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Abstract 

Fire regimes in many north Australian savanna regions are today characterised by 

frequent wildfires occurring in the latter part of the seven-month dry season. A fire 

management program instigated from 2005 over 24,000 km2 of biodiverse-rich 

Western Arnhem Land aims to reduce the area and severity of late dry-season fires, 

and associated greenhouse gas emissions, through targeted early dry season prescribed 

burning. This study used fire history mapping derived mostly from Landsat imagery 

over the period 1990-2009, and statistical modelling, to quantify the mitigation of late 

dry season wildfire through prescribed burning. From 2005, there has been a 

reduction in mean annual total proportion burnt (from 38% to 30%), and particularly 

of late dry season fires (from 29% to 12.5%). The slope of the relationship between 

the proportion of early season prescribed fire and subsequent late dry season wildfire 

was ~-1. This means that imposing prescribed early dry season burning can 

substantially reduce late dry season fire area, by direct one-to-one replacement. There 

is some evidence that the spatially strategic program has achieved even better 

mitigation than this. The observed reduction in late dry season fire without 

concomitant increase in overall area burnt has important ecological and greenhouse 

gas emissions implications. This efficient mitigation of wildfire contrasts markedly 

with observations reported from temperate fire-prone forested systems. 

  

Keywords: Leverage, wildfire, fire management, planned fire, unplanned fire, 

greenhouse gas emissions 
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Brief Summary 

Fire history mapping for 1990-2009 is used to quantify the mitigation of late dry 

season wildfire (LDS) through prescribed burning in Western Arnhem Land. 

Prescribed burning can substantially reduce LDS area, by direct one-to-one 

replacement. A management program operating since 2005 has successfully reduced 

LDS using prescribed fire. 
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Introduction 
Wildfires cause land managers problems in many parts of the world (Bradstock and 

Gill 2001; Fernandes 2008; Keeley and Fotheringham 2001). In most of these areas, 

the use of prescribed fires to reduce fuels is a key strategy for managing the size, 

severity and impact of wildfires (Baeza, De Luis et al. 2002; Cheney 1994; Collins, 

Kelly et al. 2007; Fernandes and Botelho 2003; Finney 2007; Gould, McCaw et al. 

2007; Luke and McArthur 1977; McCarthy and Tolhurst 2004; Mitchell, Harmon et al. 

2009). However, the effectiveness of prescribed fire has rarely been evaluated at 

practical management scales (Bradstock 2003; Fernandes and Botelho 2003; Finney 

2007). 

 

This knowledge gap has recently been addressed by exploring the relationship 

between the area recently burnt and the area subsequently burnt using historical fire 

mapping. Loehle (2004) introduced the term Leverage to be the reduction in area of 

subsequent fire resulting from the treatment of one unit area. It can be derived 

empirically as the absolute value of the slope of the relationship between annual area 

treated (x) and subsequent annual area of wildfire (y).  Where Leverage > 1, 

prescribed burning treatment leads to a reduction in the total area burnt (by prescribed 

and wildfires) but where Leverage < 1, treatment increases the total area burnt.  Price 

and Bradstock (2011) examined this relationship using 30 years of mapping in four 

sub-regions for eucalypt forest near Sydney, Australia. They found that Leverage was 

0.33 (3 units of prescribed fire are required to reduce wildfire area by 1 unit). Boer et 

al. (2009) conducted a similar analysis using 50 years of mapping for a single region 

of eucalypt forest in Western Australia and found a negative exponential relationship 

with a Leverage of ca. 0.2 at contemporary levels of treatment. These two studies 
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provide a quantitative estimate of return-for-effort from fire management in their 

respective regions. 

 

These studies imply that a large treatment effort is required to substantially reduce the 

area of wildfire and that an increase in the total area burnt will result from treatment, 

because Leverage <1. There is no comparable information for other fire-prone biomes 

around the world. Such information is necessary to predict the effort required to alter 

wildfire regimes in any particular biome, and more generally to explore the bio-

physical drivers of Leverage among biomes. Several recent papers have proposed 

increasing prescribed burning treatment to reduce greenhouse gas emissions (Hurteau, 

Koch et al. 2008; Narayan, Fernandes et al. 2007). Leverage has a profound influence 

on whether such abatement could be achieved in any biome. If Leverage is 

considerably less than 1 (as it is in the two cases studied to date), then emissions 

abatement is doubtful (Bradstock and Williams 2009; Price and Bradstock 2011). 

