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Abstract 

The electrical and mechanical characteristics of composite materials prepared using evaporative 

casting and vacuum filtration of carbon nanotubes (CNTs) dispersed in the biopolymer τ-

carrageenan (IC) are reported. It is demonstrated that the contact angle is proportional to the CNT 

mass and volume fraction, which is used to compare the properties of buckypapers with those of 

evaporative cast films. Multi-walled carbon nanotube films were found to exhibit higher 

conductivity values compared to those observed for single-walled carbon nanotubes composites 

at comparable contact angle values up to true nanotube volume fraction of 0.12. Buckypapers 

prepared by varying the absolute amount of CNT mass while keeping the IC amount of mass 

constant, were found to be more robust and conducting compared to evaporative cast films. In 

contrast, buckypapers prepared by changing the amount of IC mass while keeping the CNT 

amount of mass constant were found to be more conducting, but less robust compared to 

evaporative cast films. It is suggested that the electrical characteristics of these gel-carbon 
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nanotube materials are determined by the relative amounts of mass (or volume) of CNTs and 

polymer, while the mechanical characteristics are governed by the absolute amounts of mass (or 

volume).  

 

1. Introduction 

Carrageenan is a generic name for a biopolymer family of water soluble, linear, anionic 

polysaccharides extracted from red seaweed, which is known for gel forming and thickening 

properties [1]. They have been extensively employed in the food industry and are commonly 

referred to as E407 (European Union specification) as well as being approved by the US Food 

and Drug Administration as a direct food additive. Furthermore, carrageenan has been used as 

additive in oil well drilling and in cosmetic and pharmaceutical formulations, while recent studies 

have shown that carrageenan blocks the human papilloma virus associated with the development 

of cervical cancer [2].  

 

A range of biopolymers (including the carrageenans) have been proven to be effective in 

dispersing carbon nanotubes (CNTs) in water [3,4,5,6,7,8,9,10]. Many researchers are attracted 

to CNTs due to their phenomenal mechanical and electrical characteristics [11, 12]. Accessing 

the properties of single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes 

(MWCNT) is essential for realising practical applications based on these fascinating structures. 

This requires organising carbon nanotubes into a material or a device, which can be achieved 

using either direct-growth or wet-processing methods [13, 14].  

 

Most wet-processing methods involve two basic steps, dispersion of CNT in a solvent with or 

without a dispersant, followed by removal of solvent or solution. Vacuum filtration of nanotube 



 3 

dispersions, resulting in so-called buckypapers, has been used to good extent in the fabrication of 

films consisting of densely packed CNT networks [15, 16, 17, 18, 19, 20, 21, 22]. Buckypapers 

can be thought of as porous membranes, with a free volume of 60-70% of the total volume of the 

paper [15]. It was found that such buckypaper membranes prepared using functionalised SWCNT 

and MWCNT are permeable to common gases such as oxygen, nitrogen, carbon dioxide and 

methane [21,22]. Intercalation of polymers into buckypaper resulted in mechanical 

reinforcement, while incorporating buckypapers into a polymer matrix resulted in demonstrations 

of their applicability as supercapacitor electrodes and strain sensors [15, 23, 24, 25]. 

 

It has been demonstrated that buckypaper film properties are affected by changing the conditions 

employed during preparation as well as the type of dispersant. For example, the in-plane 

Poisson’s ratio of buckypapers could be tuned by combining SWCNT with MWCNT [18]. 

Changing the lengths of MWCNTs used to manufacture buckypapers has a significant effect on 

the diameter of the pores present in the final material [19]. In addition, changing the sonication 

time, final dispersion volume or membrane filter used all affected the mechanical properties and 

surface morphology of SWCNT buckypapers [20]. Furthermore, it has been established that 

electrical conductivity of buckypapers and mechanical characteristics decreases with increasing 

molecular mass of dispersant [20]. 

 

In evaporative casting, films are prepared by controlled evaporation of solvent from CNT 

dispersions leaving a composite film [10]. There are numerous examples in the literature related 

to the preparation of polymer-CNT composite films and their properties [12, 26, 27, 28]. The 

mechanical and electrical characteristics of these materials are generally dependent on the 

CNT:dispersant ratio, i.e. increasing the nanotube concentration usually increases the electrical 
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conductivity and also results in mechanical reinforcement [12, 28]. The use of biopolymers is a 

more recent approach, and it has been established that biopolymers such as chitosan, gellan gum 

and xanthan gum are all suitable matrix materials for polymer-CNT composites [10, 29, 30].  

 

In this paper, we describe the electrical and mechanical characteristics of SWCNT and MWCNT 

composite materials prepared using evaporative casting and vacuum filtration. We show that the 

contact angle is proportional to the CNT mass and volume fraction, which is then used to 

compare the properties of buckypapers with those of evaporative cast films. We suggest that the 

electrical characteristics of these gel-carbon nanotube materials are determined by the relative 

amounts of mass (or volume) of CNTs and polymer, while the mechanical characteristics are 

governed by absolute amounts of mass (or volume).  

 

2. Experimental 

2.1 Materials 

The biopolymer τ-carrageenan (IC, molecular weight 350,000 – 800,000 g/mol, Genuvisco type 

CI-123, lot # SK93842) was a gift from CP Kelco (USA). Single-walled carbon nanotubes 

(SWCNTs), produced by high-pressure decomposition of carbon monoxide (HiPco process) were 

purchased from Unidym Inc. (USA, lot # P0261). Catalytic chemical vapour deposition produced 

multi-walled carbon nanotubes (MWCNTs) were obtained from Nanocyl S.A. (Belgium, lot # 

090901). Deionised “Milli-Q” water was used in all experiments and prepared using a Millipore 

filtration system (resistivity = 18.2 MΩ cm) 
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2.2 Solution and dispersion preparation 

Solutions of IC were prepared by adding appropriate amounts of IC to 15 ml of Milli-Q water 

under stirring for 3 hours at ~70 °C. Different amounts of CNTs (in powder form) were added to 

IC solutions. Homogenous IC-CNTs dispersions (Fig.1a) were prepared using a digital sonicator 

horn (Branson 450, Ultrasonics Corp.) with a probe diameter of 10 mm, in pulse mode (0.5 s 

on/off) and amplitude = 12 W. The sample vial was placed inside a water bath to control solution 

temperature.  

