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Patterns of genotypic diversity suggest a long history of clonality and
population isolation in the Australian arid zone shrub Acacia carneorum

Abstract
For plants capable of both sexual and clonal reproduction, the relative frequency of these reproductive modes
is influenced by genetic and ecological factors. Acacia carneorum is a threatened shrub from the Australian
arid zone that occurs as a set of small, spatially isolated populations. Sexual reproduction appears to be very
rare: despite regular flowering, only two populations set seed. It is not known whether this reflects an ancient
pattern, or results from rapid land use changes following arrival of Europeans in the region 150 years ago. We
assessed genotypic variation throughout the range of A. carneorum using AFLP markers, to elucidate the
relative importance of clonal and sexual reproduction in this species’ history. Clonal diversity (CD) within
populations ranged from 0 to 0.820 (mean CD = 0.270, SE = 0.094), but the relative abundances of genets
were typically highly skewed. On average, the two fruiting populations had higher CD (mean CD = 0.590, SE
= 0.265) than non-fruiting populations (mean CD = 0.179, SE = 0.077) (t = 2.315, p = 0.049), but most
populations contained multiple genets. All genets were population-specific, and there was substantial
divergence among populations (Φ ST = 0.690), implying a long history of isolation. We conclude that
clonality has predominated in A. carneorum populations, with occasional sexual recruitment, and that current
failure of most populations to set seed likely reflects both a long history of asexual reproduction and effects of
habitat disturbance. Conservation of this species may benefit from translocations to increase genotypic
diversity within populations.
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Abstract  

 

For plants capable of both sexual and clonal reproduction, the relative frequency of 

these reproductive modes is influenced by genetic and ecological factors.  Acacia 

carneorum is a threatened shrub from the Australian arid zone that occurs as a set of 

small, spatially isolated populations.  Sexual reproduction appears to be very rare: 

despite regular flowering, only two populations set seed. It is not known whether this 

reflects an ancient pattern, or results from rapid land use changes following arrival of 

Europeans in the region 150 years ago. We assessed genotypic variation throughout the 

range of A. carneorum using AFLP markers, to elucidate the relative importance of 

clonal and sexual reproduction in this species’ history.  Clonal diversity (CD) within 

populations ranged from 0 to 0.820 (mean CD = 0.270, SE = 0.094), but the relative 

abundances of genets were typically highly skewed.  On average, the two fruiting 

populations had higher clonal diversity (mean CD = 0.590, SE = 0.265) than non-

fruiting populations (mean CD = 0.179, SE = 0.077)(t = 2.315, p = 0.049), but most 

populations contained multiple genets.  All genets were population-specific and there 

was substantial divergence among populations (ST = 0.690), implying a long history of 

isolation.  We conclude that clonality has predominated in A. carneorum populations, 

with occasional sexual recruitment, and that current failure of most populations to set 

seed likely reflects both a long history of asexual reproduction, and effects of habitat 

disturbance. Conservation of this species may benefit from translocations to increase 

genotypic diversity within populations.  
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Introduction 

 

For the many plant species that are able to reproduce both sexually and clonally, the 

relative frequency of these life history strategies is typically strongly associated with 

levels of genotypic diversity within, and genetic divergence among, populations (Beatty 

et al 2008; Eckert et al 2010).  In populations where reproduction is predominantly 

clonal, there is little opportunity for the introduction of new genotypic variation through 

gene flow or recombination, and clonal diversity is likely to decline over time due to 

selection (including effects of inter-clonal competition) and random loss (Honnay & 

Bossuyt 2005; Weeks & Hoffmann 2008).  As a result, clonal populations are expected 

to be less genotypically diverse than sexual populations of the same species, and to 

exhibit greater among-population genetic divergence (Silvertown 2008; Vandepitt et al 

2010).  However, genetic diversity within populations can remain high, since 

heterozygosity is preserved within clonal lineages (Balloux et al 2003).  It has been 

demonstrated that in species capable of both sexual and clonal reproduction, even low 

levels of sexual recruitment can be sufficient to maintain levels of genotypic diversity 

equivalent to those found in obligately sexual populations (Ellstrand & Roose 1987; 

Balloux et al 2003; Richards et al 2004; de Witte et al 2012).  Current distributions of 

genotypic variation can therefore be extremely useful for inferring historic frequencies 

of different modes of reproduction within species. 