 

In Western Arnhem in the tropical savannas of northern Australia a greenhouse gas 

mitigation project based on fire management has been implemented successfully since 

2005. The depopulation of indigenous land managers from across the northern 

savannas by the early- to mid-20th Century resulted in a marked shift in fire regime 

from one dominated by the extensive application of small early dry season fires, to 

one where most of the annual fire area is due to large, relatively intense wildfires in 

the late dry season (Bowman 1998; Russell-Smith, Yates et al. 2003). This has had 

negative consequences for biodiversity in general (Franklin 1999; Trainor and 

Woinarski 1994; Woinarski, Milne et al. 2001), and particularly for obligate seeding 
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plant species (Bowman, Price et al. 2001; Bowman and Panton 1993; Liddle and 

Gibbons 2006; Russell-Smith, Ryan et al. 2001). 

 

The WALFA (Western Arnhem Land Fire Abatement) project has many objectives, 

including addressing biodiversity concerns and re-empowering indigenous 

landholders. However, the funding for the project relies on an economic objective, 

which is to reduce greenhouse gas emissions by 100,000 tonnes p.a. (Whitehead, 

Purdon et al. 2008). While fire mapping has shown the overall area burnt per year has 

been reduced compared to a pre-management baseline (1995-2004), there is no 

empirical evidence about how much effort is required to achieve a certain outcome. 

 

In this paper, we use a similar method to Price and Bradstock (2011) to investigate the 

relationship between prescribed fire and subsequent wildfire for the WALFA project 

area. The first objective was to improve the scientific foundation for the fire 

management program. A second objective is to compare Leverage in tropical 

savannas with temperate eucalypt forests. While our analysis assumes randomness in 

landscape patterning of fire over a twenty year assessment period, we address issues 

relating to strategic fire management (non-random effects) in the discussion. 

 

  

Method 

Study area 

The Western Arnhem Land Fire Abatement (WALFA) study area covers 

approximately 24,000 km2 immediately to the east of Kakadu National Park (Figure 

1). The north-west quarter of the region comprises a rugged sandstone plateau 



7 
 

dissected by cliffs and gorges, but otherwise the region is characterised by undulating 

sandy plains. The central area, the Marrawal Plateau, forms the headwaters of several 

major watercourses, the largest of which are the East Alligator, Katherine, Mann and 

Liverpool Rivers. There are no permanent settlements in the region, with most of the 

population living in small townships outside the area (Bulman—population, 336; 

Maningrida, 492; and the mining town of Jabiru within Kakadu National Park, 1524: 

Australian Bureau of Statistics Census 2001). There are no sealed roads, and the few 

gravel roads are impassable during the wet season. The vegetation is a savanna 

woodland that varies in tree cover and species composition. Before the management 

program commenced, on average 38% of the study area burned each year.  For more 

details about the vegetation and contemporary fire regime, see Edwards and Russell-

Smith (2009). 

 

The climate is monsoonal and approximately 95% of the annual rainfall of 1300–1600 

mm falls during the wet season from November to April. As the dry season progresses, 

the predominantly grass fuels cure progressively. Two fire seasons are defined here: 

early dry season (EDS, up to July 31st) that are usually prescribed, and late dry season 

(LDS) that usually reflect unplanned fires (wildfires). LDS fires are typically much 

more extensive and intense than EDS fires (Edwards and Russell-Smith 2009; 

Russell-Smith and Edwards 2006). An area that is burnt by an EDS fire is unlikely to 

be burnt by a LDS fire. Fuel loads do not accumulate to pre-fire levels for 2-3 years 

(Russell-Smith, Murphy et al. 2009), so fire affected areas from the previous year 

may also inhibit fire spread. 

 

[Figure 1 here] 
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Data 

The fire history of the study area, delineating EDS and LDS fires was mapped for the 

period 1990-2005 (Edwards and Russell-Smith 2009), and for 2006-2009 by one of 

the authors (FW), mostly from Landsat TM imagery using a well-established method, 

including validation (Edwards, Hauser et al. 2001; Price and Baker 2007). Up to 4 

scenes were obtained for each year, with all fires occurring on each image mapped 

using a hybrid automatic and manual classification.  

 

The study region was first divided into 20x20 km blocks to increase the sample size. 

One potential consequence of this sub-sampling was that sample blocks might not be 

statistically independent of each other. This issue was addressed by choosing a block 

size larger than most individual fires (only 0.02% of fire polygons were larger, 

although these accounted for 47% of the area burnt), and by incorporating spatial 

autocorrelation in the analysis. 