 
 
2.3 Preparation of composites by evaporative casting 

Free-standing films were prepared by evaporative casting of IC solutions and composite 

dispersions (15 mL) into the base of cylindrical plastic containers which were then dried in the 

oven at 35°C for 24 hours. The resulting films were peeled off the substrate to yield uniform free-

standing films (Fig. 1b). 

 

2.4 Preparation of composites by vacuum filtration 

Prior to the filtration, the composite dispersion was diluted by Milli-Q water up to a final volume 

of 50 mL. The dispersions were drawn through the membranes (5 μm pore size PTFE, Millipore) 

and filtration units by using a vacuum pump (Vacuubrand CVC2) that typically operated between 

30 and 40 mBar. Once all of the dispersion had filtered, the buckypapers were washed with Milli-

Q water, followed by methanol. After washing, the damp buckypaper was placed between 

absorbent paper sheets with a small flat glass sheet placed on top and left to dry for 24 hours at 

under controlled ambient conditions (21 C, 45% relative humidity, RH). The buckypaper (Fig. 1) 

was then peeled from the filtration membrane. 
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2.5 Characterization techniques 

UV-visible absorption spectra of IC solutions and IC-CNTs composite dispersions were obtained 

with a dual beam UV-vis–NIR spectrophotometer (Cary 500) using quartz cuvettes (path length = 

5 mm).  

 

Flow curves (apparent viscosity as a function of shear rate) were determined using an Anton Paar 

Physica MCR 301 rheometer fitted with a PP25 head at 20 ºC. 

 

Dispersions were imaged using an optical microscope (LEICA Z16) with Leica Application Suite 

(version 3.1.0 R1) software.  

  

Current-voltage (I-V) characteristics were determined under controlled conditions in air (21°C, 

45% RH) with a waveform generator (Agilent 33220A) and a digital multimeter (Agilent 

34410A). For conductivity measurements films were cut into strips of 0.5 cm in width and 4 cm 

in length and contacted with copper electrodes. I-V measurements were made as a function of 

film length by cutting the end off the strip, contacting with copper electrodes, re-measuring the I-

V characteristic and repeating.  Films thickness was measured using a digital micrometer 

(Mitutoyo IP65).  

 

The mechanical properties of all films were obtained using a dynamic mechanical analyser 

(Q800, TA instruments). Measurements were carried out under ambient conditions on rectangular 

strips (length = 10 mm) at a cross-head speed of 0.1 mm/min. Young’s modulus, tensile strength, 

and extensibility were determined from the slope of the linear part of the stress-strain curve, the 

maximum stress and strain at break, respectively. 
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Scanning electron microscope (SEM) images were acquired using a JEOL JSM-7500FA. 

Samples were prepared by mounting small pieces of films onto a brass stub (11 x 5 mm2) using 

conductive carbon tape.  

 

Contact angle measurements were carried out using the sessile drop method on a goniometer 

(Data Physics SCA20), which was fitted with a digital camera. The contact angles of 1μL Milli-Q 

water droplets on the surface of the samples were calculated after 30 s using the accompanying 

Data Physics software (version SCA20.1). The mean contact angle was calculated based on 

measurements performed using at least 5 water droplets.  

 
Fig. 1. Photographs of typical: (a) IC-CNT dispersion and IC solution, and (b) films prepared by 
evaporative casting and vacuum filtration. Scale bar indicates 1 cm.  
 

3. Results and discussion 

3.1 Dispersing carbon nanotubes 

The optimum time of sonication required to effectively disperse CNTs was determined by 

monitoring the leveling of the UV-vis absorption intensity and the disappearance of visible 

 



 8 

aggregates. The UV-vis spectra of the CNT dispersions as a function of sonication time are 

shown in Fig. 2.  As IC absorbs minimally in the region shown, it can be assumed that the 

absorption bands observed are due solely to the presence of CNTs. Increasing the sonication time 

resulted in greater overall absorbance, indicating that an increasing amount of CNTs became 

dispersed. The optimum sonication time was defined as the minimum amount of time required to 

effectively disperse the CNTs, as excess sonication can shorten or cause defects to form in the 

tubes and thereby diminish their properties [31, 32, 33]. The absorbance of the dispersions at 660 

nm was plotted as a function of sonication time (insets in Fig. 2). This particular wavelength was 

selected as it corresponds to the maxima of an absorption band arising from the van Hove 

singularities for SWCNT [34, 35, 36]. The inset in Fig. 2a clearly shows that the MWCNT 

absorbance becomes independent of sonication at 20 min. In contrast, the SWCNT absorbance 

did not show a clear plateau for sonication times of up to 60 min (inset, Fig. 2b). Instead it was 

noted that the rate of increase in absorbance started to decrease after approximately 35 min of 

sonication.  

 

Based on the data shown in Fig. 2, sonication times of 20 and 35 min were selected as being 

optimal for ensuring that the MWCNT and SWCNTs were well dispersed, respectively. Optical 

microscopy revealed that there were no large aggregates present in the dispersions that had been 

subjected to these sonication times. Furthermore, dispersions prepared in this manner were found 

to be very stable, as they showed little change after 6 months standing under ambient conditions 

(21 ºC, 45% RH). 
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Fig. 2. Effect of increasing sonication time on the UV-visible absorption spectrum of a dispersion 
containing (a) 0.1% (w/v) MWCNT and 0.8% (w/v) IC, and (b) 0.1% (w/v) SWCNT and 0.8 % 
(w/v) IC sonication. Arrows indicate direction of increase in sonication time. (c) Absorbance at 
660 nm versus sonication time for IC-MWCNT (diamonds) and IC-SWCNT (triangles) obtained 
from data shown in (a) and (b), respectively. All samples were measured after a 10-fold dilution. 
 

