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Error correlation between CO2 and CO as constraint for CO2 flux inversions using
satellite data

Abstract

Inverse modeling of CO2 satellite observations to better quantify carbon surface fluxes requires a
chemical transport model (CTM) to relate the fluxes to the observed column concentrations. CTM
transport error is a major source of uncertainty. We show that its effect can be reduced by using CO
satellite observations as additional constraint in a joint CO2-CO inversion. CO is measured from space
with high precision, is strongly correlated with CO2, and is more sensitive than CO2 to CTM transport
errors on synoptic and smaller scales. Exploiting this constraint requires statistics for the CTM transport
error correlation between CO2 and CO, which is significantly different from the correlation between the
concentrations themselves. We estimate the error correlation globally and for different seasons by a
paired-model method (comparing GEOS-Chem CTM simulations of CO2 and CO columns using different
assimilated meteorological data sets for the same meteorological year) and a paired-forecast method
(comparing 48- vs. 24-h GEOS-5 CTM forecasts of CO2 and CO columns for the same forecast time). We
find strong error correlations (r2>0.5) between CO2 and CO columns over much of the extra-tropical
Northern Hemisphere throughout the year, and strong consistency between different methods to estimate
the error correlation. Application of the averaging kernels used in the retrieval for thermal IR CO
measurements weakens the correlation coefficients by 15% on average (mostly due to variability in the
averaging kernels) but preserves the large-scale correlation structure. We present a simple inverse
modeling application to demonstrate that CO2-CO error correlations can indeed significantly reduce
uncertainty on surface carbon fluxes in a joint CO2-CO inversion vs. a CO2-only inversion.

Keywords
between, co, constraint, error, flux, correlation, inversions, satellite, data, co2

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Wang, H., Jacob, D. J., Kopacz, M., Jones, D. B. A., Suntharalingam, P, Fisher, J. A., Nassar, R., Pawson, S.
& Nielsen, J. E. (2009). Error correlation between CO2 and CO as constraint for CO2 flux inversions using
satellite data. Atmospheric Chemistry and Physics, 9 (19), 7313-7323.

Authors

H Wang, D J. Jacob, M Kopacz, D B. A Jones, P Suntharalingam, J A. Fisher, R Nassar, S Pawson, and J E.
Nielsen

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/4695


https://ro.uow.edu.au/scipapers/4695

Atmos. Chem. Phys., 9, 7313323 2009 iy —* -

www.atmos-chem-phys.net/9/7313/2009/ Atmospherlc
© Author(s) 2009. This work is distributed under Chemls_try
the Creative Commons Attribution 3.0 License. and Physics

Error correlation between CO, and CO as constraint for CO, flux
Inversions using satellite data

H. Wang2, D. J. Jacol}, M. Kopacz?, D. B. A. Jones, P. Suntharalingant', J. A. Fisher!, R. Nassaf®, S. Pawsof,
and J. E. Nielse®®

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2Smithsonian Astrophysical Observatory, Cambridge, MA, USA

3Department of Physics, University of Toronto, Toronto, Ontario, Canada

4School of Environmental Sciences, University of East Anglia, Norwich, UK

SDepartment of Geography, University of Toronto, Toronto, Ontario, Canada

6NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA

Received: 17 February 2009 — Published in Atmos. Chem. Phys. Discuss.: 12 May 2009
Revised: 8 September 2009 — Accepted: 11 September 2009 — Published: 2 October 2009

Abstract. Inverse modeling of C@satellite observations variability in the averaging kernels) but preserves the large-
to better quantify carbon surface fluxes requires a chemiscale correlation structure. We present a simple inverse mod-
cal transport model (CTM) to relate the fluxes to the ob- eling application to demonstrate that &GO error correla-
served column concentrations. CTM transport error is a mations can indeed significantly reduce uncertainty on surface
jor source of uncertainty. We show that its effect can be re-carbon fluxes in a joint CCO inversion vs. a C@only in-
duced by using CO satellite observations as additional conversion.