 

The mean LDS fire frequency over the 20 years (as in Figure 1) was calculated for 

each block. The percentage area of each block burnt in the EDS and LDS in each year 

was calculated. A range of environmental variables was also calculated for each block 

from available spatial data. Topographic variables including slope and rockiness are 

known to influence fire spread. Lacking a map of rockiness, we used mean elevation 

and slope, derived from a 30 m Digital Elevation Model (DEM).  The dominant 

vegetation type was defined as one of two classes (Sandstone Heathlands and 

Lowland Eucalypt Woodland/Open Forests) to distinguish sandstone substrates from 

others, using the map developed by Edwards and Russell-Smith(2009). The density of 
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drainage lines and distance to roads were calculated from digital layers from available 

1:250 000 topographic maps (source: Geoscience Australia). Two biophysical Zones 

were distinguished demarked by the Mann River. The northern zone is dominated by 

rugged sandstone substrates and a dense drainage pattern whereas the southern zone is 

flatter with fewer drainage lines (Figure 1). Also, the Mann River is a potential fire 

barrier dividing the two zones. All of the variables used in the study are listed in Table 

1. 

 

 

Analysis 

The area of LDS, EDS and total fire in pre- (1990-2004) and post- (2005-2009) 

management periods was compared for the entire study area (one value per year) and 

split into the two Zones (two values per year) using generalised linear modelling. The 

pattern of spatial autocorrelation in the overall frequency of LDS fire (number of fires 

experienced) was investigated by two methods. We examined the semi-variogram for 

1000 points selected randomly, but with a minimum separation of 1 km. We also 

calculated Moran’s I for the mean values for three sets of data: all 57 blocks; the 28 

blocks that only touch on the diagonals; and the 14 blocks that do not touch at all. 

 

The regional drivers of spatial variation of LDS fire frequency were investigated by 

block in relation to the following environmental variables: the dominant vegetation 

type, mean elevation, mean slope, drainage density, and mean distance to the nearest 

road. This analysis was conducted as a Generalised Linear Model. To account for 

spatial autocorrelation, we added a Spatially-Lagged Response Variable (Haining 

2003; Penman, Binns et al. 2008) to the model. This was the mean LDS fire 
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frequency in the neighbouring blocks (mean of eight values for those blocks not on an 

edge). Also, the analysis was repeated using only the 14 non-touching blocks. 

 

To investigate the relationship between annual EDS and LDS fire, the data for 57 

blocks for each year were analysed using generalised linear mixed modelling. Since 

the data are repeated measures for the same blocks, they may not be independent. 

Mixed modelling differs from generalised linear modelling in that it can account for 

repeated measured by including a random variable in the model (in this case block). 

The dependent variable was LDS fire, and the primary independent variable was EDS 

fire. In the block analysis with the larger sample size, it was possible also to 

investigate the residual influence of fires from the previous year. Moreover, since this 

study was investigating the effect of EDS fires on LDS fires, the fires from the 

previous year were divided into prescribed and wildfires (Last EDS and Last LDS). 

To investigate whether different vegetation types exhibit different EDS-LDS 

relationships, we included the dominant vegetation type and its interaction with EDS 

fire. Similarly, since the management program instigated since 2005 was designed to 

address previous fire regime patterns we included the term Period (pre- or post- 

WALFA management) and its interaction with EDS fire. All combinations of these 

five variables were fitted, and the best combination was selected using AIC. The 

goodness of fit of this model was assessed using a pseudo-r2 statistic applicable to 

mixed models (Magee 1990). Any supported alternative models were also noted 

(those with ΔAIC < 2) (Burnham and Anderson 2002). To investigate whether the 

EDS vs LDS relationship was non-linear, we also included three variable 

combinations: adding EDS2; substituting EDS with EDS2; and substituting EDS with 

log(EDS). The total sample size for this analysis was 57 blocks x 19 years = 1083 



11 
 

(1990 could not be used as no EDS or LDS values for the previous year could be 

calculated). 

 

To test whether the slope of the line was influenced by the large number of cases 

where no EDS fire was present, the best model above was re-fitted to data without 

zero cases (n = 819). To test whether spatial autocorrelation affected the results, we 

added a Spatially Lagged Response Variable, which in this case was the mean of LDS 

in the neighbouring cells.  

 

To investigate whether the slope of the EDS vs LDS relationship is scale-sensitive, we 

repeated the analysis at three aggregated scales. First, groups of 4 blocks were 

combined into 13 x 40 km squares (n=247). Second, the data were split into the two 

biophysical Zones. Third, annual values for the entire study area were analysed 

(n=19). The ‘two zone’ and ‘whole of study area’ analyses used Generalised Linear 

Modelling rather than Mixed Modelling. The potential for autocorrelation effects is 

much reduced in these larger scale analyses.  