 
The flow curves for selected IC solutions and IC-CNT dispersions are shown in Fig. 3a. All 

solutions and dispersions display shear thinning behaviour, i.e. viscosity (η) decreases with 

increasing shear rate (γ) which could be fitted to the well-known power-law model,  

 
          η = K γn-1,        (Eq. 1) 
  

where K and n indicate the ‘consistency’ and power law index, respectively. The apparent 

viscosity of IC solutions significantly decreases during sonication. For example, at a shear rate of 

100 s-1 the measured viscosity of the as-prepared IC solution (0.8% w/v) is 48 mPa s compared to 

4.5 mPa s after 35 min of sonication (Fig. 3b). With increasing sonication time, the IC solutions 

were found to become more shear thinning (n decreases), and thinner (K decreases, Table 1). This 

is in agreement with previous observations, i.e. sonolysis reduces the molecular weight of 

biopolymers, resulting in a decrease in viscosity [37, 38]. Addition of SWCNT (0.10% w/v) and 

MWNT (0.10% w/v) resulted in 2.3 and 2.0 fold increases in viscosity (at shear rate 100 s-1), 

respectively, compared to the corresponding values for the sonicated IC solution (Table 1). In 

addition, increasing the CNT concentration from 0.6% w/v to 1.0% w/v leads to thickening (K 
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increases) of the dispersion.  Thus, it is clear that sonolysis results in a decrease in apparent 

viscosity, while addition of CNTs results in the opposite effect.  

 
Fig. 3. (a) Apparent viscosity (at 20 °C) as a function of shear rate for typical IC solutions and 
IC-CNT dispersions. Diamonds and triangles indicate IC solution (0.8% w/v) after sonication for 
20 and 35 min, respectively. Circles and squares indicate IC-SWCNT and IC-MWCNT 
dispersions with CNT concentration 0.10% w/v sonicated for 20 and 35 min, respectively.  The 
lines are fits to Eq. 1. (b) Viscosity (at shear rate 100 s-1) as a function of sonication time for a 
typical IC solution (0.8% w/v). 
 
Table 1. Summary of flow curve analysis (at 20 °C) for biopolymer solutions and biopolymer-
CNT dispersions. Consistency (K) and power law index (n) were obtained through curve-fitting 
with the power law model, Eq. 1. η100 represents the measured viscosity at shear rate 100 s-1. The 
naming of the samples is as follows: biopolymer concentration-CNT concentration, e.g. “IC08-
MW006” indicates a dispersion with τ-carrageenan (IC) and SWCNT (SW) concentrations of 
0.8% w/v and 0.06% w/v, respectively.  
 

Sample K (mPa sn) n η100 (mPa s) 

IC08 -  no sonication 0.78 ± 0.03 122.1 ± 0.9 48.3 ± 2.4 

IC08 – 1 min sonication 0.68 ± 0.04 61.3 ± 0.7 21.3 ± 1.6 

IC08 – 5 min sonication 0.55 ± 0.02 60.4 ± 0.7 8.8 ± 1.0 

IC08 – 10 min sonication 0.65 ± 0.03 25.9 ± 0.4 5.9 ± 0.4 

IC08 – 20 min sonication 0.63 ± 0.01 31.6 ± 0.2 6.3 ± 0.1 

IC08 – 35 min sonication 0.60 ± 0.02 26.7 ± 0.3 4.5 ± 0.2 

IC08-MW006 – 20 min sonication 0.85 ± 0.01 13.5 ± 0.1 6.8 ± 0.2 

IC08-MW01 – 20 min sonication 0.68 ± 0.01 39.8 ± 0.1 9.2 ± 0.2 
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IC08-SW006 – 35 min sonication 0.42 ± 0.01 95.6 ± 1.5 7.3 ± 0.4 

IC08-MW01 – 35 min sonication 0.39 ± 0.01 155.0 ± 2.1 10.6 ± 0.5 

 
3.2 Electrical characteristics.  

Free-standing composite films were prepared by evaporative casting and  vacuum filtration of IC-

CNT dispersions. The current – voltage (I-V) characteristics of IC and IC-CNT films were 

investigated under ambient conditions (21°C, 45% RH). All composite films exhibited linear I-V 

characteristics, which indicate Ohmic behaviour. The calculated resistances are the total 

resistance (RT), which includes a contribution of the electrode- film contact resistance (RC). 

Previously, it has been shown that RT scales with length l according to [10, 17, 20, 29]:  

 
         ,        (Eq. 2) 
 

where A and σ are the cross-section area bulk conductivity, respectively. The slope of the straight 

line fit to equation 2 can then be used to calculate the bulk conductivities (Fig. 4a and Table 2). 

Fig. 4b shows that increasing the CNT mass fraction (Mf = massCNT / masstotal) increases the 

conductivity of the composite films regardless of CNTs used. However, at equal Mf the 

conductivity values exhibited by SWCNT composite films are lower compared to those observed 

for MWCNT composite. For example, the values for SWCNT and MWCNT films with Mf = 

0.111 are 1.2 ± 0.2 S/cm and 5.6 ± 0.9 S/cm, respectively. It is well-known that CNT mass 

fraction does not account for the difference in volume between SWCNT and MWCNT, as is 

evident from the difference in their density values, i.e. 1500 kg/m3 (SWCNT) and 2150 kg/m3 

(MWCNT). [17, 39] Therefore, CNT volume fraction (Vf) is a more appropriate measure of 

comparison, which was calculated using the experimentally determined density value for IC 

(1630 ± 50 kg/m3) and a rules-of-mixtures expression: 



 12 

 
                (Eq. 3) 

 

where mCNT, mIC, ρCNT, and ρIC are the mass amounts and density values of CNTs and IC, 

respectively. Fig. 4c and Table 2 show that at similar Vf the conductivity values exhibited by 

SWCNT composite films are lower compared to those observed for MWCNT composites.  

