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Abstract  

A suite of models were used to examine the links between climate, fuels and fire behaviour in  

dry eucalyptus forests in south-eastern Australia. Predictions from a downscaled climate  

model were used to drive models of fuel amount, the moisture content of fuels and two  

models of forest fire behaviour at a location in western Sydney in New South Wales,  

Australia.   

 We found that a warming and drying climate produced lower fine fuel amounts, but  

greater availability of this fuel to burn due to lower moisture contents. Changing fuel load  

had only a small effect on fuel moisture. A warmer, drier climate increased rate of spread, an  

important measure of fire behaviour. Reduced fuel loads ameliorated climate induced  

changes in fire behaviour for one model. Sensitivity analysis of the other fire model showed  

that changes in fuel amount induced changes in fire behaviour of a similar magnitude to that  

caused directly by sensitivity to climate. Projection of changes in fire risk requires modelling  

of changes in vegetation as well as changes in climate. Better understanding of climate  

change effects on vegetation structure is required. 
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1  Introduction  

Fire is an important process in forested landscapes and, where fires encounter human  

habitation, presents a serious threat to life and property (Luke and McArthur, 1978). Fire  

behaviour is governed by weather, topography and fuel. Of these, weather and fuels are both  

susceptible to the effects of climate change (Bradstock, 2010). The potential for climate  

change to impact the occurrence of landscape fire has long been recognised (Beer et al.,  

1988; Flannigan et al., 2009b). The majority of studies investigating climate change and fire  

have used fire danger indices to predict changes in fire potential, as recently reviewed by  

Flannigan et al. (2009b, 2009a). These indices combine temperature, relative humidity, wind  

speed and a measure of long-term moisture deficit (through soil dryness or grass curing) to  

provide an assessment of the potential for fires to start and spread (McArthur, 1967; van  

Wagner, 1987; Burgan, 1988). Interactions between climate, fire and vegetation distribution  

have also been investigated using dynamic vegetation models in the USA (Malanson and  

Westman, 1991; Bachelet et al., 2003; Lenihan et al., 2008), Europe (Mouillot et al., 2002;  

Schumacher and Bugmann, 2006) and tropical savannahs (Hoffmann et al., 2002).  

 Studies to date in Australian forests have focused on changes in fire weather through  

fire danger indices, using the forest fire danger index (FFDI, McArthur 1967) and the  

grassland fire danger index (GFDI, McArthur 1966). Early studies (Beer and Williams, 1995;  

Cary, 2001; Williams et al., 2001) used climate model output to investigate a number of  

measures of fire danger, including distributions of daily values, monthly mean value and  

seasonal sum. These studies found fire danger to increase in the future in south-eastern  

Australia, largely as a result of increased temperature and reduced relative humidity.  

More recent studies have used a variety of statistical methods to better understand the  

nature and uncertainty of predicted changes in fire danger. Hennessy et al. (2005) and Lucas  

et al. (2007) used simulations from a regional climate model nested within two global climate  
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models (GCMs) with high and moderate emissions scenarios to examine changes in FFDI for  

Australia capital cities and some regional locations. Rather than use model output directly,  

they modified observations from weather stations by linking changes in weather variable  

deciles to changes in global temperature using linear regression. They reported increases in  

fire danger, measured as monthly means and number of days above given thresholds, for  

most of south-eastern Australia, except southern Tasmania. Pitman et al. (2007) used a  

mesoscale climate model driven at the boundaries by a GCM to investigate changes in grass  

fire danger index in January in New South Wales for 2050 and 2100 under high and moderate  

climate change scenarios. To investigate changes in extreme values results were presented as  

probability density functions, in contrast to the means or sums used in other studies. Fire  

danger was found to increase under both scenarios in 2050 and 2100. Clarke et al. (2011)  

used four climate models to examine regional changes in four climatic zones in Australia.  

Results were presented as mean monthly fire danger, number of days per month on which  

potentially life threatening fire could occur and length of the fire season. In a development  

from earlier work, bootstrapping was used to establish uncertainty bounds for fire danger in  

present and future conditions. Small changes in fire danger in south-eastern Australia were  

observed in 2050, followed by large increases in 2100, with considerable variation between  

models. A different approach to describing fire danger was taken by Hasson et al. (2009),  

who looked at changes in the occurrence of synoptic weather patterns in southern Australia.  

They used the 850 hPa temperature gradient across south-eastern Australia to diagnose the  

passage of strong cold fronts, a pattern historically associated with destructive bushfires, in  

reanalysis data and climate model predictions. Under moderate and high climate change  

scenarios their analysis found an increased frequency of these synoptic systems.  

All these studies predict increased fire danger due to climate change in south-eastern  

Australia, with some variation in the timing and magnitude of the changes, including  
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temporary decreases in some cases. While these studies have developed an increasingly  

sophisticated understanding of fire weather and climate change, the prediction of fire danger  

does not necessarily provide insight into the expected behaviour of fires burning under these  

conditions. This is because focus on fire weather does not allow for the effects of climate on  

the other major determinant of fire behaviour, namely fuels. Fuel amount and structure are an  

important determinant of fire behaviour. In addition to gross differences due to community  

structure (eg. grassland vs forest), differences in species composition, fuel age, amount and  

arrangement are also important (Gould et al., 2007). Climate change is expected to cause  

changes in both the extent of different communities and the composition of vegetation within  

communities (Bradstock, 2010). Sullivan (2010) first attempted to address this deficiency  

through application of the modified weather data of Lucas et al. (2007) to the behaviour of  

grassfires using the grassland fire spread model of Cheney et al. (1998). He found that  

maximum rate of forward spread of fires in natural pastures in southern Australia is predicted  

to increase by 10% by 2020 and 32% by 2050 and that the greatest increase will occur during  

the spring/early fire season period. However, this work did not take into account changes in  

grassland curing which may be affected by climate change (Gill et al., 2010).   