straint in a joint CQ-CO inversion. CO is measured from
space with high precision, is strongly correlated with,CO
and is more sensitive than G@o CTM transport errors on 1 |ntroduction

synoptic and smaller scales. Exploiting this constraint re-

quires statistics for the CTM transport error correlation be-The joint Japan Aerospace Exploration Agency (JAXA), Na-
tween CQ and CO, which is significantly different from the tional Institute of Environmental Studies (NIES) and Min-
correlation between the concentrations themselves. We esstry of the Environment (MOE) Greenhouse gases Ob-
timate the error correlation globally and for different sea- serving SATellite (GOSAT or “Ibuki”) kittp://www.jaxa.jp/
sons by a paired-model method (comparing GEOS-Chenprojects/sat/gosat/indexhtm), launched in January 2009,
CTM simulations of CQ@ and CO columns using different is expected to greatly improve our knowledge of regional
assimilated meteorological data sets for the same meteoraz0, sources and sinks by providing global measurements
logical year) and a paired-forecast method (comparing 48of CO, dry column mixing ratios (¥o,). It detects CQ

vs. 24-h GEOS-5 CTM forecasts of G@nd CO columns by solar backscatter in the 1.61 and 2.06 bands, together
for the same forecast time). We find strong error correlationsyith O, in the 0.76um band, resulting in ¥o, measure-
(r?>0.5) between C@and CO columns over much of the ments with near-uniform sensitivity down to the surface. The
extra-tropical Northern Hemisphere throughout the year, andNational Aeronautics and Space Administration (NASA) Or-
strong consistency between different methods to estimate theiting Carbon Observatory (OCO) was designed to provide
error correlation. Application of the averaging kernels usedglobal Xco, data with 0.3% (about 1 ppm) precision using
in the retrieval for thermal IR CO measurements weakens theéhe same channels (Crisp et al., 2004; Miller et al., 2007).
correlation coefficients by 15% on average (mostly due toUnfortunately, the February 2009 launch of OCO failed to
reach orbit. Satellite observations of €ftom space are also
available in the thermal IR from the AIRS (Crevoisier et al.,

Correspondence tas. Wang 2003; Chahine et al., 2005, 2008: Tiwari et al., 2006; Maddy
BY (hwang@cfa.harvard.edu) et al., 2008; Stow and Hannon, 2008), TES (Kulawik et al.,
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2009), and IASI (Crevoisier et al., 2009; Clerbaux et al., outflow from the TRACE-P aircraft campaign over the west-
2009) instruments. These latter observations are most serern Pacific in March—April 2001. Observed g¢@nd CO
sitive in the mid-troposphere. The SCIAMACHY instrument concentrations showed correlation coefficients higher than
measures C@using UV-vis-Near IR spectroscopy, which is 0.7 throughout the troposphere with distinct £C0 slopes
sensitive in the mid-to-lower troposphere, but is presentlydepending on air mass origin (Suntharalingam et al., 2004).
limited to retrievals over land (Buchwitz et al., 2005a, b).  Palmer et al. (2006) found that exploiting this correlation in

Successful exploitation of satellite G@ata to constrain  a joint CQ-CO flux inversion improved Asian C{flux es-
carbon fluxes requires advanced inverse models because tifmates significantly relative to a G@nly inversion. They
the large volume of data. A number of studies have ap-assumed that the model transport error correlation between
plied variational data assimilation (4D-Var) (Rodenbeck etCO, and CO would be identical to the observed correlation
al., 2003; Baker et al., 2006a, 2008; Chevallier et al., 2007;0f concentrations, but as shown below this is not a good as-
Engelen et al., 2009) and ensemble filtering methods (Petersumption in general.
et al., 2005; Zupanski, et al., 2007; Lokupitiya et al., 2008; Our aim in this paper is to develop an understanding of
Feng et al., 2009; Engelen et al., 2009) for Ciix inver- C0O,-CO model transport error correlations as relevant to
sions. The inverse model optimizes fluxes so that the misinversion of carbon fluxes from satellite observations. We
match between observations and the values simulated by present different methods for estimating the model error cor-
forward chemical transport model (CTM) are minimized un- relation and show that there is consistency and robustness
der the constraint of a priori knowledge. The CTM solves across them. We examine the variability of the error corre-
the 3-D continuity equation for Cfconcentrations using lation geographically, seasonally, and for satellite observa-
assimilated meteorological data for the observation periodtions with different averaging kernels. We illustrate through
Transport error in the CTM is an important factor limiting the a simple example how the error correlation can improve con-
quality of CQ surface flux inversions (Gurney et al., 2002, straints on carbon fluxes.
2003, 2004; Peylin et al., 2002; Patra et al., 2006; Baker et
al., 2006b, 2008).