 

Table 2. Summary of the contact angle (θ), CNT mass fraction (Mf), density (ρfilm) and 
conductivity (σ) values for films (E1-10) prepared by evaporative casting. CNT volume (Vf) and 
true CNT volume (Vft) fraction values are calculated using Eq. 3 and 5, respectively. The naming 
of the dispersions is as follows: biopolymer concentration-CNT concentration, e.g. “IC08-
MW003” indicates a dispersion with τ-carrageenan (IC) and MWCNT (MW) concentrations of 
0.8% w/v and 0.03% w/v, respectively.  
 
Film Dispersion Mf ρfilm (kg/m3) Vf Vft θ (º) σ (S/cm) 

E1 IC08-MW003 0.0361 1361 ± 124 0.0276 0.0229 38.2 ± 1.2 0.36 ± 0.06 
E2 IC08-MW006 0.0698 1435 ± 163 0.0538 0.0466 42.3 ± 1.1 0.82 ± 0.11 
E3 IC08-MW010 0.1111 1499 ± 230 0.0866 0.0775 45.7 ± 0.8 5.58 ± 0.90 
E4 IC10-MW010 0.0909 1573 ± 126 0.0705 0.0665 43.1 ± 0.7 4.20 ± 0.54 

E5 IC12-MW010 0.0769 1618 ± 159 0.0594 0.0579 42.2 ± 0.8 2.60 ± 0.29 

E6 IC08-SW003 0.0361 1320 ± 74 0.0754 0.0318 35.1 ± 0.9 0.00057 ± 0.00009 

E7 IC08-SW006 0.0698 1386 ± 100 0.0392 0.0645 37.1 ± 0.6 0.25 ± 0.04 

E8 IC08-SW010 0.1111 1418 ± 47 0.120 0.105 42.5 ± 0.4 1.18 ± 0.16 

E9 IC10-SW010 0.0909 1475 ± 55 0.0980 0.0894 40.0 ± 0.9 0.82 ± 0.08 

E10 IC12-SW010 0.0769 1540 ± 50 0.0830 0.0790 37.5 ± 0.8 0.060 ± 0.006 
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Fig. 4. Electrical conductivity and contact angle of films prepared by evaporative casting. (a) 
Resistance versus length for IC-MWCNT (diamonds) and IC-SWCNT (triangles) films with 
CNT:IC ratio = 0.10. The straight lines are fits to Eq. 2. (b) Electrical conductivity of IC-
MWCNT (diamonds) and IC-SWCNT (triangles) films as a function of CNT mass fraction. (c) 
Electrical conductivity of IC-MWCNT (diamonds) and IC-SWCNT (triangles) films as a 
function of CNT mass fraction. (d) Contact angle of water with IC-MWCNT (diamonds) and IC-
SWCNT (triangles) films as a function of CNT mass fraction. The straight lines are fits to Eq. 4.  
 

It is not straightforward to relate the electrical conductivity values of buckypapers to CNT mass 

fraction due to the vacuum filtration process. To accurately determine the CNT mass fraction 

would require detailed spectroscopic analysis of the filtrate to determine what proportion of the 

CNTs and IC has passed through the membrane. This is a cumbersome and time-consuming 

process. Instead, it can be shown that the contact angle is proportional to the CNT mass fraction, 

which is then used to calculate the true nanotube volume fraction.  
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Fig. 4d shows that the contact angle (θ) increases with increasing CNT mass fraction, indicating 

that hydrophobicity increases with carbon nanotube content. Moreover, SWCNT and MWCNT 

films with the same CNT mass fraction exhibit comparable contact angles (Table 2). For 

example, the contact angle values for SWCNT and MWCNT composite materials at CNT mass 

fraction = 0.111 are 42.4 ± 0.4 º and 45.7 ± 0.8 º, respectively. Plotting contact angle versus 

conductivity (Fig. 5a), then clearly reveals that MWCNT composite materials yield higher 

conductivity values compared to SWCNT materials with comparable contact angle values.  This 

demonstrates that SWCNT and MWCNT films with similar CNT mass fractions have 

comparable contact angles, but exhibit different conductivity values.   

 

The data shown in Fig. 4d, can be used to demonstrate that the contact angle scales with CNT 

mass fraction according to: 

 
                   (Eq. 4) 
 

where k and θ0 represents a proportionality constant and the contact angle at Mf = 0, respectively. 

The slope of the straight line fit to equation 4 (Fig. 4d), yield k values of 95 ± 10 ° and 100 ± 16 ° 

for MWCNT and SWCNT composites, respectively. The corresponding θ0 values (evaluated 

from the intercept) are θ0 = 34.9 ± 0.8 ° (MWCNT) and 30.8 ± 1.3 ° (SWCNT). This can be used 

to estimate the CNT mass fraction for films prepared by vacuum filtration.  

 

The dependence of contact angle on conductivity for films prepared by vacuum filtration is 

shown in Fig. 5b. The contact angle data is then converted into estimated CNT mass fraction 

using Eq. 4 and the proportionality information for the CNTs. In contrast to evaporative cast 
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films, SWCNT composite films exhibit higher conductivity values compared to those observed 

for MWCNT composites at comparable contact angles and CNT mass fractions (Table 3 and Fig. 

5c). For example, the conductivity values of SWCNT and MWCNT films with estimated CNT 

mass fraction of ~0.41 are 76 S/cm and 32 S/cm, respectively.  

 

Table 3 illustrates that unlike for evaporative cast films; the vacuum filtrated films are more 

porous in nature as their density values are lower then either that of the polymer or the CNTs. 