In this study we extend previous work by examining the effect of changing fuels as well as  

climate on fire behaviour in forests. Also, we address limitations in the FFDI by using a  

physical fuel moisture model and by including a more sophisticated fire behaviour model  

(Gould et al., 2007). We use these models to examine two questions. First, what is the effect  

of changing climate on fuel amount, fuel moisture, or fire behaviour? Second, are the effects  

of climate change on fuel amount, and thus fuel moisture and fire behaviour, significant  

compared to its effects on fire weather? If these effects are significant, this implies that it is  

necessary to take changes in fuel into account when examining the effects of climate change  

on fire risk, in addition to the weather-based indices used in previous studies. Results are  
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presented for dry sclerophyll forest in the vicinity of western Sydney. This region is broadly  

representative of regions in the fire prone south east of Australia. Down-scaled climate  

change model outputs are available for this region, as are data on fuel accumulation in dry  

sclerophyll forests along relevant environmental gradients.   

2  Methods  

The effects of climate change on fire behaviour were examined using a suite of five models: a  

climate model, CSIRO‟s cubic-conformal atmospheric model (CCAM, McGregor and Dix  

2008); a simple fuel accumulation model based on the Olson (1963) approach; an energy and  

water balance model of the moisture content of fuels on the forest floor (Matthews 2006); and  

two fire behaviour models, the Forest Fire Danger Meter model of McArthur (1967) and the  

Dry Eucalypt Forest Fire Model (Gould et al., 2007). Dependencies between the models is  

illustrated in Fig. 1.  These models were applied to a location representative of forested areas  

in the vicinity of Sydney, Australia (34S, 151E).   

2.1  Climate change scenario  

The model run used in this study was made under the Special Report on Emissions Scenarios  

(SRES) A2 scenario (Nakicenovic et al., 2000). A2 is one of the higher emissions SRES  

scenarios, driving a large range of mean temperatures. The A2 scenario was selected to  

provide a wide range of physically consistent weather conditions. The climate data set used in  

this study was created using the CSIRO Conformal Cubic Atmospheric Model (CCAM). As  

part of the South-east Australia Climate Initiative (McGregor and Nguyen, 2009) CCAM was  

first run for the period 1961 to 2100 for the entire globe at 200 km resolution using bias- 

corrected sea surface temperatures from the CSIRO Mk 3.5 climate model. The CCAM  

output was then downscaled to 20 km resolution over south-east Australia (Thatcher and  

McGregor, 2009). Predictions for the 4 grid cells covering western Sydney were averaged to  
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produce time series for this study. Comparison of simulations with climatology of rainfall and  

temperature for the period 1961–1990 found good agreement (McGregor and Nguyen, 2009;  

Watterson et al., 2009). For the study site biases were +0.2 
o
C in maximum temperature, +2.5  

o
C in minimum temperature and +78.5 mm (+10.8%) for annual rainfall.   

Although climate models predict many meteorological quantities, most future scenarios  

have included temperature and rainfall as the most important and often only variables. More  

recent studies have also included solar radiation, wind speed and specific humidity, although  

the prediction ranges have in some cases been larger than the mean predicted changes  

(CSIRO and Australian Bureau of Meteorology, 2007). For this initial study we considered  

variables which are known to affect fuel moisture (Matthews, 2006) and fire behaviour  

(Gould et al., 2007): air temperature, rainfall, wind speed, humidity and solar radiation.   

Fig. 2 shows modelled mean annual air temperature, rainfall, relative humidity, wind  

speed and solar radiation. As well as trends, there was significant annual and decadal  

variability in rainfall and relative humidity. There were significant trends of +4.2 
o
C century

-1
  

in air temperature, -90 mm century
-1

 in annual rainfall and -4.5% century
-1

 in relative  

humidity. Trends in wind speed and solar radiation were not significantly different from zero.  

The direction and magnitude of these trends were within the envelope of predictions for the  

CMIP3 models for eastern Australia (CSIRO and Australian Bureau of Meteorology, 2007).  

Annual averages of these variables were correlated (Fig. 3).   Observations in south-eastern  

Australia show trends of +1 to +2 ºC century
-1 

in temperature (Nicholls 2006), -200 to -500  

mm century
-1 

in annual rainfall (Nicholls 2006) and 1.8±0.6 ºC in dew point (Lucas 2010).   

The climate model trends in temperature and relative humidity were equivalent to a +3.1 ºC  

century
-1

 trend in dew point.  Analyses for trends in solar radiation and wind speed are not  

available so it is not known whether all the correlations shown in Fig. 3 are present in reality.  
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2.2  Fuel Accumulation Model  

A full understanding of the effects of climate change on fuels and fire behaviour would  

require understanding of changes in ecological communities, the response of species within  

communities and the processes that produce live and dead fuels (Specht and Specht, 1999).  

For fuels in south-eastern forests, key processes include litter (dead plant materials deposited  

on the forest floor including leaves, bark and twigs) production and decomposition (Raison et  

al., 1986) and growth of understorey herb and shrub species (Gould et al., 2011). In this study  

we used findings from field studies of litter dynamics to parameterise a litter accumulation  

model (Olson, 1963).  The predictions of the litter model are used with the Forest Fire Danger  

Meter fire behaviour model (McArthur, 1967) which has litter load as its only fuel variable.    

Litter load in dry eucalypt forests varies during the year as material is deposited, particularly  

in early summer (e.g. Crockford and Richardson 1998), then decays throughout the year. To  

include some of this annual variation we used Olson‟s model to predict litter load, w (t ha
-1

)   

at monthly resolution. We constructed the model following Olson‟s approach for  

accumulation with discrete annual litter fall:   

• The model is initialised with equilibrium litter load, we (t ha
-1

) based on climate  

conditions in the first year of the model data.   

• Decay is proportional to the amount of litter present, i.e.   

 dw/dt= kw    (1)  

where k is a decay rate (y
-1

).   

• Each year on December 1st, an amount of litter, wf  (t ha
-1

) is added.   