 

GIS analyses, the calculation of Moran’s I and the semi-variograms were undertaken 

using Arcmap v 9.2. Statistical modelling was undertaken with R statistical software 

(R 2007). 

 

Results 

Over the twenty year study period, annual EDS fire area averaged 11.0% (range: 0.2% 

to 30.0%) across the whole study area, LDS fire area averaged 24.7% (range: 4.6% to 

62.2%), and the total fire area averaged 35.7% (range: 10.3% to 67.9%: Figure  2). 
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Values for 57 individual assessment blocks showed a much greater annual range: EDS 

0 to 92%; LDS 0 to 100%.  Fire activity changed after the WALFA management 

program commenced from 2005, with EDS fire area for the whole area increasing 

from 8.7% previously to 17.4%, LDS fire area decreasing from 29.1% to 12.5%, and 

total fire area decreasing more modestly from 37.7% to 29.9%. The change in LDS 

fire and total fire was not significant for the annual data (n=19, t = 2.012, p = 0.060; t 

= 0.953, p = 0.354 for LDS and total fire respectively), but the change in EDS fire 

was (t= 2.184, p = 0.043). When the WALFA project area was considered as two 

biophysical zones, the change between Periods was significant for both EDS (n=38, t 

= 2.929, p = 0.005) and LDS (t = 2.462, p = 0.018) fire area, but not for total fire (t = 

1.007, p = 0.320).  

[Figure 2 here] 

The LDS fire area values were weakly spatially auto-correlated (Moran’s I = 0.143, Z 

= 9.974, p < 0.01). When only the 28 diagonally touching blocks were used, the 

correlation was less, but still significant (I = 0.061, Z = 3.612, p < 0.05). Likewise, 

when only the 14 non-touching blocks were used, the correlation was less again (I = 

0.021, Z = 2.298, p < 0.05). The semi-variogram suggests that autocorrelation is 

relatively strong at distances below 10 km but is absent at distances above 20 km 

(Figure 3). Therefore the choice of block size was appropriate. 

 [Figure 3 here] 

The best model for regional drivers of LDS fire frequency revealed negative effects of 

Elevation, Slope and Drainage Density, and a positive effect of Distance to Roads 

(Table 2a). This model explained 55% of variation. Two similar models were 

supported alternatives: one with the addition of Zone and one without Elevation. 

When neighbouring LDS fire area was added to the best model, it improved the 
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overall fit (ΔAIC = -5.19, r2 = 0.59), but weakened the effects of other explanatory 

variables (Table 2b). When the analysis was repeated with only 14 non-touching 

blocks, the best model contained Elevation and Slope with an r2 of 0.72 (Table 2c). 

There were nine alternative supported models which contained different combinations 

of three additional variables: Drainage Density, Distance to Roads and Vegetation.  

[Table 2 here] 

In the mixed model analysis of 57 blocks x 19 years, the best model contained all 

three fire terms (EDS, Last EDS and Last LDS), plus EDS2, Dominant Vegetation, 

Period and Zone, and two interactions with EDS (Dominant Vegetation, Zone: Table 

3a).  The terms were all highly significant (p<0.001) except for the interactions, but 

the model explained only a relatively small proportion of the variation (pseudo-r2 = 

0.22). The EDS effect had a primary slope of -0.987, with a countering positive slope 

of 0.007 with EDS2. This means that the combined slope was -0.8 until EDS fire area 

reached 26% (Figure 4).  The slopes for the effects of the previous year’s fires were 

lower (-0.35 for LDS, and -0.23 for EDS fires). Sandstone woodlands exhibited less 

LDS fire area and a shallower EDS slope than for Lowland woodlands, and the 

Southern Zone exhibited more LDS fire but a steeper slope with EDS burning. The 

time factor Period also had a significant effect, with more LDS fire in the pre-

management phase. There were four alternative supported models, which all consisted 

of the same base variables but different combinations of interactions. The interaction 

between EDS and Period was in two of the supported alternative models. This means 

that there is possibly a small tendency for the slope of the relationship to be shallower 

(less negative) before the management program was implemented. 

[Figure 4 here] 
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Adding the mean LDS fire area of neighbouring cells markedly improved the model 

fit (pseudo-r2 = 0.67), and although the other fire effects were still significant, their 

slopes were reduced (Table 3b). When zero fire cases were excluded in the best model 

formulation, the EDS slope was -1.18, with an EDS2 slope of + 0.010.  The pseudo-r2 

increased to 0.31 (Table 3c).  