One approach to improve the inverse £flux estimate 2  Exploiting the CO»-CO error correlation in CO 5 flux
is through the additional constraint offered by £00 error inversions
correlation in a joint CQ-CO inversion (Palmer et al., 2006).
CO is emitted by incomplete combustion and removed fromConsider the Bayesian inversion problem of constraining car-
the atmosphere by oxidation by the OH radical with a life- bon fluxes from satellite measurements of the column mixing
time of two months. Several satellite instruments (MOPITT, ratio Xco,. We follow the notation of Rodgers (2000). An
AIRS, SCIAMACHY, TES, IASI) provide high-quality data ensemble of %o, observationsy, the observation vector) is
for CO and global coverage (McMillan et al., 2005; Bowman used to optimize an ensemble of €6urface fluxesx, the
etal., 2006; Dils et al., 2006; Calbet et al., 2006; Emmons etstate vector) subject to prior knowledge of the fluxes (best
al., 2009). A number of studies have used satellite CO obserestimatex,). The state vector is related to the observation
vations in inverse model analyses of CO sources (e.g., Healgectory through the CTM forward model:
et al., 2004; Arellano et al., 2004, 2006; Pfister et al., 2005;
Stavrakou and Muller, 2006; Kopacz et al., 2009). CO hasy _ p(y) + ¢ (1)
stronger gradients than G@n account of its shorter lifetime

and hence it has greater sensitivity to model transport €Ol here e is the observational error, described in more de-
on synoptic and smaller scales, as can be inferred from Simt'ail below. The inverse model minimizes a cost function
ple flux-gradient reasoning. If model transporterrors forZCQ J (x) which is the least-squares sum of the observational er-
and_C_ZO are correlgted, t_hen co _has the potent|al_ to prowd%r weighted by the observational error covariance matrix
additional information to improve inverse G@®ux estimates (S = E(es”), whereE denotes the expected value operator)

(Palmer et al., 2006). Strong correlations _betweer)g @mj_ and the a priori errore= x — x5) weighted by the a priori
CcoO cqncentrauons are consistently seen in atmospherlq Obérror covariance matrixSe = E (eae])) (Rodgers, 2000):
servations at the surface (Potosnak et al., 1999; Gamnitzer
et al., 2006) and from aircraft (Conway et al., 1993; Sawa
et al., 2004; Schmitgen et al., 2004; Suntharalingam et al.,
2004; Takegawa et al., 2004; Palmer et al., 2006). These cor!(x) - @
relations result from common source/sink regions, common(y — F)'S™Hy — F(x) + (x —x) 871 (x — xa)
large-scale latitudinal gradients, and common transport. For
the same reasons, transport errors are expected to be corre-The a priori error describes the inaccuracy of the prior
lated as well. knowledge of surface fluxes. The observational error de-
Palmer et al. (2006) previously conducted a joint8C0D scribes the inability of the forward model to match obser-
flux inversion using C@ and CO measurements in Asian vations perfectly even if it used the true valug 6f the state
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vector as input. It includes contributions from instrument er-  In addition to observational error covariance, there could
ror (e)), representation erroeg), and forward model error also be error correlation in the a priori emissions of CO

(em) (Heald et al., 2004; Engelen et al., 2002, 2006): and CO due to the common combustion source. However, as
shown by Palmer et al. (2006), this correlation is in fact very
€ = ¢&1tertem ®3) weak because the error in a priori CO emissions is mainly

. . . contributed by the emission factor (emission per unit fuel)

Components of the observational errors are not strictly in- S

d R . . . . rather than the activity rate (amount of fuel burned). A pos-
ependent. We will simplity here by ignoring their covari- sible exception is biomass burning if uncertainty in activit

ance. The error variances add quadratically (if the errorsrate exceer()js a factor of two (Palrr?er ot al 200%’) Palmeryet

are independent). The instrument error includes measureél (2006) found that this a priori error co.}relatioﬁ was not

ment noise and retrieval error (Engelen et al., 2002, 2006). . - . P . .