 

Clonality may be favoured in situations where there is a trade-off between individual 

survival and seed production (for example due to resource limitation), or if disturbance 
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events frequently prevent flowering or fruiting (e.g. Eckert 2002; Kleijn & Steinger 

2002; Evju et al 2011).  While it can facilitate rapid colonisation and population 

persistence through periods when conditions are unfavourable for sexual reproduction, 

prolonged clonal reproduction may result in permanent failure of sexual reproduction, 

due to a decline in clonal diversity (and therefore in the number of compatible mating 

partners in self-incompatible species), a change in ploidy, or the accumulation of 

mutations that reduce sexual fertility (Dorken & Eckert 2001; Eckert 2002; Honnay & 

Bossuyt 2005; Eckert et al 2010, Gross et al 2012).  Furthermore, because exclusively 

clonal populations typically have low genotypic diversity, they may be less able to 

adapt to novel environments than sexually reproducing populations, making them more 

vulnerable to extinction when faced with threats such as habitat loss, invasive species 

and climate change (Beatty et al 2008; Sgro et al 2011).  Identifying the factors 

affecting the relative frequency of different reproductive modes within species is 

therefore important for designing appropriate strategies for their conservation.  

 

In the arid zone of eastern Australia, a suite of important habitat-forming species in the 

genus Acacia exhibits apparently high rates of clonality, and significant spatial and 

temporal variation in the frequency of sexual reproduction.  The environment in this 

region has been modified considerably since agriculture commenced in the 1860s, 

through land-clearing and the introduction of domestic and feral grazing animals 

including sheep, goats and rabbits (Auld 1993; Auld & Denham 2001; Denham & Auld 

2004).  Grazing has been found to be a major factor limiting recruitment in plant 

communities from this region (Auld 1993; Auld & Denham 2001) and may contribute 

to the dominance of asexual reproduction by inhibiting seed set and seedling survival.  
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Grazing has previously been shown to increase rates of clonal reproduction within 

herbaceous plant populations (e.g. Kleijn & Steinger 2002; Evju et al 2011), but to our 

knowledge there are no published examples of increased rates of asexual reproduction 

in shrubs or trees attributable to grazing.  Increased habitat fragmentation that has 

occurred as a result of land clearing may also contribute to a change in the dominant 

reproductive mode by limiting effective pollen transfer between isolated stands (Hall et 

al 1996; Young et al 1996).  It is not known whether the high rate of asexual 

reproduction now typical of these arid Acacias is a result of grazing pressure and 

increased habitat fragmentation, or whether it reflects an ancient pattern.  

 

Acacia carneorum Maiden is a shrub occurring in arid and semi-arid regions of south-

eastern Australia (Tame 1992) (Figure 1), and is listed as a nationally vulnerable species 

(Auld & Denham 2001).  It has a naturally fragmented distribution, restricted to dune 

crests and ephemeral water courses, and occurs in small patches that may be isolated 

from the next nearest population by several hundred kilometres (Auld 1993).  The most 

frequent floral visitors of A. carneorum are wasps, native bees, flies and butterflies, 

suggesting these are the most important pollinators (Gilpin et al, submitted).  Seeds of 

A. carneorum are large, with a prominent orange aril, which is believed to be an 

adaptation to promote seed-dispersal by birds (Auld 1993).  Most species of Acacia are 

at least partially self-incompatible (Kenrick 2003), but it is not known whether this is 

true of A. carneorum.  While Acacia carneorum is able to propagate sexually, seedling 

recruitment is currently extremely rare (Auld 1993).  Despite regular flowering over a 

20-year period (A. Denham personal obs.), there are only two populations where seed 

set is known to occur in most years.  Consequently, the vast majority of new plants are 
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produced via vegetative suckering (Auld 1993).  The establishment and survival of 

young plants (whether seedlings or suckers) in populations of A. carneorum is very low, 

and this has resulted in an age structure within populations that is heavily skewed 

towards older plants (Auld 1993).  Carbon dating of a sample of mature plants found 

that they ranged in age from ~120 yrs – 330 yrs, suggesting that there has been little or 

no replacement in these populations since the introduction of grazing animals in the 

1860s (Auld & Denham 2001).   

 

We examined the distribution of genetic and genotypic variation throughout the range 

of A. carneorum, and compared the genotypic diversity present within different 

populations, including both fruiting and non-fruiting populations. We use these data to 

evaluate whether the current predominance of clonal reproduction in A. carneorum 

populations reflects an ancient pattern, or whether it has arisen in the recent past as a 

consequence of increased habitat fragmentation and grazing by introduced herbivores 

since the arrival of Europeans in Australia.  