[Table 3 here] 

When the blocks were grouped into 13 X 40 km blocks, the model was very similar, 

with a slope of -1.11 but with no square term (Table 4a), with a similar goodness of fit 

(pseudo-r2 = 0.22). There were two alternative supported models for this analysis: one 

without the EDS * Period interaction and one without also the Last EDS term. When 

annual data were separated into two Zones, the best model contained EDS (with a 

slope of -1.20), Last LDS fire and Zone (the Southern Zone had 18.9% more LDS fire 

than the Northern Zone: Table 4b). This model had a pseudo-r2 of 0.33. There were 

four alternative supported models for this analysis, which had additional effects of 

Last EDS fire and period. When the annual values for the whole study area were used, 

EDS and Last LDS fire were selected, with a slope of -1.16 for EDS fire (Table 4c). 

This model had a pseudo-r2 of 0.32 and the one alternative supported model had an 

additional effect of Last EDS. 

[Table 4 here] 

 

Discussion 

The overall LDS fire frequency in the Western Arnhem Land study region is partially 

determined by environmental patterns: vegetation type, altitude, slope and drainage 

density. There are alternative explanations for these effects, but they are all consistent 

with affording some degree of fire protection: LDS fires are less frequent where many 
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drainage lines form natural fire-breaks, and where the terrain is high and sloping, 

which is usually associated with rockiness and cliffs. Rockiness has been found to 

induce a degree of fire patchiness in LDS fires in this region (Price, Russell-Smith et 

al. 2003), while drainage line density has previously been found to affect fire 

frequency at random points within the same region  (Price, Edwards et al. 2007). The 

southern Zone showed higher LDS fire area in all analyses. This region comprises 

mostly undulating to level terrain, with the lowest density of drainage lines.  

 

Our data indicate that the WALFA fire management program has substantially 

reduced the incidence of LDS wildfires, including incursions from the south-east. The 

analysis confirms that the implementation of prescribed EDS burning was the main 

cause of the reduction. As expected, this study has demonstrated a strong relationship 

between EDS and LDS fire area. The slope of the relationship is difficult to estimate 

precisely because it varies slightly with scale, is affected by spatial autocorrelation, 

and is slightly non-linear. Bearing in mind that the 57 block x 19 year analysis is the 

most statistically powerful, it would appear that the slope is close to unity: one unit of 

LDS fire reduced for every unit of EDS fire applied. That is, Leverage is 1. We use 

the Leverage calculated in the absence of the Spatially Lagged Response Variable. 

We interpret the effect of the Spatially Lagged Response Variable simply as providing 

evidence that the fire experienced within a block is to some extent influenced by 

events in surrounding blocks. This does not negate the Leverage value of 1 since this 

is the operational Leverage that will be achieved if treatments are applied across the 

whole WALFA region (i.e. where fires occur in neighbouring blocks). This 

conclusion is further reinforced by the Leverage values of 1 in the coarser scale 

analyses, where spatial autocorrelation was not present. 
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However, the full situation is more complicated because there are additional effects of 

both EDS and LDS fires from the previous year, the magnitude of both being about 

one third of the effect in the current year. For the previous year, we can assume that 

the Last LDS fires are inhibited by the Last EDS fires in the same way as fires are in 

the current year (i.e. with a Leverage of 1). That is to say increasing EDS fire area 

will lead to exact replacement of LDS every year. Since the model states that Last 

LDS fires have a bigger inhibitory effect on LDS than do Last EDS fires (slope of -

0.35 cf -0.23), it follows that increased application of EDS will lead to less inhibition 

from last years burning. Thus, over the long run, the replacement of LDS by EDS fire 

may be slightly less effective than the Leverage of 1 for EDS fire suggests. 

 

The situation is even more complex due to the non-linearity in the relationship, 

although the non-linearity is so slight that there is very little implication for 

management. This result is similar to that found by (Price and Bradstock 2011) for the 

forests of the Sydney region in eastern Australia, where there was no evidence of non-

linearity and an empirical study in Jarrah forests of Western Australia (Boer, Sadler et 

al. 2009), which found a weak concave relationship. However, there was a marked 

concave relationship in a simulation study of Tasmanian forests (King, Cary et al. 

2006). A linear relationship implies that there will be a certain level of treatment at 

which wildfires are eliminated. This can probably never occur in practice because 

treatment does not remove all sources of ignition, so a concave relationship is 

inevitable.  
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The scale analysis identified a significant slope at all three spatial scales, and slopes 

were generally similar (varying from -0.99 to -1.2). This suggests that the inhibition 

of LDS fires by EDS burning is a general, scale-independent phenomenon in these 

regional savannas. These slopes are similar to that found by Gill et al. (2000) for 

annual fire areas in the neighbouring Kakadu National Park (n = 16, slope = -0.89). 