The porosity is also evident from the SEM images. Fig. 6a-b shows that there is a significant 

difference in surface morphology between the two types of films. The difference in morphology 

can be attributed to the vacuum filtration process, which partially removes CNTs and IC. The 

carbon nanotubes are clearly visible in the buckypaper sample, but almost entirely covered by 

biopolymer in the sample prepared by evaporative casting. Furthermore, the SEM images 

confirm that an increase in contact angle for buckypaper samples corresponds to a decrease in 

biopolymer coverage, i.e. an increase in CNT mass fraction (Fig. 6b-d). 

 

Therefore, the porosity needs to be accounted for in a calculation of the CNT volume fraction, 

rather then using a rules-of-mixtures expression (Eq. 3).  The true CNT volume fraction (Vft) can 

be calculated using contact angle information (Eq. 4) as follows: 

 
                (Eq. 5) 

 

where VCNT, Vfilm and ρfilm are the CNT and film volumes, and the film density, respectively. This 

yields Vft values of 0.06 – 0.18 for the films prepared by vacuum filtration, and 0.02 – 0.10 for 

films prepared by evaporative casting. It is also evident that the CNTs occupy a larger volume in 
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the SWCNT composite materials at similar CNT mass fraction values. For example, SWCNT and 

MWCNT films with CNT mass fraction of ~0.41 exhibit Vft values of 0.15 and 0.10, respectively. 

Fig 5d shows that up to true CNT volume fraction of 0.12 the conductivity of composite films 

prepared with MCWNT are higher compared to those prepared with SWCNT.     

 

What happens at higher volume fraction? It has been determined that the conductivity of 

nanotube-only films consisting of SWCNT is higher than those consisting of MWCNT. For 

example, films prepared using an organic solvent instead of a polymer dispersant yielded 

conductivity values of ~55 S/cm and ~200 S/cm for MWCNT and SWCNT materials, 

respectively [40, 41]. Hence, the MWCNT films with Vft = 0.12 and σ = 38 S/cm is already 

approaching this limiting conductivity value. Based on the higher conductivity values (> 55 

S/cm) observed for SWCNT films, it would be reasonable to assume that these films will 

outperform the MWCNT films for Vft > 0.14 (Fig. 5d).  

 

It is not entirely clear at present why MWCNT films are more conducting then SWCNT film for 

true nanotube loading fractions below 0.12. It is likely that the observed difference in 

conductivity of composite materials may be related to the biopolymer being able to achieve a 

more complete coating of the SWCNT surface compared to that of MWCNT. This in turn would 

affect the resistance of the intra-CNT and CNT-polymer-CNT junctions as previously observed 

[8, 10, 29, 42, 43].  Furthermore, it has been shown that in gel-CNT films and hydrogels, the 

CNT–polymer–CNT junctions can act as a tunnelling barrier [8]. Hence, the difference in 

conductivity and contact angle of films prepared by evaporative casting and vacuum filtration, 

suggests that CNT-polymer-CNT junctions may play a more significant role in evaporative cast 

films then in buckypapers. 
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Previously, it was observed that percolation scaling can persist beyond the percolation threshold 

up to higher volume fractions, obeying the scaling law [17] : 

 
                (Eq. 6) 
 

where σ0 is related to the conductivity of the CNTs and t is the conductivity exponent. Percolation 

scaling was observed for all MWCNT films, with t = 2.9 ± 0.6 and log (σ0) = 4.2 ± 0.7. Although 

this t value is higher then the calculated for a 3D percolative system (t = 2.0), it is in reasonable 

agreement with a previously reported value (t = 2.22).[17]  In contrast, applying this percolation 

scaling to the SWCNT data did not yield a realistic value (t = 7.9 ± 1.5), suggesting that scaling 

does not apply up volume fraction value of 0.20. We feel that this difference in percolation 

scaling may also be related to the observed difference in conductivity values for our CNT films. 

Further research is necessary to fully understand this.     

 

Table 3. Summary of the contact angle (θ), film density (ρfilm), CNT mass (Mf) and conductivity 
(σ) values for films (BPs) prepared by vacuum filtration. CNT volume fraction (Vf) and true CNT 
volume (Vft) fraction values are calculated using Eq. 4 and 5, respectively. The naming of the 
dispersions is as follows: biopolymer concentration-CNT concentration, e.g. “IC024-MW002” 
indicates a dispersion with τ-carrageenan (IC) and MWCNT (MW) concentrations of 0.24% w/v 
and 0.02% w/v, respectively.  
 
Film Dispersion Mf ρfilm (kg/m3) Vf Vft θ (º) σ (S/cm) 

B1 IC024-MW002 0.388 332 ± 99  0.325 0.0600  71.9 ± 2.1 28.8 ± 5.0 

B2 IC024-MW0033 0.411 504 ± 23 0.346 0.0963 74.1 ± 1.7 33.2 ± 5.0 

B3 IC024-MW0039 0.447 575 ± 12 0.380 0.120 77.5 ± 1.4 37.5 ± 5.0 

B4 IC030-MW0033 0.387 562 ± 36 0.324 0.101 71.8 ± 1.6 21.6 ± 2.3 

B5 IC036-MW0033 0.311 637 ± 119 0.255 0.0922 64.6 ± 1.5 11.5 ± 2.1 
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B6 IC024-SW002 0.390 452 ± 12 0.410 0.118 69.6 ± 2.1 39.8 ± 7.0 

B7 IC024-SW0033 0.409  522 ± 38 0.429 0.142 71.5 ± 2.3 76 ± 10 

B8 IC024-SW0039 0.440 608 ± 31 0.461 0.179 74.6 ± 2.3 117 ± 16 

 

 

 

Fig. 5. Electrical conductivity versus contact angle for films prepared by (a) evaporative casting 
and (b) vacuum filtration. Electrical conductivity versus (c) CNT mass fraction and (d) true CNT 
volume fraction for films prepared by evaporative casting and vacuum filtration. The small and 
large dashed lines in (d) indicate the limiting conductivity of nanotube-only films using SWCNT 
and MWCTN, respectively. The solid line is a fit to Eq. 6. Diamonds and triangles indicate IC-
MWCNT and IC-SWCNT films, respectively.  
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Fig. 6. Scanning electron microscopy images of IC-CNT composite materials. Image (a) 
represent a typical sample prepared by evaporative casting (contact angle = 46º). Images (b), (c) 
and (d) correspond to typical samples prepared by vacuum filtration with contact angles 74º, 72º 
and 65º, respectively. Scale bars indicate 100 nm. 
 