• we, wf  and k depend on climate   

This model is applied to a long unburned litter layer and thus the predictions reflect the effect  

of climate change on litter load absent of fire.  
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Fuel parameters were derived from seven published field studies in dry eucalypt forest  

sites in New South Wales and south-east Queensland below 400 m above sea level (Rogers  

and Westman, 1977; Birk, 1979; Fox et al., 1979; Lamb, 1985; Conroy, 1993; Hart, 1995;  

Bridges, 2005). These studies measured and classified litter in a variety of ways but for the  

present work measurements were adjusted to identify values for the Olson curve parameters  

for litter particles less than 6 mm in diameter (i.e. fine fuel).  Fuels less than 6 mm diameter  

were used in the model as these are the fuels that determine rate of spread and intensity of  

moving fires (McArthur, 1967; Gould et al. 2007).   

Stepwise linear regression was used to construct a model of annual litter fall and  

equilibrium load as a function of site annual rainfall and air temperature.  Only rainfall was  

selected as an independent variable (R
2
 = 0.44, N = 7)  

 w
f
= 0.43+0.00385r      (2)  

The dependence of decomposition rate on temperature and rainfall was modelled using the  

multiplicative approach of Moorhead and Reynolds (1991):  

 k = a(1-e
-bt

)(1-e
-cr

)         (3)  

Where r is annual rainfall (mm), T is mean temperature (ºC),  a = 1.16, b = 0.05 and c =  

0.0004 are parameters.  Values for b and c were taken from Paul and Polglase (2004) and a  

was fit to the observations.    

To initialise the model we was estimated as wf / k (Olson 1963) using climate values from  

the first year of the model run.  Equation 1 was integrated at 1 month intervals using annual  

rainfall values from CCAM to predict litter fuel load for the duration of the model run.   
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2.3  Fuel Moisture Model  

Fine fuel moisture is determined by short and long term weather patterns (Nelson, 2000;  

Wittich, 2005; Matthews, 2006) and may depend on fuel load (Putuhena and Cordery, 1996;  

Sato et al., 2004; Matthews et al., 2007). Fuel moisture predictions were made using the  

Matthews (2006) model. The model represents fluxes of energy and water in a litter bed  

composed of three materials: litter, air and free liquid water on the surfaces of the litter. The  

litter bed is bounded above by the atmosphere and below by the soil. The heat and water  

budget of each of the three materials is calculated at five equally spaced nodes within the  

litter layer using equations for six quantities: litter temperature, the temperature of free liquid  

water on the litter surfaces, air temperature, litter moisture content (kg water per kg of dry  

litter), amount of liquid water on litter surfaces (kg of water per m of litter bed) and specific  

humidity.   

The fuel moisture model was parameterised to represent dry eucalypt forest on flat ground  

with a varying fuel load, taken from the fuel accumulation model. The fuel load was updated  

annually in December.  In order avoid violating conservation of mass in the water budget  

equations the fuel load was updated during the first time step for which no free water was  

present on the litter surface. The model was driven using CCAM output as boundary  

conditions. The CCAM variables were transformed from standard meteorological  

measurements to within-forest values using the methods described in Matthews et al. (2007).  

Additionally, for this project a Penman-Monteith scheme was used to simulate canopy  

interception of rainfall (Paul et al., 2003). The model equations were solved on a 1 h time  

step from January 1, 1961 to December 31, 2099. To examine the effect of large changes in  

fuel load on fuel moisture, the results of three further fuel moisture model runs were  

performed with constant fuel loads of 6, 12 and 18 t ha
-1

, where 12 t ha
-1

 was the mean fuel  

load from the Olson model described above.   



11 

To facilitate interpretation of model outputs, the model predictions of litter moisture  

content and amount of surface water were combined:   

 M
s
=100 m

i
+ 

l
i

b

      (4)  

 M
p
=100  

1

N
 

i=1

N
  m

i
+ 

l
i

b

      (5)  

Where Ms is the total moisture content (%) of the top model layer (surface moisture content),   

Mp is the moisture content (%) of the entire litter layer (profile moisture content), mi and li are  

the water content of the litter (kg kg
-1

) and the free water content (kg m
-3

) of the i
th

 model  

layer, ρb  is the litter layer bulk density (kg m
-3

) and N=5.   

2.4  Fire behaviour models  

Fire behaviour models take a number of forms, from purely physical in which all processes  

are explicitly modelled, through purely empirical, in which no processes are incorporated but  

their interactions parameterised through statistical regressions of input variables (Sullivan,  

2009a). In all parts of the world, fire behaviour models used for operational purposes (for the  

purpose of fighting, controlling or warning of wildfires) are of empirical or quasi-empirical  

construction (Sullivan, 2009b). Here, two models were used. The Forest Fire Danger Meter  

model (McArthur, 1967), a model in widespread use in eastern Australian forests and the  

newer Dry Eucalypt Forest Fire Model (Gould et al., 2007) that is proposed to replace it  

nationally.  

Forest Fire Danger Meter  

 The FFDM was developed from a series of experimental fires conducted over a 10-15 year  

period in various types of native forest around the country (McArthur, 1967). The majority of  

these experimental fires were conducted under low- to moderate- fire weather conditions and  
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were generally of small scale (<0.5 ha), lasting less than 1 hour from ignition to completion,  

augmented by ad hoc wildfire observations. The FFDM has been used in all studies that have  

examined fire danger and climate change in Australia. Despite its widespread use, this model  

has been found to under-predict the rate of spread of large fires or fires burning through  

forests with shrubby understorey or under high wind speeds (Rawson et al., 1983; Buckley,  

1992; Burrows, 1999; McCaw et al., 2008). For the FFDM:   

 R=0.0012Fw      (6)  

where R is rate of forward spread (km h
-1

) and w is the amount (load) of fine surface fuel (t  

ha
-1

). F is the forest fire danger index (FFDI), a meteorologically based index:   

 F=2exp [ ]0.45+0.987log ( )D 0.0345H+0.0338T+0.0234U      (7)  

where, D is the drought factor (0–10), H is the relative humidity (%), T is the air temperature  

(ºC) and U is the wind speed at 10 m in the open (km h
-1

). Two sets of predictions were  

made, the first using fuel load, w, from the litter load model, the second with constant fuel  

load of 12 t ha
-1

.  