Kakadu is managed with similar objectives to the WALFA program. The statistical 

relationship suggests that it is theoretically possible to eliminate LDS fires by burning 

between 45% and 65% of the area in the EDS.  However, it is probably unachievable 

in practice. This is illustrated by the six cases where EDS fire areas exceeded 60%, 

and yet more than 10% was burnt by LDS fires. Logically, as long as there are 

unburnt areas and potential ignition sources (including from lightning at the very end 

of the dry season), LDS fires must always be a possibility.  

 

These models captured only a small fraction of the variation in LDS fire area. This is 

partly because environmental drivers identified in the regional analysis, were not 

incorporated into mixed modelling analyses.  However, fire ignitions are partially 

random events. Many cases in our sample contained no LDS fire, probably not 

because EDS fires had some influence on them, but because there was no LDS 

ignition that year. Also, since it used only the area burnt, our analysis did not take into 

account non-random spatial arrangements and configurations of fire affected patches, 

and particularly those associated with the prescribed EDS fire management program 

instigated from 2005. In this regard it is notable that in the five year period of 

operation of the WALFA fire management program, there has been a 20.6% reduction 

(from 37.7% to 29.9%) in mean total fire area, with a significance level of p=0.35, but 

incorporating a substantial increase in the mean area of strategic EDS burning. 
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Much of the prescribed burning program focuses on strategic burning of linear 

firebreaks associated with sinuous landscape features such watercourses, valley 

bottoms and slopes, and tracks. As demonstrated here, the fire management program 

has substantially decreased the area of LDS fire, more than would be expected by the 

1:1 EDS-LDS relationship, and the total area burnt has also decreased. The two 

supported alternative models with an EDS.Period interaction give some weak 

evidence that Leverage may have increased as a result of the program. However, since 

only 5 of the 19 years studied here were post-management, it is probable that more 

time is needed to show the effect statistically. It is likely that the strategic spatial 

arrangement of the EDS areas has enhanced the return for effort above parity.  Such 

an effect has been demonstrated in simulation studies (Finney 2001; King, Cary et al. 

2006). However, there are other potential causes for the large reduction in LDS, 

including a reduction in LDS ignitions due to improved community awareness 

brought about by the WALFA program. 

 

Does spatial autocorrelation inhibit the interpretation of these results? The evidence 

suggests not: the magnitude of the autocorrelation (Moran’s I) was low; the semi-

variogram indicates that the correlation essentially disappears above 20 km 

separation; the relationships remained when a spatial autocorrelate was included in the 

models (albeit with reduced slope); and the relationships were robust when the 

analyses were repeated with only blocks separated by 40 km. 

 

What are the implications of this study for WALFA? We have shown that 

management via imposing prescribed EDS burning can substantially reduce LDS fire 



19 
 

area, by direct one-to-one replacement. Moreover, EDS fires are known to be 

typically more patchy than LDS fires (29.1% unburnt in EDS and 11.1% in LDS 

(Price, Russell-Smith et al. 2003; Russell-Smith, Murphy et al. 2009)), and to burn at 

lower intensity (Russell-Smith and Edwards 2006; Williams, Gill et al. 2003). Both 

these features have significant implications for conservation management (Woinarski, 

Williams et al. 2005; Yates, Edwards et al. 2008) and GHG emissions abatement 

(Cook and Meyer 2009; Russell-Smith, Murphy et al. 2009). Given lower fuel 

consumption rates achieved under EDS-dominated fire regimes, (Russell-Smith, 

Murphy et al. 2009) have estimated that EDS fires in this study area typically emit 

48% of the Kyoto-accountable greenhouse gases (CH4, N2O) per hectare burnt, 

compared with LDS fires. This calculation incorporates the finding that emission 

ratios of greenhouse gasses do not vary throughout the season in Australian savannas 

(Meyer and Cook 2010), even though they have been shown to increase as the dry 

season progresses in Zambian savanna grassland (Hoffa, Ward et al. 1999). 

 

Could these results be generalised to other fire-prone biomes? In the sclerophyll 

forests of Sydney (south-eastern Australia) the slope of return for effort is much lower 

(Leverage = 0.33: (Price and Bradstock 2011)) while, in the Jarrah forests of Western 

Australia, it is lower still (Leverage = 0.25: (Boer, Sadler et al. 2009)). This is 

probably because these temperate forested landscapes are much less saturated by fire 

(mean area burnt annually = 5%), so that there is less chance that a prescribed fire 

patch will be encountered a wildfire. On the other hand, the fact that fuels take several 

years to recover in these forests presumably enhances the inhibitory effect of 

prescribed fires. Based partly on the results of this study and those of Price and 

Bradstock (2011) and Boer et al. (2009), Bradstock and Williams (2009) concluded 
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that emission abatement benefits are attainable in Australian savannas, but not in 

temperate Australian forests.  