3.3 Mechanical characteristics. 

The CNT mass or volume fraction in composite materials can be modified by changing the 

concentration of the constituents in the dispersion using two methods: (i) changing CNT 

concentration, while keeping the IC concentration constant; and (ii) modifying the IC 

concentration, while keeping the CNT concentration constant. Fig. 7a shows that for IC-

MWCNT composites prepared by evaporative casting the overall trend of decreasing 
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conductivity with decreasing CNT mass fraction is independent of methods used to change this 

ratio. However, Young’s modulus and tensile strength values display different trends (Fig. 7b-c 

and Table 4). They increase with decreasing CNT mass fraction for materials prepared by 

modifying the ratio via method (i), while they decrease upon changing the ratio through method 

(ii). This suggests that the electrical characteristics of these materials are determined by the 

relative amounts of mass of CNTs and polymer, while the mechanical characteristics are 

governed by absolute amounts of mass.  

 

Here it is suggested that this behaviour can be explained as follows. It is well-known that 

incorporating CNTs can result in mechanical reinforcement of a polymer matrix, which scales 

with the CNT concentration [12]. Therefore, decreasing the CNT mass or volume fraction by 

reducing the amount of CNTs (while keeping the IC concentration constant), will reduce this 

reinforcement effect. This results in the observed decreases in Young’s modulus and tensile 

strength values. Furthermore, it is well-known that the modulus of elasticity scales with polymer 

concentration. Decreasing the CNT mass or volume fraction by increasing the amount of IC 

(while keeping CNT concentration constant) will therefore results in the observed increase in 

stiffness (Young’s modulus).  

 

The effect on the electrical conductivity is the same in both cases of changing the CNT mass or 

volume fraction, i.e. decreasing the concentration of CNTs (at constant IC amount) results in a 

decrease in the number of intra-CNT junctions with respect to the number of CNT-polymer-CNT 

junctions. Increasing the IC concentration (at constant CNT amount) has the same effect on the 

number of junctions. Both approaches reduce the number of conducting pathways resulting in 

lower conductivity. 



 21 

 

Table 4. Mechanical characteristics and contact angle (θ) of IC-MWCNT composite films 
prepared by evaporative casting and vacuum filtration. E1-5 and B1-5 refer to IC-CNT films as 
listed in Tables 2 and 3. 
Film θ Young’s modulus (MPa) Tensile strength (MPa) Extensibility  (%) 

E1 38.2 ± 1.2 859 ± 105 15.0 ± 1.0 4.0 ± 1.0 

E2 42.3 ± 1.1 935 ± 93 16.0 ± 2.0 5.0 ± 1.0 

E3 45.7 ± 0.8 1341 ± 95 32.3 ± 6.5 7.6 ± 2.7 

E4 43.1 ± 0.7 2466 ± 272 37.8 ± 8.6 6.0 ± 0.4 

E5 42.2 ± 0.8 2602 ± 174 39.5 ± 6.0 6.5 ± 0.6 

B1 71.9 ± 2.1 1415 ± 62 7.2 ± 1.0 1.2 ± 0.3 

B2 74.1 ± 1.7 1449 ± 36 12.0 ± 0.4 2.3 ± 0.2 

B3 77.5 ± 1.4 2665 ± 71 23.9 ± 1.3 3.4 ± 0.6 

B4 71.8 ± 1.6 1515 ± 41 13.5 ± 0.9 2.6 ± 0.4 

B5 64.6 ± 1.5 1832 ± 48 22.5 ± 3.5 3.3 ± 1.0 

 

 

In the previous section it was demonstrated that contact angle increases with increasing CNT 

mass and volume fraction. This allows a comparison between films prepared by evaporative 

casting and vacuum filtration (Fig. 8 and Tables 2-4). Conductivity, Young’s modulus and tensile 

strength values increase with contact angle, coupled with a decrease in extensibility for films 

prepared via method (i). Buckypapers prepared via this method are more robust and conducting, 

but less ductile compared to evaporative cast films. Films prepared via method (ii) behave 

differently; conductivity still increases with contact angle, but now Young’s modulus, tensile 

strength and extensibility values all decrease with contact angle. Buckypapers prepared via this 
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method are more conducting, but less robust and ductile compared to evaporative cast films. 

Hence, it is clear that the observed trends for electrical and mechanical properties are independent 

of the method of film preparation (Fig. 8e-f).  

 

 
 
Fig. 7. Young’s modulus (a), tensile strength (b) and electrical conductivity (c) versus CNT mass 
fraction for IC-MWCNT films prepared by evaporative casting. Diamonds and triangles indicate 
films for which the CNT mass fraction was modified by varying the amount of IC at constant 
CNT amount and varying the amount of CNT at constant IC amount, respectively.  
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Fig. 8. (a) Electrical conductivity and (c) Young’s modulus of films prepared by varying IC 
concentration at constant MWCNT concentration. (b) Electrical conductivity and (d) Young’s 
modulus of films prepared by varying MWCNT concentration at constant IC concentration.  (e) 
and (f) show conductivity and Young’s modulus for all samples. Triangles and diamonds indicate 
films prepared by evaporative casting and vacuum filtration, respectively. Arrows indicate trend 
with contact angle.  
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4. Conclusion 

The electrical and mechanical characteristics of composite materials prepared using evaporative 

casting and vacuum filtration of CNTs dispersed in the biopolymer τ-carrageenan (IC) has been 

investigated. SWCNT and MWCNT evaporative cast films with similar CNT mass and volume 

fractions were found to exhibit different conductivity values. For example, the values for 

SWCNT and MWCNT composites with CNT volume fraction = 0.125 are 1.2 ± 0.2 S/cm and 5.6 

± 0.9 S/cm, respectively. 