. . . useful in their inversion and we do not discuss it further here.
Smoothing error introduced by the averaging kernels of the
satellite instrument is a source of retrieval error, but can be
canceled by smoothing the CTM profiles with the same av- L .
eraging kernels (Jones et al., 2003; Heald et al., 2004). For:—3 Estimating the CO,-CO error correlation

ward model error is the dominant source of observational eMpe use two independent methods, which we call the paired-

ror for CO opservations from space (Heald et "’?'-’ 2004) anchwodel and paired-forecast methods, to estimate the CO
may be dominant for C@observations depending on data model error correlationrf,) and its geographical and sea-

quality a_nd averaging strategy (Baker et al_., 2008). . sonal distribution. In the paired-model method, we conduct
The diagonal elements of the observational error covari-

S th . fob i | forth otherwise identical CTM simulations of G@nd CO using
ance matrbo are the variances ot observationa' errors 1or the ;e et assimilated meteorological data sets for the same
individual components of. The off-diagonal elements are

: . ) meteorological year. In the paired-forecast method, we com-
the corresponding observational error covariances, and Cahre 48-h vs. 24-h chemical forecasts of C@d CO. The

be obtained by scaling the error correlation coefficients W'thlatter method has been used extensively for meteorological

the cqrrespondlng square roots of error variances. One WaYata assimilation and is often called the NMC method (Parish
to estimate the observational error variance is by the RelatN%n d Derber, 1992)

Residual Error (RRE) method (Palmer et al., 2003; Heald et In both methods, each pair produces global 3-D concentra-

al" 200.4)'. In this meth_od, a forward model simulation us tion fields of CQ and CO for the same times that differ be-
ing a priori fluxes K x,) is conducted and results compared . .
. . ) e ; cause of model transport error. A time series of model output
to observation time series for individual domains (such as, ) : . .
for a given gridbox thus generates time series of concentra-

model grid squares). The mean differences for the time S€%ion differencesACO, and ACO for the pair. We correlate

ries (model bias) are assumed to be due to error in the a Priott - time series oA CO, vs. ACO for individual model grid

fluxes. The residual differences are taken to represent the Okb'oxes and individual months to estimate the corresponding

servational error. C0O,-CO transport error correlation coefficients,). The

In gjomt CQ-CO inversion, the (_)bservat|ona| vectgn ( estimates may differ depending on the method and the data
consists of the C@and CO observations, and the state vector - . . .
sets used, but by comparing the estimates obtained in differ-

(x) consists of C@surface fluxes and CO sources. Coupling ent ways we can assess their robustness. The concentration

between the C@and CO inversions occurs through the cor- fields are sampled as columns for the satellite overpass times

responding off-diagonal elements of the error covariance ma- : . ; . .
: . . . and with or without instrument averaging kernels. Figure 1
trices. The observational error covariance matrix now takes

. shows typical averaging kernels for g®om OCO (values
the form ), whereSco, andSco are the error covariance ¢ "= oSt are similar), CO from SCIAMACHY, and CO
matrices for the single-species inversions:

from AIRS. GOSAT, OCO and SCIAMACHY measure by
Sco,  E(ecoely) solar backscatter in the near-IR and thus have near-unit sen-
S= ( ) 4) sitivity through the bulk of the atmosphere (i.e., nearly flat
averaging kernels). AIRS, MOPITT, and TES measure in
Since the instrument error for G@nd CO can be assumed the thermal IR and have maximum sensitivity in the mid-
independent, and the representation error can be assumdwbposphere. Infrared instruments can observe on both the
small (Heald et al., 2004), the observational error covariancetight side and the day side of the orbit. On the dayside,
between C@ and CO only comes from the model transport all instruments observe at near 13:30 local time (“A-Train”
error. The CQ-CO error covariance terms can be derived constellation of satellites on the same orbit track) except
from the model error correlation coefficients by scaling by for GOSAT (13:00), MOPITT (10:30) and SCIAMACHY
the square roots of model error variances of CO an@.CO (10:00).
Although the model error variances obviously depend on the For the paired-model method, we perform global simula-
model, the correlation structure is more general as shown itions of CQ and CO using the GEOS-Chem CTM (v8-01-
Sect. 4. 01, http://www-as.harvard.edu/chemistry/trop/geasiven