 

Savannas constitute the most fire-prone biome on earth (Dwyer, Pinnock et al. 2000), 

and Australian savannas are as fire-prone as those on other continents (Roy, Boschetti 

et al. 2008).  Therefore, we consider that the magnitude of leverage demonstrated here 

is likely the upper limit of what can realistically be achieved at landscape scale—a 

conclusion at odds with assumptions made by certain other authors. For example, 

Narayan et al. (2007) claimed that an annual prescribed burning program of 5% of the 

area of European forests could result in a major reduction in the net area burnt, though 

they provided no evidence for this. Likewise, Hurteau et al. (2008) claimed that 

reducing fuels in US forests would reduce GHG emissions through reduced fire 

severity, though they did not account for the emissions from fuel reduction in areas 

that don’t subsequently encounter a wildfire. Conversely, Mitchell et al. (2009) show 

that while fuel reduction treatments in west coast US forested ecosytems consistently 

reduced fire severity, fuel reduction also resulted in reduced mean stand C storage. By 

contrast, effecting major fire regime change in savanna systems through EDS 

prescribed burning can substantially enhance C accumulation in living biomass 

(Murphy, Russell-Smith et al. 2010; Murphy, Russell-Smith et al. 2009). In sum, fire 

management in savanna landscapes can achieve multiple biodiversity and carbon 

conservation benefits. 
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Table 1: Variables used in the analysis 

Variable Description 

Regional LDS Frequency Analysis 

LFRQ Dependent variable: Late dry season Fire Frequency (mean for 20 x 20 

km block over 19 years) 

Neighbour LFRQ Mean LFRQ for 8 neighbouring 20 x 20 km blocks 

Elevation Elevation in m (from 30 m DEM) 

Slope Slope in degrees (from 30 m DEM) 

Distance to Roads Distance to nearest road in m (from 1:250,000 topographic map 

supplemented with GPS tracks for unmapped tracks (authors data)) 

Drainage Density Area weighted length of drainage lines in sample area (from 1:250 000 

topographic map) 

 

Annual Analysis 

 

LDS Dependent variable: Late Dry Season fire: % of block area burnt in one 

year 

Neighb_LDS Mean LDS for 8 neighbouring 20 x 20 km blocks 

EDS Early Dry Season fire: % of sample area burnt in one year 

Last LDS Late Dry Season fire from previous year 

Last EDS Early Dry Season fire from previous year 

Zone North or South of line demarcated by the Mann River 

Period Time period: Pre- or Post- WALFA project (2005) 

Dominant Veg. Sandstone Heathland or Lowland Eucalypt Woodland/Open Forest 
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Table 2:  GLM results for the regional drivers of LDS frequency 

a) Best model (AIC = 172.85, r2 = 0.542). b) Incorporating Neighbour LFRQ. AIC = 

167.66, r2 = 0.593). No supported alternative models. c) With only 14 non-touching 

blocks. (AIC = 36.289 , r2 = 0.718, df = 3). 9 supported alternative models (not shown, 

but variables include Drainage Density, Distance to Roads and Vegetation, though 

none are statistically significant). 

a) 

Variable Estimate Std. Error t-value p-value 

(Intercept) 7.946 0.989 8.038 0.000

Elevation -0.003 0.002 -1.564 0.124

Slope -0.822 0.202 -4.070 0.000

Distance to Roads 4.21e-5 0.000 2.940 0.005

Drainage Density -2.441 1.264 -1.931 0.059

 

b) 

Variable Estimate Std. Error t-value p-value 

(Intercept) 3.079 2.151 1.432 0.158

Elevation -0.002 0.002 -0.764 0.448

Slope -0.455 0.241 -1.887 0.065

Distance to Roads 0.000 0.000 2.272 0.027

Drainage Density -1.055 1.324 -0.797 0.429

Neighbour LFRQ 0.639 0.254 2.517 0.015
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c) 

Variable Estimate Std. Error t -value p-value 

(Intercept) 8.501 1.179 7.213 0.000

Elevation -0.005 0.002 -1.791 0.101

Slope -1.202 0.241 4.978 0.000
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Table 3: Model estimates for the annual analysis (19 years x 57 blocks). In each case, 

the best model from the model selection process is shown. a)  Without a spatial lag 

variable, AIC = 10168.36, pseudo-r2 = 0.217. b) With spatial lag variable (Neighbour 

LDS), AIC = 9233.858, ∆AIC = -936 (difference in AIC between models a and b), 

pseudo-r2 = 0.671. c) As a) but with zero EDS samples removed, n = 834, AIC =   

7761.552, pseudo-r2 = 0.309. An * indicates an interaction term. 