Dry Eucalypt Forest Fire Model (DEFFM)  

 While also empirical this model differs from the FFDM in that it was developed under a  

broader range of weather and fuel conditions and utilised experimental fires that had attained  

a pseudo-steady rate of spread for the conditions (Gould et al., 2007). It is thus applicable to  

larger fires burning under summer conditions. The DEFFM rate of spread is calculated as:   

 R=0.0183 [ ]30+3.102 ( )U 5 0.904e0.279S
s
+0.611N

s
+0.013N

h M
1.495

s      (8)  

where R is the rate of forward spread (km h
-1

), U is the mean wind speed measured in the  

open at 10 m above ground level (km h
-1

), Ss is the surface fuel (i.e. litter) hazard score (0–4),  

Ns is the near-surface fuel hazard score (0–4), Nh is the near-surface fuel height (cm) and Ms  

is the moisture content (%). Near-surface fuel is dead material suspended close to the ground  
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with a significant horizontally oriented component, e.g. grasses and dead leaves and twigs  

suspended in low shrubs. „Hazard scores‟ are categorical scales which describe the amount  

and arrangement of fuel present on the basis of visual assessment (McCarthy et al., 1999).   

Information from a recent assessment of fuel hazard in the most common shrubby dry  

sclerophyll forest types in the Sydney region (Table 1) was used as the basis of fire spread  

modelling. While there is information on surface fuel load and the potential for a direct  

mapping of surface fuel load to surface fuel hazard for particular species (e.g. jarrah forests  

of Western Australia (Gould et al., 2007)), there is currently no robust general method of  

converting surface fuel load to hazard for other forest species or for determining the near- 

surface fuel hazard or height from such measurements, so we cannot apply the predictions of  

the fuel load model to the DEFFM model. As a result of this and the lack of knowledge about  

how fuel hazard in any particular vegetation type will be affected by climate change, a  

sensitivity-type analysis was conducted. The current fuel state was used as the basis for the  

analysis in which fuel hazard classes were changed by 0.5 hazard score and fuel height by  

10 cm (Table 1).   For the forest described by Table 1 a  change in surface fuel hazard  

score is equivalent to a change of approximately 25% in litter layer depth, a -0.5 change to  

the near surface hazard score would require a reduction in the fraction of dead material from  

20-50% to <20% and an increase of +0.5 would require an increase in dead material to >50%  

and the presence of senescent understory vegetation.  These changes should be measurable  

with careful monitoring but do not imply significant structural change to the forest.  All fire  

behaviour predictions were made by applying eqns 6 and 8 using the outputs of the climate,  

fuel and fuel moisture models at an hourly timestep.  
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2.5  Data aggregation  

The output of the five models presents a rich data set for investigation of potential changes in  

fire risk and fire behaviour in the future. Here we examine a limited number of measures:   

• Mean monthly surface fuel moisture content as a measure of fuel flammability,  

• The number of days per month on which fuels are dry enough to sustain fire for at least  

some of the day (fire days). This condition is defined as a day than has minimum  

surface moisture content, M
s
<15% and profile moisture content, M

p
<20%. (McCaw,  

1986; Plucinski and Anderson, 2003),   

• Histograms of minimum surface moisture content for summer days, a measure of the  

potential for severe fires and spot fires,   

• Monthly mean and monthly maxima of rate of spread calculated at 3PM local time  

each day.   

The CCAM rainfall and humidity series have variances that are large relative to their linear  

trends (Fig 2). Although rising temperature with time will drive fire danger higher (Williams  

et al., 2001), simply comparing present to future climate using averages over the start and end  

portions of the model runs will not capture variability due to rainfall, which is known to  

affect fuel moisture (Matthews, 2006) and hence fire behaviour. So, rather than using a time- 

based analysis for these variables, we instead used a climate index to examine the effect of  

climate on the above measures of fire risk and behaviour. This index is based on the  

observation that climate variables affecting fire behaviour are correlated in the CCAM data  

set (Fig. 3). To take advantage of this correlation and simplify the presentation of results,  

principal components analysis (R Development Core Team, 2009) was used to reduce the  

number of variables. Principal components analysis was performed on centred, scaled, annual  
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values of air temperature, rainfall, relative humidity, wind speed and solar radiation. The first  

principal component was used as a climate index.  

To examine the effect of climate on fires, the daily model outputs were then aggregated  

and related to the climate index:   

1. The daily series were aggregated to calculate monthly means, maxima and counts.   

2. Monthly values were assigned to bins by the annual value of the first principal  

component of the climate data set. Bins were defined as the bottom, middle and top  

third of values.   

3. Bootstrapping with replacement for values within each bin was used to establish 90%  

confidence intervals (Clarke et al., 2011).   

The result of this analysis is a set of time series curves representing fuel moisture and fire  

behaviour variables in 3 climate ranges.   

3  Results  

3.1  Climate index  

The first principal component captured 65% of variance in the climate data set. Negative  

values corresponded to years which were cooler, more rainy, more humid, less windy and  

cloudier than the model mean, hereafter referred to as “cool-wet” years, while positive values  

were warmer, less rainy, windier and sunnier (Fig 3), “warm-dry” years. This index is  

specific to this model run and would be different for other models or locations which predict,  

for example, increasing temperature and increasing rainfall.  

There was a statistically significant trend in the frequency of occurrence of warm-dry  

years for the western Sydney region (Fig 4) (p-value for slope of linear regression < 0.001).  

For the period 1961-2000, 30% of years are warmer and drier than the 140 year mean. For  
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2061-2100, 63% of years are warmer and drier. Thus, there is a substantial shift in the  

frequency of occurrence of warm-dry years as a consequence of the modelled climate change  

scenario. There is also an increase in the extreme values of the index, with 8 years in the  

period 2011-2099 having higher values than the highest value in the observational period  

(1961-2010).  