E(ecoelps,)  Sco

www.atmos-chem-phys.net/9/7313/2009/ Atmos. Chem. Phys., 9, 7323-2009
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0 TR T GEOS-4 vs. GEOS-5 2006 GEOS-3 vs. GEOS-4 2001

200+

—— OCO CO, land
---- OCO CO, ocean
—— AIRS CO
400 ___ SCIAMACHY CO

Pressure (hPa)

600 -

lOOO -t ‘ -t ‘ -t ‘ L1 ‘ L1 II ‘ -t
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 1. Typical column averaging kernels for OCO retrieving £0
and for SCIAMACHY and AIRS retrieving CO. OCO kernels are
for conifer and ocean surfaces with solar zenith angle 6f &td
optical depth of 0.005 (Bosch et al., 2008). The AIRS kernel is for
a clear-sky ocean scene at 2N and 156.9 W on 1 August 2006
(http://disc.sci.gsfc.nasa.gov/AIRSThe SCIAMACHY kernel is
for a solar zenith angle of 2QBuchwitz et al., 2004).

-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0

by the same sources and sinks but different generations of

Goddard Earth Observing System (GEOS) assimilated meteFig. 2. Model error correlation coefficients between columnCO
orological data produced by the NASA Global Modeling and and column CO in different seasons calculated with the paired
Assimilation Office (GMAO). We compare simulations con- model method for GEOS-5 vs. GEOS-4 (2006) and GEOS-4 vs.
ducted with GEOS-5 vs. GEOS-4 for 2006, and GEOS-4 Vs_GEOS-S (2001) at2x 2.5° resolution. Both C@ and CO columns
GEOS-3 for 2001. GEOS-3. GEOS-4. and GEOS-5 differ in V€' sampled at 13:30 local time. No averaging kernels were ap-
the underlying general circulation model, the methodologyp“ed'

for data assimilation, and the data assimilated (Bloom et al.,

2005; Rienecker etal., 2008; Ottetal., 2009). All GEOS datayq,ys the CASA balanced biosphere model with prescribed
sets are 6-hourly (3-hourly for mixing depth and surface vari- giyrna) cycle (Randerson et al., 1997: Olsen and Randerson,

ables) and are regridded t8:22.5> horizontal resolution for 2004). Exchange of COwith the ocean follows Takahashi
input to GEOS-Chem. The GEOS-Chem £énd CO sim- o 4. (1997).

ulations have been documented previously including exten- £ the paired forecast method, we use GEOS-5 global
sive comparisons to observations (e.g., Suntharalingam et alon o mical forecasts of CO and GQL/2° x2/F horizontal

2004; Duncan et al., 2007). Anthropogenic £emissions  yeso|ytion) for July 2008 generated by GMAO in support of
are from Andres et al. (1996). Anthropogenic CO emis-he ARCTAS aircraft campaign (Jacob et al., 2009). These

sions are a combination of currently available inventories a%hemical forecasts were not custom designed for this pa-

used in Kopacz et al. (2009). Biomass burning emissions forper. The CO simulation uses the same sources and OH

both CG and CO are from the monthly Global Fire Emis- fi|4s a5 GEOS-Chem. The G@imulation differs in us-
sion Database version 2 (GFEDZ2) inventory for the S|mula—ing daily averaged biospheric fluxes from CASA and no

tion year (van der Werf, 2006). Biofuel emissions of £0d 5 mass burning. The 48-h and 24-h forecasts were sampled
CO are from Yevich and Logan (2003). All CO simulations 4: 13:30 GMT.

use the same monthly 3-D OH concentration fields archived
from a GEOS-Chem full-chemistry simulation (Fiore et al.
2003). Exchange of COwith the terrestrial biosphere fol-

Atmos. Chem. Phys., 9, 7313323 2009 www.atmos-chem-phys.net/9/7313/2009/
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4 CO»-CO error correlation patterns ., e e o