 

If populations of A. carneorum have been maintained exclusively by clonal 

reproduction in the long term, we expect that genotypic diversity within populations 

will be very low, genotypes will be confined to single populations, and genetic 

divergence between populations will be high, because clonal reproduction does not 

facilitate gene flow between populations. By contrast, if recruitment via sexual 

reproduction was more common up until the land use changes that occurred with the 

arrival of Europeans, we expect greater genotypic diversity within populations, because 

individual A. carneorum plants can live for over 300 years (Auld & Denham 2001), and 
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grazing is expected to result in random loss of plants across clones.  Furthermore, if 

there was previously greater gene flow between populations via seed or pollen dispersal, 

we expect a pattern of isolation by distance at the landscape scale.  We also compare 

genotypic diversity within populations that set seed with those that don’t, to investigate 

whether current sexual reproduction is associated with higher genotypic diversity, 

which would be expected if either (a) genotypic diversity is a pre-requisite for sexual 

reproduction (due to self-incompatibility) or (b) sexual recruitment increases genotypic 

diversity within populations.  Finally, we discuss the conservation implications for A. 

carneorum, and evaluate the potential for controlled movement of genetic material 

between populations to increase genotypic diversity and provide a ‘genetic rescue’ 

effect. 

 

 

Materials and Methods 

 

Sample collection 

 

We collected phyllodes for AFLP genotyping from 10 populations of A. carneorum (10 

– 15 plants per population, 124 plants in total) across the geographic range of the 

species (Figure 1), including the only two populations in which fruit set has been 

observed (Table 1).  Typically, A. carneorum populations show marked size variation, 

consisting of a small number of large (height >3 m) plants, each surrounded by a large 

number of small (height<0.5 m) suckers (personal obs.).  In an effort to maximise the 

proportion of the genotypic diversity present within populations captured in each 
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sample, we (a) sampled across the full spatial extent of each population and (b) 

deliberately targeted large plants that appeared unconnected to each other, avoiding 

small suckers that were clearly the result of clonal reproduction.  The mean distance 

between sampled plants was 212 m (SE = 73.13 m) (Table 1). 

 

 

AFLP fingerprinting and scoring 

 

DNA was extracted from freeze-dried leaf material at the Australian Genome Research 

Facility (AGRF). The Nucleospin Plant II system (Machery-Nagel GmbH & Co, Düren, 

Germany) was used according to manufacturer's instructions, with the SDS buffer set 

option.  

 

We used a modified version of the method of Vos et al. (1995) to generate AFLP 

fingerprints for each sample.  The Invitrogen Core Reagent Kit was used to perform the 

digestion and ligation steps, following manufacturers’ instructions except that we left 

samples for 16 hours at room temperature to facilitate ligation. We used the Invitrogen 

preamplification primer mix to amplify a subset of digested fragments, but performed 

reactions in ¼ of the volume specified.  We performed a selective PCR step to further 

reduce the number of fragments. Selective PCR reactions were carried out in 20 l 

volumes, containing 1 x PCR buffer, 0.2 mM each dNTP, 4 mM MgCl2, 0.25 l MseI 

selective primer, 0.05 l EcoR1 selective primer, 0.5 U Taq DNA Polymerase and 

deionised water up to 17 l, with 3 l diluted preselective PCR reaction.  We used three 

pairs of primers labelled with different fluorescent dyes to permit detection by the 
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sequencer.  PCR conditions were denaturing at 94 C for 2 mins, followed by 30 cycles 

of: denaturing at 94 C for 20 s, annealing for 30 s at 66 C in the first cycle, reducing 

by 1 C in each of the subsequent nine cycles, then continuing at 56 C for the 

remaining 20 cycles, and extension at 72 C for 2 mins.  We ran selective PCR 

products, with a LIZ size standard, on an ABI3130 automated capillary sequencer 

(Applied Biosystems) to separate the fragments. We generated replicate AFLP 

fingerprints for at least 20% of samples from each population and used independent 

DNA extractions to check the repeatability of AFLP scoring and choose appropriate 

thresholds for detection of markers. 