3.2  Fuel Load  

At a monthly time scale, the model predictions were dominated by the annual cycle of litter  

fall in December and decomposition during the remainder of the year (Fig. 5). At longer time  

scales, fuel load varied on a decadal scale with an overall downward trend of 1.8 t ha
-1

  

century
-1

. This variability and trend reflects the rainfall and temperature values used to drive  

the model (Fig 2) and our assumptions linking litter dynamics to climate. As noted above,  

this relationship is an over-simplification. However, a similar relationship of declining litter  

load with lower rainfall and increasing temperature has also been observed in a space-for- 

time study (Williams et al., 2009) and at a long term monitoring site in NSW (Penman and  

York, 2010).  

  

3.3  Fuel Moisture  

A strong climate signal was observed in average moisture content (Fig. 6) and number of fire  

days (Fig. 7). In the cool-wet years, moisture content was higher and there were fewer fire  

days in every month of the year than in the warm-dry years, with intermediate results in other  

conditions.  Without further analysis relating mean moisture content to fire occurrence it is  

not possible to define a threshold moisture value which defines a wet winter non-burning  

period, particularly as even the months with the highest moisture content have some fire days.   
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However, the shifting of the moisture curves between cool-wet and warm-dry years has two  

implications.  Firstly, that the winter period with few fire days is shorter in warm-dry than in  

cool-wet years.  Secondly, the gradients in moisture content spring and autumn are similar in  

all year types but shifted towards July in warm-dry years and towards December in cool-wet  

years.  In Fig. 8 there is a higher probability of  values below a given value in warm-dry years  

than cool-wet years, meaning that as well as there being more fire days, moisture content on  

those days is likely to be lower, with corresponding implications for fire behaviour.   

Statistics for the varying fuel load run did not differ at all from the 12 t ha
-1

 run. That is,  

the variations in fuel load modelled were too small to have any effect on fuel moisture.  

Similarly, increasing fuel load by 50% did not have a measurable effect on Ms (Fig. 9). In  

contrast, reducing fuel load by 50% led to a small but non-significant reduction in Ms,  

particularly in winter.    

The similarity of the 12 and 18 t ha
-1

 runs indicates that most rain events in the western  

Sydney region were sufficient to saturate the deeper litter layer and that the additional depth  

did not affect the drying of the surface of the layer. In contrast, the shallower 6 t ha
-1

 litter  

layer did dry slightly more rapidly.  It is possible that further reduction of the fuel load would  

lead to larger changes in fuel moisture.  We did not model this possibility as such a large  

change in litter load would be expected to occur with a change in canopy species and possibly  

a transition from forest to open woodland structure.  

3.4  Fire Behaviour  

3.4.1  Forest Fire Danger Meter  

The dependence of fire behaviour on climate was similar for both monthly mean 3PM and  

monthly maximum 3PM rates of spread, illustrating the change in expected fire behaviour  

throughout the year defining the fire season (Fig. 10). A strong dependence on climate was  
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observed for the length of the fire season. In warm-dry years, mean rate of spread began to  

increase from the winter minimum 1-2 months earlier than in cool-wet years and in warm-dry  

years the mean spring rate of spread was higher than in the summer of cool-wet years. Mean  

rate of spread in December in warm-dry years was 66% higher than in wet years, while  

maximum rate of spread was 14% higher. These two values reflect an increased number of  

fire days in warm-dry years along with the increase in peak rate of spread.  

In cool-wet years the rate of spread calculated using fuel load from Figure 4 is higher than  

the rate of spread assuming a constant fuel load of 12 t ha
-1

, Rf, because higher rainfall is  

associated with higher fuel loads (Fig. 11). This difference was greatest at the beginning of  

the year and decreases as the litter decays through the year. Similarly, Rv was lower than Rs in  

warm-dry years but the rate of change during the year is slower because fuels decay more  

slowly in drier conditions.   

This result demonstrates the antagonistic interaction between the second-order effects of  

climate on rate of spread in this model through weather and fuel load. While weather, as  

affected by climate change, acted to increase rate of spread through decreased fuel moisture  

and increased wind speeds, a concurrent effect of climate change was to reduce surface fuels,  

thus reducing rate of spread. Using this fire behaviour model, these opposing effects were of  

similar magnitude.  

3.4.2  Dry Eucalypt Forest Fire Model  

The DEFFM rates of spread are approximately double those predicted by the FFDM (Fig.  

12), reflecting the improved knowledge of behaviour of larger fires burning under less  

moderate conditions. The dependence of rate of spread on climate was similar to that  

observed for the FFDM, with a longer fire season and higher maximum rate of spread in  

warm-dry years. Mean December rate of spread showed similar dependence on climate to the  
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FFDM, with a 57% increase in warm-dry years compared to cool-wet years. Maximum rates  

of spread were more sensitive to climate in DEFFM than FFDM, with peak values in warm- 

dry years from the DEFFM modelling 46% higher than those in cool-wet years. This  

difference is larger than the effect of variable fuel load on modelled FFDM rate of spread  

(Fig. 11). Thus predictions of fire behaviour under a changed climate will differ somewhat  

depending on which fire behaviour model is used.  

Changes in rate of spread due to fuel hazard were of similar magnitude to the direct  

effect of climate change. The DEFFM is most sensitive to changes in the near-surface fuel  

hazard component, with approximately +35%, -25% changes in monthly maximum 3PM rate  

of spread during the fire season with, respectively, a 0.5 increase in hazard score and a 0.5  

decrease in hazard score (Fig. 13). These variations are assymetrical because the hazard  

function in the DEFFM is non-linear (Eqn 8). Surface fuel hazard is the next most sensitive  

with +13%, -10% changes in monthly maximum 3PM rates of spread during the fire season  

with a +0.5 and -0.5 change in hazard score respectively. The model is relatively insensitive  

to changes in near-surface fuel height at the current value. The result of simultaneous  

increases to all fuel variables is about a 55% increase in rate of spread during the fire season  

(Fig. 13d). The result of the decreases to all fuel variables is about a 35% decrease in rate of  

spread during the fire season. During the fire season, there is very little variation in response  

between climate types. The largest effects are evident during the winter months where fire  

behaviour is more sensitive to changing fuel in warm-dry years than in cool-wet years.  