Figure 2 shows the global and seasonal patterns of the g
model error correlation between column £€@nd column :
CO calculated with the paired-model method for GEOS-4 vs. FECEE
GEOS-5 (2006) and GEOS-3 vs. GEOS-4 (2001). Both CO ;
and CO are sampled at 13:30 local time, corresponding to the
A-Train overpass. Results are for actual columns (no averag- %’
ing kernels) and would also apply to flat averaging kernels as
obtained from the near-IR GOSAT and SCIAMACHY sen-

sors (Fig. 1). } ,{ i - e
We find in Fig. 2 strong positive correlationsy(>0.7) i SR e
prevailing during the non-growing season and in biomass -1¥™ oe ot 04 02 00 02 04 o6 08 To

burning regions. In January, 92%, 80% and 45% of the area ) o
north of 30 N hasry>0.7, 0.8, and 0.9, respectively. Simi- Fig. 3. Model error cqrrelatlon_coefﬁuents between £énd CO
larly, strong negative correlations exist in the growing seasorf2lumns calculated with the paired-forecast method for July 2008 at
in the absence of biomass burning. In July, 26%, 11%, and‘L/2° x 2/3 resolution. No averaging kern_els were applied. Results
can be compared to the July panels of Fig. 2.
3% of the area north of 3N hasry; <-0.6—-0.7, and—0.8,
respectively. Due to the magnitude and variability of the
CASA balanced biospheric flux, the correlations are strongefye yse fixed land and ocean averaging kernels taken from
and more coherent in winter than in summer. Error correla—,:ig_ 1; these do not significantly modify the G@olumns.
tions extend far downwind of biomass burning and fossil fuel gjmilar averaging kernels apply for GOSAT. For AIRS, we
regions and over the scale of the Northern Hemisphere. Regseq the averaging kernels for each CO retrieval (AIRS data
gions of strong model error correlations include but are notygrsion 5, http:/disc.sci.gsfc.nasa.gov/AIR$McMillan et
limited to regions of strong model error variances. Inverseg) 2005), and averaged the resulting CO columns over the
model studies of C@fluxes have pointed to model transport 2, 2 5 model grid. Application of AIRS averaging ker-
errors in northern extra-tropical land areas as a major lim-g|g degrades the error correlation because the @ CO
iting factor in flux optimization (Gurney et al., 2002, 2003, ¢olumns are now observed with different and variable verti-
2004; Baker et al., 2006). The strong £0O error correla-  ca| weighting factors. Yet we find that the large-scale cor-
tions in that region offer promise for improvements through e|ation structures are preserved (Fig. 4) with the correlation
a joint CG-CO inversion. coefficients reduced on average by 15% (of which 9% is due
We also find in Fig. 2 that error correlation patterns are o ayveraging kernel variation) relative to the results of Fig. 2.
very similar for the GEOS-4/GEOS-5 and GEOS-3/GEOS-4 |y their previous joint C@-CO inverse analysis using
pairs. The robustness of error correlation patterns indicate§RACE-P aircraft data, Palmer et al. (2006) assumed that the
that the directions of the general gradients of column CO a”(tOZ-CO observational error correlation was the same as the
CO; are similar between the two sets of models. Strongercorrelation of concentrations. If this assumption was approx-
positive correlation over Indonesia and the Indian Ocean inmately correct it would greatly facilitate the generation of er-
October for the GEOS-4/GEOS-5 pair can be explained byror correlation statistics. We examine its validity in Fig. 5 by
stronger biomass burning in Indonesia in 2006 (Logan etshowing the correlations between column £&hd column
al., 2008). We find that correlation magnitudes and patterngo (without averaging kernels) simulated by GEOS-Chem
are insensitive to time of day (not shown), even though thefor 2006. These can be compared to the error correlations
CO; surface flux changes sign between day and night duringshown in the left panels of Fig. 2. We find the same gen-
the growing season. This is consistent with observations bysra| patterns of strong positive correlations in combustion
Washenfelder et al. (2006) that @@olumns (as opposed to  soyrce regions, and strong negative correlations in regions
surface concentrations) show little diurnal variability. of photosynthesis activity. But there are also large differ-
Figure 3 shows the model error correlations obtained fromences, particularly in the transition seasons (e.g., April). For
the paired-forecast method for July 2008. As in Fig. 2, nOthe Palmer et al. (2006) conditions of Asian outflow over
averaging kernels are applied. Despite the differences in methe NW Pacific in April, we find that the transport errors are
teorology, emissions, sampling time, and method (Sect. 3)much more strongly correlated than the columns themselves,
the large scale model error correlations are very similar toyhich would increase the utility of the joint GECO inver-
those in Fig. 2. The error structure is finer because of thesjon for constraining carbon fluxes. Overall, the differences
higher spatial resolution (172 2/3° vs. 2 x2.5°). between Fig. 2 and 5 are sufficiently large and complex that