 

We used GeneMapper v3.7 (Applied Biosystems) to size fragments by comparing their 

electrophoretic migration with fragments in the LIZ size standard.  We initially 

identified markers between 50 and 500 base pairs using Genemapper v3.7, with a 

minimum peak threshold of 40 relative fluorescence units (RFU) and no normalisation 

procedure.  We then imported the table of peak heights into the R package AFLPScore 

(Whitlock et al 2008).  This program normalises peak intensities using the mean 

intensity for each marker and run to account for intensity variation across samples, and 

generates phenotype tables (presence/absence of each marker in each sample) for a user-

specified range of marker detection and peak-calling thresholds.  It also calculates the 

error rate from replicate fingerprints for each combination of thresholds, enabling 

determination of thresholds that maximise the number of markers used, while 

minimising the error rate. We set an E1 error rate (the probability of calling a marker 

absent when it is present, calculated using the Bayesian method of Hadfield et al 2006; 

Hadfield 2008) of 5% as the maximum allowable error rate.  Normalisation, error-rate 
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analysis and phenotype scoring were undertaken for each pair of primers separately, due 

to variation in the intensity of the different fluorescent markers.  Results for the three 

primer pairs were then combined for subsequent analyses. 

 

Clone assignment 

 

Caution is required in the use of molecular markers to identify clones (genets) because 

sampled stems (ramets) belonging to the same clone may have non-identical genotypes 

due to (a) genotyping errors and (b) somatic mutation.  Likewise, genetically distinct 

individuals may exhibit identical or near-identical genotypes at the loci scored if they 

are closely related (Douhovnikoff & Dodd 2003).  It is therefore necessary to establish a 

threshold level of genetic distance among individuals, below which they are considered 

to be the result of clonal reproduction.  A threshold that is too high or low will result in 

underestimation or overestimation of the number of genets respectively. 

 

To determine an appropriate threshold for identifying genets, we examined the 

frequency distribution of genetic distances among all genotyped individuals.  The 

genetic distance metric used was the Euclidean distance, calculated as a count of the 

number of AFLP loci differing between each pair of individuals.  In clonal plants, this 

distribution is expected to be multimodal, with a peak at the lower end of the range of 

genetic distances representative of genetic dissimilarity among ramets within the same 

genet (due to somatic mutation and genotyping error), and one or more peaks at greater 

genetic distances indicating differentiation among genets. Such a distribution has been 

demonstrated in a previous study of AFLP variation in the clonal plant Salix exigua, 
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where the identification of genets using this method was independently verified by 

including known clone-mates within the sample (Douhovnikoff & Dodd 2003).  In the 

absence of an independent means of determining clonal identity, we set the threshold 

level of genetic distance for genet identification as the point in the frequency 

distribution where the tails of the first two peaks overlapped.  One caveat was that the 

threshold value had to be at least 5%, given that we demonstrated this level of 

dissimilarity among replicate extractions from the same individual.   

 

In most cases, this threshold resulted in clearly defined clusters of individuals that 

differed from all other individuals in the cluster by a value less than the threshold, 

implying that they represented a single genet.  However, there were a few cases where 

assignment was ambiguous because ramets differed from some ramets within a cluster 

by less than the threshold genetic distance, but others by more. In these cases, we 

calculated the mean genetic distance between this ramet and all others within the cluster 

and compared this value to the threshold to determine whether to assign it to the same 

genet.  To assess the consequences of varying this threshold value on estimates of 

within-population diversity, we calculated the clonal diversity within each population 

for increasing threshold values. 

 

To estimate the probability that any of the n individuals assigned to a particular clone 

could instead have been produced by random mating within each population, given 

allele frequencies at the AFLP loci used, we calculated Psex according to the method 

outlined in deWitt et al (2012): 
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Psex 
N!

x!(N  x)!xn

N

 (Pdgen )x (1Pdgen )Nx  

 

where N = the number of ramets sampled, dgenP 
i

p
il

L


,  pi = the frequency of band 

presence within the population at the ith locus and L = the number of polymorphic loci 

in the population.  This method estimates the probability that unrelated individuals will 

share the same genotype by chance.  Given the likelihood that even sexually 

reproducing plant populations will include clusters of related individuals due to limited 

seed dispersal, we also calculated the more conservative statistic, PIDsib, which estimates 

the probability that two related individuals within a population will share the same 

multilocus genotype under random mating (deWitt et al 2012): 

 

PIDsib = 1-{(3/2p)(q2)} 

 

Where p and q represent the frequencies of band presence and absence respectively 

within the population.  Only loci that were polymorphic among genets were used in 

these analyses, therefore these statistics were estimated only for populations where 

multiple putative genets were detected. 

