^{42}$ K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (van Nostrand Reinhold, New York, 1979).
${ }^{43}$ J. G. Vitillo, A. Damin, A. Zecchina, and G. Ricchiardi, J. Chem. Phys. 122, 114311 (2005).

[^0]: ${ }^{\text {a) Present address: School of Chemistry, The University of Wollongong, }}$ Wollongong, Australia.
 ${ }^{\text {b) }}$ Electronic mail: alexei@classic.chem.msu.su.
 ${ }^{\text {c) }}$ Electronic mail: jklos@umd.edu.
 ${ }^{\text {d) }}$ Electronic mail: evanjb@unimelb.edu.au.