 

It is not straightforward to determine the CNT mass (or volume) fraction for buckypapers due to 

the vacuum filtration process. Instead, it was demonstrated that the contact angle is proportional 

to the CNT mass fraction, which is used to estimate the true CNT volume fraction values. 

MWCNT composite films exhibit higher conductivity values compared to those observed for 

SWCNT composite at true nanotube volume fractions < 0.12. It is suggested that the high 

conductivity values (> 75 S/cm) observed for SWCNT composites with true nanotube volume 

fraction > 0.14 will outperform MWCNT films due to the difference in limiting conductivity 

values for nanotube-only SWCNT and MWCNT films. For example, the observed conductivity 

of 38 S/cm for a MWCNT film with true nanotube volume fraction 0.12 is already close to its 

limiting conductivity value (55 S/cm).  

 

Furthermore, contact angle analysis was used to compare the properties of BP with those of 

evaporative cast films. Buckypapers prepared by varying the absolute amount of mass of CNTs 

while keeping the IC amount of mass constant, were found to be more robust and conducting 

compared to evaporative cast films. In contrast, buckypapers prepared by changing the amount of 
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IC mass while keeping the CNT amount of mass constant were found to be more conducting, but 

less robust compared to evaporative cast films. 

 

These observations led us to suggest that the electrical characteristics of these materials are 

determined by the relative amounts (mass or volume) of CNTs and polymer, while the 

mechanical characteristics are governed by absolute amounts (mass or volume). This work 

contributes to the understanding of gel-carbon nanotube materials.  

 

Acknowledgments 

This work was supported by the University of Wollongong (URC Small Grant), King Saud 

University (A. Aldalbahi), Australian Research Council (ARC), and ARC Future Fellowship (M. 

in het Panhuis). We thank M. Collins, R. Clark and P. Jackson (all CP Kelco) for provision of 

materials and T. Romeo (University of Wollongong) for assistance with SEM measurements, 

respectively.  

 

References 

 

                                                 
[1] van de Velde F, Rollema H, Grinberg N, Burova T, Grinberg V, Tromp H. Coil–helix 

transition of ι-carrageenan as a function of chain regularity. Biopolymers 2002; 64(4):299-312. 

[2] Buck C, Thompson C, Roberts J, Meuller M, Lowy D, Schiller J. Carrageenan is a potent 

inhibitor of papillomavirus infection. PLos Pathog 2006; 3(3):671-80. 



 26 

                                                                                                                                                              
[3] Barisci J, Tahhan M, Wallace G, Badaire S, Vagugirn T, Maugey M, Poulin. Properties of 

carbon canotube fibers spun from DNA-stabilized dispersions. Advanced Functional Materials 

2004; 14(2):133-8. 

[4] Dieckmann G, Dalton A, Johnson P, Razal J, Chen J, Giordano G. et al Controlled assembly 

of carbon nanotubes by designed amphiphilic peptide helices. Journal of the American Chemical 

Society 2003; 125(7):1770-7. 

[5] Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of Individual 

Carbon Nanotubes in Aqueous Solutions. Nano Letters 2002; 2(1):25-8. 

[6] Polaczek E, Stobinski L, Mazurkiewicz J, Tomasik P, Koloczekand H, Lin HM. Interactions 

of anionic polysaccharides with carbon nanotubes. Polimery 2007; 52(1):34–8. 

[7] in het Panhuis M, Heurtematte A, Small WR, Paunov VN. Inkjet printed water sensitive 

transparent films from natural gum-carbon nanotube composites. Soft Matter 2007; 3(7):840-3.  

[8] Ferris CJ, in het Panhuis M. Conducting bio-materials based on gellan gum hydrogels. Soft 

Matter 2009; 5(18):3430-7. 

[9] Granero AJ, Razal JM, Wallace GG, in het Panhuis M. Conducting gel-fibres based on 

carrageenan, chitosan and carbon nanotubes. Journal of Materials Chemistry 2010; 20(37):7953-6 

[10] Songmee N, Singjai P, in het Panhuis M. Gel-carbon nanotube materials: the relationship 

between nanotube network connectivity and conductivity. Nanoscale 2010; 2(9):1740-5. 

[11] Baughman RH, Zakhidov A, de Heer WA. Carbon nanotubes--the route toward applications. 

Science (New York, N.Y.). 2002; 297(5582):787-92 

[12] Coleman JN, Khan U, Gun’ko YK. Mechanical Reinforcement of Polymers Using Carbon 

Nanotubes. Advanced Materials 2006; 18(6):689-706. 



 27 

                                                                                                                                                              
[13] Gruner G. Carbon nanotube films for transparent and plastic electronics. Journal of Materials 

Chemistry 2006; 16(35):3533-9. 

[14] in het Panhuis M. Carbon nanotubes: enhancing the polymer building blocks for intelligent 

materials. Journal of Materials Chemistry 2006; 16(36):3598-605. 

[15] Frizzell C, in het Panhuis M, Coutinho D, Balkus K, Minett a, Blau W, et al. Reinforcement 

of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer 

molecular weight and chain conformation. Physical Review B 2005;72(24):245420. 

[16] Dettlaff-Weglikowska U, Skákalová V, Graupner R, Jhang S, Kim, Lee J, et al. Effect of 

SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube 

networks. Journal of the American Chemical Society2005; 127(14):5125-31. 

[17] Blighe FM, Hernandez YR, Blau WJ, Coleman JN. Observation of Percolation-like Scaling 

– Far from the Percolation Threshold – in High Volume Fraction, High Conductivity Polymer-

Nanotube Composite Films. Advanced Materials 2007; 19(24):4443-7. 