 

 

Genetic diversity within populations 
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Clonal diversity (CD) within populations was calculated as the proportion of stems with 

unique genotypes, according to the method of Ellstrand & Roose (1987): 

 

CD = G – 1 

          N – 1 

 

Where G = the number of unique genotypes (genets) according to our threshold criteria 

and N = the total number of stems (ramets) genotyped.  Thus, it has a value between 0 

(monoclonal populations) and 1 (all ramets have a unique genotype). 

 

In addition to clonal diversity, we used two measures to quantify genetic and genotypic 

diversity within populations: the proportion of loci that were polymorphic (PLP), and 

Shannon’s Information Index (H’), which provides a measure of both diversity and 

evenness of the distribution of ramets between genets (Arnaud-Haond et al 2007).  This 

was calculated as H’ =  pi log pi

i1

G

  where pi is the frequency of the ith genet, and G is 

the number of genets in the population.  PLP was calculated for individual ramets 

sampled in each population, rather than for unique genotypes, to provide a measure of 

diversity that was independent of our estimate of clonal diversity based on a threshold 

genetic distance.  Hence, this may include variation within putative genets due to 

somatic mutation and genotyping error, in which case it will be greater than 0 even in 

populations that consist of only a single genet by our measure of clonal diversity.  

Finally, to provide a measure of evenness that is independent of clonal diversity, we 

calculated Pielou’s Evenness Index J’ (Pielou 1975).  This was calculated as J’ = 

H’/H’max, where H’max = log G .  
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Testing for associations between genetic diversity and population size and isolation 

 

We used Spearman’s rank correlations to test for associations between the measures of 

genotypic diversity (clonal diversity, PLP, H’) and (a) population size and (b) 

population isolation. Population area has been shown to be a strong predictor of the 

number of stems (N) in A. carneorum populations according to the function: 

N=13.34+43.53A +0.3068A2where A = population area in ha (A.J.D., unpublished data) 

and so was used to estimate population size.  A full description of how this equation 

was derived is provided in Appendix 1.  Isolation was measured as the straight-line 

distance to the nearest neighbouring A. carneorum population (in km).  

 

 

Analysis of spatial genetic structure 

 

We used a Principal Coordinates Analysis (PCA) to provide a visual representation of 

the distribution of variation in our AFLP markers within and among populations of A. 

carneorum.  A matrix of the genetic distances among individual samples was used to 

generate eigenvalues and eigenvectors, and the two coordinates that explained the 

largest proportion of the variance were plotted.  

 

We used an Analysis of Molecular Variance (AMOVA), implemented in GENALEX 

v6.4 (Peakall & Smouse 2006), to partition variation in AFLP genotypes within and 
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among populations of A. carneorum. We included only unique genotypes in this 

calculation, and calculated percentage variation within and among populations based on 

a matrix of Euclidean genetic distances between pairs of genotypes.  The significance of 

genetic differentiation among populations was evaluated using 999 permutations of the 

data.   

 

We conducted a Mantel test to examine whether there was evidence for isolation by 

distance across the sampled range, by comparing the matrix of genetic distances among 

populations with that of their geographic separation.  We also used the “multiple 

distance class” option in GENALEX v6.4, which calculates the genetic autocorrelation 

(r) among pairs of populations at progressively increasing geographic distances, to test 

for spatial autocorrelation between populations.  We used distance classes from 50 km 

up to 450 km (the greatest geographic separation between sampled populations). We 

generated 95% confidence intervals for estimates of r using 999 bootstraps.  We used 

999 random permutations to evaluate whether r was significantly different from zero.   

For both of these tests, we used mean Euclidean distances (calculated as a count of the 

number of AFLP loci differing between individuals) between populations instead of 

ST, because ST cannot be calculated when a population consists of a single genet. 

 

 

Results 

 

Clone assignment 
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The three primer pairs resulted in 85 AFLP markers that met our strict repeatability 

criteria and could be amplified cleanly and reliably. Of these, 56 (66%) were 

polymorphic across the whole sample, with an average frequency of 0.632 and variance 

0.076. 

 

From the distribution of genetic distances among individuals, we set our threshold for 

clone identification at 5% (Figure 2).  The consequences of varying this threshold for 

clonal diversity estimates within each population are presented in Appendix 2.  On the 

basis of the 5% threshold, we identified 38 putative genets among the 124 individuals 

genotyped.  Of these, 25 were represented by a single ramet (Figure 3, 4).  All genets 

were population-specific. That is, no genet was found in more than one population.   