 

a) 

 Estimate Std. Error t-value  p-value 

(Intercept) 37.454 3.478 10.768 0.000

Zone: South 11.907 3.159 3.769 0.000

EDS -0.987 0.164 -5.999 0.000

Sandstone Veg. -11.724 3.229 -3.631 0.001

EDS2 0.007 0.003 2.912 0.004

Last EDS -0.233 0.056 -4.155 0.000

Last LDS -0.350 0.030 -11.701 0.000

Period: Pre 8.197 2.022 4.054 0.000

EDS*Zone: South -0.217 0.112 -1.935 0.053

EDS*Sandstone Veg. 0.218 0.125 1.745 0.081
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b) 

 Estimate Std. Error t-value p-value 

(Intercept) 11.428 2.210 5.170 0.000

Zone: South 3.498 1.821 1.921 0.060

EDS -0.412 0.107 -3.846 0.000

Sandstone Veg. -5.620 1.844 -3.048 0.004

EDS2 0.002 0.002 1.069 0.286

Last EDS -0.062 0.037 -1.692 0.091

Last LDS -0.112 0.020 -5.536 0.000

Period: Pre -0.702 1.341 -0.524 0.601

Neighb_LDS 0.926 0.024 38.494 0.000

EDS*Zone: South -0.013 0.073 -0.179 0.858

EDS*Sandstone Veg. 0.131 0.081 1.610 0.108

 

c) 

 Estimate Std. Error t-value p-value 

(Intercept) 40.960 3.672 11.156 0.000

Zone: South 13.681 3.441 3.976 0.000

EDS -1.181 0.170 -6.941 0.000

Sandstone Veg. -8.557 3.547 -2.412 0.019

EDS2 0.010 0.003 3.641 0.000

Last EDS -0.206 0.062 -3.332 0.001

Last LDS -0.356 0.034 -10.361 0.000

Period: Pre 13.006 2.125 6.121 0.000

EDS*Zone: South -0.273 0.122 -2.231 0.026

EDS*Sandstone Veg. 0.090 0.129 0.699 0.485
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 Table 4. Models estimates for sub-sets and sub-groups (best models only). 

a) 13 grouped blocks Mixed Model, n = 247, AIC =   2268.83 pseudo-r2 = 0.217. b) 

Two Zones GLM, n = 38, AIC = 328.09, pseudo-r2 = 0.326. c) Whole study area 

GLM, n = 19, AIC = 161.28, r2 = 0.323. 

 

a) 

 Estimate Std. Error t-value p-value 

(Intercept) 46.898 6.929 6.768 0.000

EDS -1.109 0.289 -3.844 0.000

Last EDS -0.179 0.133 -1.347 0.179

Last LDS -0.389 0.063 -6.197 0.000

Sandstone Veg. -13.044 5.693 -2.291 0.043

Period: Pre 2.533 5.644 0.449 0.654

EDS*Period: Pre 0.562 0.302 1.861 0.064

 

b) 

 Estimate Std. Error t-value p-value 

(Intercept) 43.519 7.087 6.141 0.000

EDS -1.200 0.339 -3.538 0.001

Last LDS -0.481 0.169 -2.841 0.008

Zone: South 18.888 6.161 3.066 0.004

 

c) 

 Estimate Std. Error t-value p-value 

(Intercept) 48.783 9.603 5.080 0.000

EDS -1.161 0.453 -2.562 0.021

Last LDS -0.450 0.229 -1.964 0.067
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Figure 1: West Arnhem Land showing larger settlements, the 57 20 
x 20 km blocks, and the frequency of late dry season fires from 
1991-2009 (range 0 (white)  – 15 (dark grey)). The dashed line is 
the boundary to the two zones. 
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Figure 2: Time trace showing the percentage of the study area burnt each year 
by EDS (early dry season) and LDS (late dry season) fires each year. 
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Figure 3: Semi-variogram for mean Late Dry Season Fire frequency 
(n=57). Semivariance is a measure of the dis-similarity of points, and 
the variogram shows how this increases with separation between points. 
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Figure 4: The relationship between early and late dry season burning, showing 
the raw data points and the best fit model for Pre- and Post- management periods 
(open and closed circles respectively).  
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