4  Discussion  

Applying the changing rainfall scenarios from the climate model projections to models of  

fuel dynamics for the western Sydney region produced a declining, but variable, litter fuel  

load. The response of fuel mass to changing moisture regimes was slow and thus changes to  
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fuel loads as a consequence of climate change-induced changes to moisture regimes are  

unlikely to be detected in the coming decades. A strong climate signal was observed in fuel  

moisture, with a shorter winter period, lower fuel moisture levels and greater number of fire  

days in warm-dry years, in all months. Fuel load had only a weak effect on fuel moisture,  

with no effect at small fuel load changes and a slight decrease in fuel moisture for a 50%  

reduction in fuel load. Thus, a major decline in fuel mass as a consequence of climate change  

would be needed to induce a concomitant decline in fuel moisture. Changes to fuel moisture  

will be driven primarily by first order responses to climate change (i.e. the warming and  

drying) rather than by second-order changes via fuel mass.   

The two fire behaviour models vary in their ability to incorporate changes in fuel moisture  

and load. The FFDM has only moderate capability of incorporating long-term first order  

weather effects but can incorporate first order fuel effects through existing models of surface  

fuel accumulation and decay. The DEFFM has greater scope to incorporate second order  

effects of weather and fuel, however there are no current methods for determining what the  

first order effects on fuel quantities (hazard scores and fuel height) will be. The models were  

directly sensitive to climate change, with an increase in the rate of spread during years  

characterised by increased temperatures and decreased rainfall. These results are broadly  

similar to previous studies which used fire danger index to examine climate change effects in  

eucalypt forests(Beer and Williams, 1995; Williams et al., 2001; Cary, 2001; Hennessy et al.,  

2005; Lucas et al., 2007; Clarke et al., 2011). However, variability in the climate index (Fig.  

4) means that changes are likely to be manifest as a change in the frequency of severe fire  

seasons rather than a gradual shift in mean index values. As with the findings of Clarke et al.  

(2011) and Hasson et al. (2009) it remains to be seen whether these changes in frequency are  

measurable in coming years.  
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Both fire behaviour models used showed that climate induced changes in fuel amount will  

induce changes in fire behaviour that are of similar magnitude to the direct climate effects.   

Rate of spread was most sensitive to fuel hazard scores, while fuel height was relatively  

unimportant.  If these changes reduce fuel load, as suggested by the simple fuel accumulation  

model, then this will act to partially ameliorate the direct effects of climate change. However,  

there is currently very little understanding of the likely effects of climate change on forest  

composition or fuel structure (Williams et al., 2009), so it is unclear in which direction fuel  

amounts and structure will respond. This should be an area of priority research and continued  

monitoring of fuel structure, as well as mass and changes in vegetation composition, will be a  

vital component of fire management in coming decades.  Our approach is relevant to forests  

around the globe, but the main limitation at present is the lack of suitable models of fuel  

accumulation.  

  

Acknowledgements  

Climate model data sets were provided by John McGregor and Kim Nguyen from CSIRO  

Marine and Atmospheric Research.  Thanks to Chris Lucas and Trent Penman for providing  

comments on the original manuscript and to Phil Polglase for suggesting improvements to the  

fuel load model.  

  

  



22 

References  

Bachelet D, Neilson R, Hickler T, Drapek R, Lenihan J, Sykes M, Smith B, Stitch S,  

Thonicke K (2003) Simulating past and future dynamics of natural ecosystems in the  

United States. Globa Biogeochem Cy 17:1045  

Beer T, Williams A (1995) Estimating Australian forest fire danger under conditions of  

double carbon dioxide concentrations. Climatic Change 29:169–188  

Beer T, Gill A, Moore R (1988) Australian bushfire danger under changing climatic regimes.  

In: Pearman G (ed) Greenhouse: Planning for Climatic Change, CSIRO,  421–427  

Birk EM (1979) Overstorey and understorey litter fall in a eucalypt forest: Spatial and  

temporal variability. Aust J Bot 27(2):145–156  

Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future  

implications. Global Ecol Biogeogr 19(2):145–158  

Bridges RG (2005) Effects of logging and burning regimes on firest fuel in dry sclerophyll  

forests in south-eastern New South Wales. initial results (1986-1993) from the Eden  

burning study area. Research paper 40, NSW Dept of Primary Industries  

Buckley AJ (1992) Fire behaviour and fuel reduction burning: Bemm River wildfire, October  

1988. Austral For 55:135–147  

Burgan RE (1988) 1988 revisions to the 1978 National Fire-Danger Rating System. Research  

paper SE-273, U.S. Department of Agriculture, Forest Service, Southeastern Forest  

Experiment Station, Asheville, NC  

Burrows ND (1999) Fire behaviour in jarrah forest fuels: 2. Field experiments. CALM  

Science 3:57–84  

Cary GJ (2001) Importance of a changing climate for fire regimes in Australia. In:  

Flammable Australia: the fire regimes and biodiversity of a continent, Cambridge  

University Press, UK, 26–46  



23 

Cheney NP, Gould JS, Catchpole WR (1998) Prediction of fire spread in grasslands. Int J  

Wildland Fire 8(1):1–13  

Clarke H, Smith P, Pitman A (2011) Regional signatures of future fire weather over eastern  

Australia from global climate models. Int J Wildland Fire 20:550–562  

Conroy B (1993) Fuel management strategies for the Sydney region. In: The burning  

question: fire management in NSW, Dept of Community Education, University of NSW,  

Armidale, NSW, 73–83  

Crockford RH, Richardson DP (1998) Litterfall, litter and associated chemistry in a dry  

sclerophyll eucalypt forest and a pine plantation in south-eastern Australia: 1. Litterfall  

and litter. Hydrol Process 12:365–384  

CSIRO and Australian Bureau of Meteorology (2007) Climate change in australia. Technical  

report, CSIRO and Australian Bureau of Meteorology  

Flannigan M, Stocks B, Turetsky M, Wotton M (2009a) Impacts of climate change on fire  

activity and fire management in the circumboreal forest. Glob Change Biol 15:549–560  

Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009b)  

Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483– 

507  

Fox BJ, Fox MD, Mckay GM (1979) Litter accumulation after fire in a eucalypt forest. Aust J  

Bot 27(2):157–165  

Gill AM, King KJ, Moore AD (2010) Australian grassland fire danger using inputs from the  

GRAZPLAN grassland simulation model. Int J Wildland Fire 19(3):338–345  

Gould J, McCaw W, Cheney N, Ellis P, Knight I, Sullivan A (2007) Project Vesta - Fire in  

Dry Eucalypt Forest: Fuel structure, fuel dynamics and fire behaviour. Ensis-CSIRO,  

Canberra  



24 

Gould JS, McCaw WL, Cheney NP (2011) Quantifying fine fuel dynamics and structure in  

dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management.  

Forest Ecol Manag 262:531–546  

Hart DM (1995) Litterfall and decomposition in the pilliga state forests, new south wales,  

australia. Austral Ecol 20(2):266–272  

Hasson AEA, Mills GA, Timbal B, Walsh K (2009) Assessing the impact of climate change  

on extreme fire weather events over southeastern australia. Clim Res 39(2):159–172  

Hennessy K, Lucas C, Nicholls N, Suppiah J, Bathols R, Rickets J (2005) Climate change  

impacts on fire-weather in south-east australia. Tech. rep., CSIRO Marine and  

Atmospheric Research and Australian Government Bureau of Meteorology  

Hoffmann WA, Schroeder W, Jackson RB (2002) Positive feedbacks of fire, climate, and  

vegetation and the conversion of tropical savanna. Geophys Res Lett 29:2052  

Lamb RJ (1985) Litter fall and nutrient turnover in two eucalypt woodlands. Aust J Bot  

33(1):1–14  

Lenihan JM, Bachelet D, Neilson R, Drapek R (2008) Response of vegetation distribution,  

ecosystem productivity, and fire to climate change scenarios for California. Climatic  

Change 87(Suppl.):215–230  

Lucas C, Hennessy K, Mills G, Bathols J (2007) Bushfire weather in southeast australia:  

Recent trends and projected climate change impacts. Tech. rep., Bushfire CRC and  

CSIRO Marine and Atmospheric Research  

Lucas C (2010) A high-quality historical humidity database for Australia, Tech. Rep. 24,  

Centre for Australian Weather and Climate Research.  

Luke RH, McArthur AG (1978) Bushfires in Australia. Australian Government Publishing  

Service, Canberra  



25 

Malanson GP, Westman WE (1991) Modeling interactive effects of climate change, air  

pollution, and fire on a California shrubland. Climatic Change 18:363–376  

Matthews S (2006) A process-based model of fine fuel moisture. Int J Wildland Fire 15:155– 

168  

Matthews S, McCaw WL, Neal J, Smith R (2007) Testing a process-based fine fuel moisture  

model in two forest types. Can J Forest Res 37:23–35  

McArthur AG (1966) Weather and grassland fire behaviour. Leaflet 100, Forestry and  

Timber Bureau, Canberra, ACT  

McArthur AG (1967) Fire behaviour in eucalypt forests. Leaflet 107, Forestry and Timber  

Bureau, Canberra, ACT  

McCarthy GJ, Tolhurst KG, Chatto K (1999) Overall fuel hazard guide. Research Report 47,  

Department of Natural Resources and Environment, Melbourne, VIC  

McCaw WL (1986) Behaviour and short-term effects of two fires in regenerated karri  

(Eucalyptus diversicolor) forest. Technical Report 9, Department of Conservation and  

Land Management, Perth, WA  

McCaw WL, Gould JS, Cheney NP (2008) Existing fire behaviour models under-predict the  

rate of spread of summer fires in open jarrah (Eucalyptus marginata) forest. Austral For  

71(1):16–26  

McGregor JL, Dix M (2008) An updated description of the conformal-cubic atmospheric  

model. In: High Resolution Simulation of the Atmosphere and Ocean, Springer, 51–76  

McGregor JL, Nguyen KC (2009) Dynamical downscaling from climate change experiments.  

Final report of project 2.1.5. Technical report, South East Australian Climate Initiative  

Moorhead JL, Reynolds JF (1991) A general model of litter decomposition in the northern  

Chihuahuan Desert. Ecol Model 56:197-219  



26 

Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency  

and vegetation dynamics in a Mediterranean-type ecosystem. Glob Change Biol 8:423– 

437  

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, et al. (2000) Special Report on  

Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental  

Panel on Climate Change. Cambridge University Press, Cambridge, U.K.  

Nelson RM (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Can J  

Forest Res 30: 1071–1087.  

Nicholls N (2006) Detecting and attributing Australian climate change: a review, Aus Met  

Mag 55: 199-211.  

Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological  

systems. Ecology 44(2):322-331.  

Paul KI, Polglase PJ, O‟Connell AM, Carlyle JC, Smethurst PJ, Khanna PK, Worledge D  

(2003) Soil water under forests (SWUF): a model of water flow and soil water content  

under a range of forest types. Forest Ecol Manag 18:195–211  

Paul KI, Polglase PJ (2004) Prediction of decomposition of litter under eucalypts and pines  

using the FullCAM model. Forest Ecol Manag 191:73-92  

Penman TD, York A (2010) Climate and recent fire history affect fuel loads in Eucalyptus  

forests: Implications for fire management in a changing climate. Forest Ecol Manag  

260:1791–1797  

Pitman AJ, Narisma GT, McAneney J (2007) The impact of climate change on the risk of  

forest and grassland fires in australia. Climatic Change 84:383–401  

Plucinski MP, Anderson WR (2003) Laboratory determination of factors influencing  

successful point ignition in the litter layer of shrubland vegetation. Int J Wildland Fire  

17:628–637  



27 

Putuhena WM, Cordery I (1996) Estimation of interception capacity of the forest floor. J  