 

Our Psex analysis revealed that the probability of two unrelated individuals sharing 

identical multilocus genotypes at this set of AFLP loci by chance was extremely low 

(<0.001) in all populations where multiple genets were observed (Table 1).  The 

probability that related individuals would display identical genotypes by chance (PIDsib) 

was also low (<0.01) in four of the most diverse populations (BD, HD, MCAMP and 

QUANDONG), but higher (0.02 – 0.15) in the remaining populations (BIMB, KOON, 

MULY and TW), where clonal diversity was generally lower (Table 1).  Values of PIDsib 

of less than 0.01 are recommended for estimating the number of genetically unique 

individuals (Waits et al 2001), therefore it is not possible to rule out the possibility that 

apparently clonal individuals in these populations were sexually produced siblings on 

the basis of the AFLP genotypes alone. 
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Genetic diversity within populations 

 

Clonal diversity varied considerably across the 10 populations.  There were two 

populations (LA and SBH) where all sampled ramets belonged to the same putative 

genet, while the highest clonal diversity was in one of the fruiting populations (BD), 

where the 12 ramets sampled included 10 unique genets (Table 1).  Likewise, the other 

measures of genetic diversity (PLP and H’) were also highest at BD (PLP = 41.2%, H’ 

= 0.979)(Table 1).  The other known fruiting population (MCAMP) was also among the 

most diverse (CD = 0.42, PLP = 28.2%, H’ = 0.477), but not as diverse as HD, which is 

not known to produce fruit (Table 1).  On average, fruiting populations had significantly 

higher clonal diversity (mean CD = 0.590, SE = 0.265) than non-fruiting populations 

(mean CD = 0.179, SE = 0.077) (independent samples t-test assuming equal variances: t 

= 2.32, df = 8, p = 0.049). Clonal diversity was highly correlated with both PLP 

(Spearman’s rank correlation rs = 0.948, p < 0.001 ) and H’ (rs = 0.900, p < 0.001), and 

both of these measures of genotypic diversity were similarly higher in fruiting 

populations than non-fruiting populations (data not shown). PLP and H’ were also 

highly correlated with each other (rs = 0.982, p < 0.001).  

 

Within populations where we identified multiple clones, the distribution of ramets 

among genets was highly skewed.  Typically, the majority of ramets within a population 

sample typically belonged to a single genet, with small numbers from one or more 

additional genets (Figure 3).  Some deviation from this pattern was seen at BD, where 

most genets were represented as a single ramet and two were represented by two ramets.  
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This is reflected in the evenness index, which was again highest (excluding the 

monoclonal populations) at BD (J’ = 0.979). 

 

Both the mean and maximum distance between ramets within the same genet were 

lowest in the three most genotypically diverse populations, BD, HD and MCAMP, 

which had a mean distance between ramets of 69 m, 41m and 41m respectively (Table 

1).  This pattern reflects the fact that where multiple genets were detected within a 

population, ramets belonging to the same genet tended to be spatially clustered (Figure 

4).  By contrast, the mean distance between ramets was greatest at LA and SBH, the two 

populations where only a single genet was detected (150m and 232m respectively; 

Table 1).   

 

 

Associations between genotypic diversity and population size and isolation 

 

Given the very high correlation between the three measures of genotypic diversity, we 

have presented only the correlation of clonal diversity with population size and 

isolation. Results for the other measures of genotypic diversity were qualitatively 

identical.  

 

 Neither population area, nor population isolation (measured as the straight-line distance 

to the nearest adjacent A. carneorum population) showed a significant association with 

clonal diversity (Spearman’s rank correlation: area rs = -0.143, p = 0.67; isolation: rs = 

0.030, p = 0.93), and there was very large variation in diversity among populations of 
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equivalent size/isolation.  The two largest populations (BD and SBH) were respectively 

the most and least diverse populations sampled.  Likewise, populations separated by up 

to 3 km from the next-nearest population showed a tenfold difference in clonal 

diversity, ranging from a single genet at LA to 10 different genets at BD (Table 1). 

 

 

Spatial genetic structure 

 

There was very strong genetic structuring across the species’ range, as illustrated by the 

PCA plot (Figure 5).  An AMOVA revealed that the majority (69%) of AFLP variation 

occurred between populations, with the remaining 31% within populations.  The mean 

difference in AFLP phenotypes among individuals was 23.7% (SD 3.83%) between 

populations, substantially greater than that between different clones within populations 

(mean of 13.9%, SD 5.05%).  