Figure 4 shows the error correlation results including aver-correlation of concentrations should not be used as error cor-
aging kernels for OCO C&£and AIRS CO, as obtained by the  relations in general.

paired-model method for January and July 2006. For OCO

www.atmos-chem-phys.net/9/7313/2009/ Atmos. Chem. Phys., 9, 7323-2009
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-10 -08 -06 -04 -02 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Correlation coefficients between column €@nd column
CO simulated by GEOS-Chem with GEOS-4 meteorology for 2006
at 2 x2.5° resolution. Both C@and CO are sampled at 13:30 local
time. No averaging kernels are applied.
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Fig. 4. CO,-CO model error correlation coefficients between col-
umn CQ sampled with the land and ocean OCO averaging kernels
of Fig. 1 and column CO sampled with actual AIRS averaging ker-
nels associated with each scene.,Gdd CO are sampled at 13:30
local time for January and July 2006 and error correlations are Ca'Fig. 6. The 14 land regions and rest of the world (ROW) used in the
culated by the paired-model (GEOS-5 vs. GEOS-4) method. Blankersion example, from Nassar et al. (2009).

areas correspond to grid squares that had fewer than 21 AIRS ob-
servations for the month.

We performed an analytical Bayesian inversion for 14 land
regions and the rest of the world (ROW) (Fig. 6) [Nassar et
al., 2009] for the first two weeks of January 2006 and of July
2005. The Jacobian matrik =V, F =ay/ax was con-
structed using a total of 45 tagged tracers. Each land region
] ) had one tracer for CO combustion, one for £&mbustion,

We demonstrate the benefit of using £00 model error 54 one for C@ biospheric exchange. In addition, there was
correlations in CQ flux inversions with a simple example. gne CO tracer and one GQracer for ROW and one CO
Pseudo data of column G@nd column CO with OCO-like  tracer for chemical production from methane and biogenic
averaging kernels (Fig. 1, OCO-land) were generated alongo|atile organic compounds. The a priori error covariance
A-train orbits using 2x2.5° GEOS-Chem CO and GGBim-  matrix was assumed diagonal, with 50% uncertainty for CO,
ulations driven by GEOS-4 meteorology. Model error vari- 2504 for combustion CQ 80% for biosphere CHand 30%
ances and correlation derived from the paired model method,, Row. We also performed a control G@nly inversion.
were used to specify the observational error covariance ma- one way to diagnose the benefit of a £00 joint in-

trix S. Since OCO averaging kernels essentially show uni-yersjon relative to a C@only inversion is examining the de-
form vertical sensitivity, we used the GEOS-5 vs. GEOS-4rease in the a posteriori flux errors (Palmer et al., 2006). The

correlation map without averaging kernels (Fig. 2). We as-5 posteriori error covariance matris given by (Rodgers,
sumed that the forward model error is the only source of ob-0q():

servational errorg=¢)), and ignored spatial and temporal
error correlations. S=(kTsk+sH? (5)

5 Demonstration of error reduction in a CO» flux inver-
sion
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Fig. 7. Ratio of a posteriori C@surface flux error between a joint G&O inversion and a C&only inversion for the different regions in
Fig. 6. The errors are measured as the square roots of the diagonal terms of the a posteriori error covariarg&eThatiiwersions used
14 days of pseudo satellite data sampled along the A-train orbit in January 2006 (top) and July 2005 (bottom).

The a posteriori errors are the square roots of the diagona Conclusions
terms ofS. Figure 7 shows the ratios of a posteriori £{ix
errors between the CQ:;O and CQ-only inversion. In Jan—. _ We explored the potential of using GEO transport er-
uary, when strong positive model error correlations prevail ingqr correlations to improve inversions of G@urface fluxes
the Northern Hemisphere, a posteriori £&mbustion and  5m, satellite observations of G@olumns. CO columns can
biosphere flux uncertainties from the QO inversion are e measured from space with high relative precision. Be-
39-82% of those in the uncorrelated inversion