Hydrol 180:283–299  

R Development Core Team (2009) R: A Language and Environment for Statistical  

Computing. R Foundation for Statistical Computing, Vienna, Austria  

Raison RJ, Woods PV, Khanna PK (1986) Decomposition and accumulation of litter after  

fire in sub-alpine eucalypt forests. Aust J Ecol 11:9–19  

Rawson RP, Billing PR, Duncan SF (1983) The 1982-83 forest fires in Victoria. Austral For  

46:163–172  

Rogers RW, Westman WE (1977) Seasonal nutrient dynamics of litter in a subtropical  

eucalypt forest, North Stradbroke Island. Aust J Bot 25(1):47–58  

Sato Y, Kumagai T, Kume A, Otsuki K, Ogawa S (2004) Experimental analysis of moisture  

dynamics of litter layers - the effects of rainfall conditions and leaf shapes. Hydrol  

Process 18:3007–3018  

Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and  

management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol  

12:1435–1450  

Specht RL, Specht A (1999) Australian Plant Communities: Dynamics of Structure, Growth  

and Biodiversity. Oxford University Press, South Melbourne, Victoria, Australia  

Sullivan AL (2009a) Wildland surface fire spread modelling, 1990-2007. 1: Physical and  

quasi-physical models. Int J Wildland Fire 18(4):349–368  

Sullivan AL (2009b) Wildland surface fire spread modelling, 1990-2007. 2: Empirical and  

quasi-empirical models. Int J Wildland Fire 18(4):369–386  

Sullivan AL (2010) Grassland fire management in future climate. Adv Agron 106:173–208  

Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling  

with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752  



28 

van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather  

Index System. Forestry Technical Report 35, Petawawa National Forestry Institute,  

Chalk River, Ontario, Canada  

Watterson I, McGregor J, Nguyen K (2009) Changes in extreme temperatures of Australasian  

summer simulated by CCAM  under global warming, and the roles of winds and land- 

sea contrasts. Aust Meteorol Mag 57:195–212  

Williams AAJ, Karoly DJ, Tapper N (2001) The sensitivity of Australian fire danger to  

climate change. Climatic Change 49:171–191  

Williams RJ, Bradstock RA, Cary GJ, Enright NJ, Gill AM, Liedloff AC, Lucas C, Whelan  

RJ, Andersen AN, Bowman DMJS, Clarke PJ, Cook GD, Hennessy KJ, York A (2009)  

Interactions between climate change, fire regimes and biodiversity in Australia: a  

preliminary assessment. Technical report, CSIRO, Canberra, ACT  

Wittich K (2005) A single-layer litter-moisture model for estimating forest-fire danger.  

Meteorol Z 14:157–164  

  



29 

Tables  

  

Table 1: Fuel variables for western Sydney.  

  

 Variable Current value Pertubation 

 Surface fuel hazard 3.5 0.5 

Near-surface fuel hazard 3.0 0.5 

Near-surface fuel height (m) 0.35 0.10 

  



 
 
Figure 1: Relationships between models used in this study. Variables are: T, air temperature, 
r, rainfall, H, humidity, S, shortwave radiation, L, longwave radiation, U, wind speed, θsoil, 
soil moisture, Tsoil, soil temperature, wf, litter fuel load, Ms, surface fuel moisture content, Mp, 
profile fuel moisture content and R, rate of fire spread.  
 

 
 
Figure 2: Annual temperature, rainfall, relative humidity, wind speed and solar radiation for 
western Sydney for the period 1960-2099 from CCAM.  



 

 
Figure 3: Correlation between major climate variables. Points are annual values plotted on 
arbitrary scales, positive to the right and upwards.  
 
 
 
 
 

 
 
Figure 4: left) Time series of climate change index. Positive values are relatively warm, dry, 
sunny and windy, negative values are cool, wet, cloudy and calm. Shading shows the range of 
the lower (white, cool-wet), middle (light gray, intermediate) and upper (dark grey, warm- 
dry) third of values. right) Relative frequency of year types in 40 year ranges.  



 
 
Figure 5: Monthly litter load predicted from CCAM annual rainfall and fuel accumulation 
curves.  
 
 
 
 
 

 
 
Figure 6: Average daily minimum fuel moisture content for years with different climatic 
conditions. Shaded areas are 90% confidence intervals for years in the climate change index 
bin shown in Fig. 4. 31  
 
 
 
 
 
 



 
Figure 7: Number of fire days per month for years with different climatic conditions. Shading as 
per Fig. 5. 
 
 
 
 
 

 
 
Figure 8: Surface fuel moisture fuel factor cumulative frequency histograms in summer for 
years with different climatic conditions.  
 
 
 
 
 



 
 
Figure 9: Average daily minimum moisture content for different fuel loads. 12 and 18 t ha_1 
lines are indistinguishable. Shaded areas are 90% confidence intervals for each fuel load.  
 
 
 
 
 

 
 
Figure 10: The monthly mean and maximum rates of spread for 3PM weather conditions 
using the FFDM. Shading as per Fig. 5.  
 
 
 
 



 
 
Figure 11: Percentage difference between modelled rates of spread using different fuel inputs 
to the FFDM. Shaded areas are 90% confidence intervals of the percentage difference 
between the monthly maximum 3PM rate of spread calculated using the Olson-derived fuel 
load data and the monthly maximum 3PM rate of spread calculated using a fixed fuel load of 
12 t ha_1.  
 
 
 
 
 

 
 
Figure 12: The monthly mean and maximum rates of spread for 3PM weather conditions 
using the DEFFM. Shading as per Fig. 5.  
 



 

 

Figure 13: Percentage change in 3PM maximum rate of spread as a result of changing fuel 
variables in the DEFM. (a) Surface fuel hazard with ±0.5 change in hazard score. (b) Near-
surface fuel hazard with ±0.5 change in hazard score. (c) Near-surface fuel height with ±10 
cm change in height. (d) All fuel variables increased or decreased simultaneously. Shading as 
per Fig. 5. 
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