 

There was little evidence for spatial structuring of genotypes beyond the scale of the 

population patches.  We did not find a significant relationship between geographic and 

genetic distance between populations across the sampled range (Mantel test: R2 = 

0.0022, p = 0.396), nor was there significant spatial autocorrelation among populations 

over any distance interval (results not shown). 

 

 

Discussion  
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We have shown that despite annual flowering, but as predicted from demographic 

monitoring, populations of Acacia carneorum are typically highly clonal and lacking in 

genotypic diversity.  The low clonal diversity within, and strong differentiation among, 

populations of A. carneorum are consistent with published observations for plants with 

predominantly asexual reproduction and a highly fragmented distribution (Ellstrand & 

Roose 1987; Hamrick & Godt 1989, 1996).  This pattern suggests that the localised 

proliferation of successful clonal genotypes has been the dominant reproductive mode 

for A. carneorum in the past, and that populations have a long history of genetic 

isolation, which most likely pre-dates land use changes that accompanied the arrival of 

Europeans to the area 150 years ago.  These results have important implications both for 

the processes that have shaped diversity within populations of A. carneorum, and the 

resilience of this threatened species in the face of environmental change.    

 

Distribution of genotypic diversity 

 

Although genotypic diversity was generally low within the A. carneorum populations 

sampled, most populations contained multiple genets.  This is a common observation in 

clonal plant species (Ellstrand & Roose 1987), and is generally attributed to rare 

episodes of sexual reproduction (Eckert 2002).  A key question is whether the genotypic 

diversity present in A. carneorum populations is the result of past episodes of sexual 

reproduction within populations (including many that do not currently set seed), or 

whether there has been dispersal of seed from other populations.  Three main features of 

this data set suggest the former: (1) all genets were unique to individual populations, (2) 

genetic divergence between populations was substantial, and much greater than that 



 21

between genets within populations, and (3) there was no spatial structuring of genotypic 

variation beyond the level of the population, which would be expected if seed dispersal 

declined with distance.  It therefore seems likely that occasional sexual recruitment, or 

possibly the accumulation of somatic mutations, within populations of A. carneorum 

accounts for present patterns of genotypic diversity. 

 

A striking characteristic of the distribution of clonal diversity in most of the multiclonal 

A. carneorum populations examined was the dominance of a single genet, with 

remaining genets typically represented by one or very few ramets.  Similar patterns have 

been observed in a diverse range of clonal plant species (e.g. Alberto et al 2005; 

Torimaru & Tomaru 2005; for review, see Vallejo-Marín et al 2010). One proposed 

explanation for such a pattern is that sexual reproduction is successful in generating new 

genotypes, but that the majority of these have poor clonal propagation (Alberto et al 

2005).  Alternatively, it has been suggested that the skewed distribution of genet sizes 

within populations of clonal plants reflects variation in the timing of establishment, and 

therefore in the resources available for clonal growth, or the outcome of interclonal 

competition (Torimaru & Tomaru 2005).  

 

In populations of A. carneorum where multiple genets were detected, ramets belonging 

to the same genet tended to be spatially clustered, particularly in the populations with 

the highest genotypic diversity (Table 1, Figure 4).  A spectrum of growth forms, 

ranging from ‘phalanx’ to ‘guerilla’ has been used to describe the mode of spread in 

clonal plants based on the spatial distribution of ramets (Lovett Doust 1981, Ye et al 

2006).  The phalanx growth form involves short connections between ramets, resulting 



 22

in tight spatial clustering, while the guerilla form describes genets with greater radial 

growth and wider spacing between ramets (Lovett Doust 1981). The phalanx growth 

form is believed to be beneficial for exploiting locally abundant resources, and 

excluding other genets, whereas the guerrilla form enables genets to ‘seek out’ 

resources over a greater distance and escape poor habitat (Lovett Doust 1981, Ye et al 

2006).  The close spatial clustering of ramets within genets of A. carneorum (‘phalanx’ 

type growth form) may therefore reflect the dominance of favourable microsites by 

individual genets, which may also account for the skewed distribution of genet sizes if 

resource availability varies substantially across populations.  That is, variation in the 

relative abundance of genets within a population may reflect variation in the quality of 

microsites where genets first become established.  However, little is currently known 

about variation in environmental conditions within these populations.    