[18] Hall LJ, Coluci VR, Galvão DS, Kozlov ME, Zhang M, Dantas SO, et al. Sign Change of 

Poisson’s Ratio for Carbon Nanotube Sheets. Science (New York, N.Y.). 2008; 320(5875):504-7 

[19] Kukovecz A, Smajda R, Konya Z, Kiricsi I. Controlling the pore diameter distribution of 

multi-wall carbon nanotube buckypapers. Carbon 2007; 45(8):1696–716. 

[20] Boge J, Sweetman LJ, in het Panhuis M, Ralph SF. The effect of preparation conditions and 

biopolymer dispersants on the properties of SWCNT buckypapers. Journal of Materials 

Chemistry 2009; 19(48):9131-40. 

[21] Smajda R, Kukovecz A, Konya Z, Kiricsi I. Structure and gas permeability of multi-wall 

carbon nanotube buckypapers. Carbon 2007;45(6):1176-84. 



 28 

                                                                                                                                                              
[22] Cooper SM, Chuang HF, Cinke M, Cruden B, Meyyappan M. Gas Permeability of a 

Buckypaper Membrane. Nano Letters. 2003; 3(2):189-92. 

[23] Rein MD, Breuer O, Wagner HD. Sensors and sensitivity: Carbon nanotube buckypaper 

films as strain sensing devices. Composites Science and Technology. 2011;71(3):373-81. 

[24] Zhou C, Kumar S, Doyle CD, Tour JM. Functionalized Single Wall Carbon Nanotubes 

Treated with Pyrrole for Electrochemical Supercapacitor Membranes. Chemistry of Materials. 

2005; 17(8):1997-2002. 

[25] Wang Z, Liang, Z, Wang B, Zhang C, Kramer, L. Processing and property investigation of 

single-walled carbon nanotube (SWCNT) buckypaper/epoxy resin matrix nanocomposites. 

Composites Part A: Applied Science and Manufacturing 2004; 35(10):1225-1232. 

[26] Liu L, Grunlan JC. Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy 

Nanocomposites. Advanced Functional Materials. 2007; 17(14):2343-8. 

[27] Qian D, Dickey EC, Andrews R, Rantell T, Company C. Load transfer and deformation 

mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000; 

76(20):2868-70. 

[28] Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube 

polymer composites. Composites Science and Technology 2009; 69(10):1486-98. 

[29] Ferris CJ, in het Panhuis M. Gel–carbon nanotube composites: the effect of carbon 

nanotubes on gelation and conductivity behaviour . Soft Matter 2009; 5(7):1466-73. 

[30] Wang S-F, Shen L, Zhang W-D, Tong Y-J. Preparation and mechanical properties of 

chitosan/carbon nanotubes composites. Biomacromolecules 2005; 6(6):3067-72. 

[31] O’Connell M, Bachilo S, Huffman C, Moore V, M. Strano S, Haroz E, et al. Band gap 

fluorescence from individual single-walled carbon nanotubes. Science 2002; 297(5581):593-96. 



 29 

                                                                                                                                                              
[32] Benedict B, Pehrsson P, Zhao W. Optically sensing additional sonication effects on 

dispersed HiPco nanotubes in aerated water. The Journal of Physical Chemistry B 2005; 

109(16):7778-80. 

[33] Vaisman L, Wagner H,  Marom G. The role of surfactants in dispersion of carbon nanotubes. 

Advances in Colloid and Interface Science 2006; 128-130(21):37-46. 

[34] Ryabenko A, Dorofeeva T, Zvereva G. UV-VIS-NIR spectroscopy study of sensitivity of 

single-wall carbon nanotubes to chemical processing and Van-der-Waals SWCNT/SWCNT 

interaction. Verification of the SWCNT content measurements by absorption spectroscopy. 

Carbon 2004; 42(8-9):1523–35. 

[35] Attal S, Thiruvengadathan R, Regev O. Determination of the concentration of single-walled 

carbon nanotubes in aqueous dispersions using UV−Visible absorption spectroscopy. Analytical 

Chemistry 2006; 78(23): 8098–104. 

[36] Grossiord N, Regev O, Loos J, Meuldijk J, Koning C. Time-Dependent Study of the 

Exfoliation Process of Carbon Nanotubes in Aqueous Dispersions by Using UV−Visible 

Spectroscopy. Analytical Chemistry 2005; 77(16): 5135–9. 

[37] Granero AJ, Razal JM, Wallace GG, in het Panhuis M. Spinning Carbon Nanotube-Gel 

Fibers Using Polyelectrolyte Complexation. Advanced Functional Materials. 2008; 18(23):3759-

64. 

[38] Tsaih M, Chen R. Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic 

degradation of chitosan. Journal of Applied Polymer Science 2003; 90(13):3526-31. 

[39] Coleman, JN, Cadek, M, Ryan, KP, Fonseca, A, Nagy, JB, Blau, WJ, Ferreira, MS. 

Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial 

region. Experiment and modelling. Polymer 2006; 47(26):8556-61. 



 30 

                                                                                                                                                              
[40] Zacky, CM. Synthesis and characterisation of multi-walled carbon nanotube buckypapers, 

Wollongong NSW Australia, University of Wollongong, Research project in nanomaterials 

report, 2009. 

[41] Stevens, LJ.  Synthesis regimes for carbon nanotube buckypaper membranes utilising 

organic solvents, Wollongong NSW Australia, University of Wollongong, Special studies in 

chemistry report, 2008. 

[42] Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ. Electrical connectivity in single-

walled carbon nanotube networks. Nano letters 2009; 9(11):3890-5. 

[43] Lyons P, De S, Blighe F, Nicolosi V, Pereira L, Ferreira M, Coleman J. The relationship 

between network morphology and conductivity in nanotube films. Journal of Applied Physics 

2008; 104(4):044302-8. 


	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan
	Recommended Citation

	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan
	Abstract
	Keywords
	Disciplines
	Publication Details