 

Comparison of fruiting and non-fruiting populations 

 

Populations of A. carneorum in which fruiting is currently observed (BD and MCAMP) 

were, on average, more genotypically diverse than those in which reproduction appears 

to be exclusively clonal.  This is consistent with predictions and may reflect either a 

requirement for genotypic diversity in order to set seed (e.g. due to self-

incompatibility), or the role of sexual reproduction in producing new genotypic 

variation, or both.  However, several populations exhibited apparently contradictory 

patterns of genotypic diversity. In particular, the HD population (non-fruiting) exhibited 

higher genotypic diversity than that seen at MCAMP (fruiting).  As discussed already, 

the data suggest that sexual recruitment may have occurred in most of the sampled 
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populations, and the reasons for the current lack of seed set in many of these remains 

unclear.  Self-incompatibility (SI) is common in Australian Acacias (Kenrick 2003; 

Gibson et al 2011), therefore a lack of genetically compatible mates provides one 

plausible explanation for the current lack of seed set in most populations.  However, it is 

not known whether A. carneorum is self-incompatible. Future studies should 

experimentally transfer pollen within and between genets to test for SI as a potential 

cause of reproductive failure.  Alternatively environmental factors, including grazing by 

introduced feral and domestic animals, may mean that current conditions are unsuitable 

for sexual reproduction in most populations.  Many studies have demonstrated a 

reduction in the relative frequency of sexual reproduction as a result of environmental 

disturbance, including grazing (Kleijn & Steinger 2002; Evju et al 2011) and trampling 

by humans (Rusterholz et al 2009).  Experimental tests of the impact of known threats, 

such as grazing, on seed set in A. carneorum should therefore be a focus of future 

studies. 

 

Limitations of AFLP markers 

 

AFLP markers have great utility for identifying genotypic diversity because they allow 

a large number of polymorphic loci to be examined.  However, the main limitation of 

dominant markers such as AFLPs is that they cannot distinguish heterozygotes from the 

dominant homozygote.  Assessment of heterozygosity can be useful in studies of clonal 

plants for a range of applications, including estimating clone age (Ally et al 2008) and 

identifying heterozygote excess, which is common in clonal populations that lack sexual 

reproduction because there is no recombination (Eckert 2002).  In A. carneorum 
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populations with lower genotypic diversity, we were unable to completely rule out the 

possibility that individuals displaying identical genotypes at the suite of AFLP loci we 

examined were not siblings produced by sexual reproduction.  While we consider this to 

be unlikely given independent evidence for substantial clonal propagation in these 

populations, the use of more variable genetic markers could confirm this.  Future studies 

should therefore employ co-dominant markers (e.g. microsatellites) to investigate these 

issues in A. carneorum. 

  

 

Implications for conservation of A. carneorum 

 

The maintenance of genetic diversity within species and populations is increasingly 

recognised as critical to allow adaptation to environmental change, particularly that 

expected under future climate change (Mace & Purvis 2008; Hoffmann & Sgro 2011; 

Sgro et al. 2011). Therefore, it is important to consider the implications of the very low 

levels of genotypic diversity present within A. carneorum populations for the long-term 

persistence of this species.   

 

Although it appears that clonality has been the dominant mode of reproduction in A. 

carneorum in the long term, the present study highlights several features of this species 

that point to a need for active conservation management: Significant genetic divergence 

and the lack of any shared clones between populations means that for effective 

conservation of genetic diversity (and therefore adaptive potential) in A. carneorum, it is 

important to preserve as many populations as possible, because each population 
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captures only a small proportion of the overall genetic variation present within the 

species.  Furthermore, these findings confirm that gene flow (seed or pollen dispersal) 

between isolated remnants is extremely rare and therefore highly unlikely to augment 

genotypic diversity in existing populations, or to found new ones.  This, combined with 

the apparent lack of recruitment in populations within the last 120 years (Auld & 

Denham 2001), suggests that populations will go extinct without intervention to replace 

the inevitable loss of older ramets over time.  Finally, the environment in which A. 

carneorum exists has undergone rapid change over the past 150 years due to the impacts 

of agriculture, including land clearing, changed water regimes and the introduction of 

grazing animals (Auld 1993; Auld & Denham 2001)) and of climate change, meaning 

clonal genotypes that have evolved under past conditions may not be well-adapted to 

this new environment.   

 

Given this set of circumstances, we recommend the transfer of genetic material between 

populations of A. carneorum to increase genotypic diversity and maximise adaptive 

potential (genetic rescue).  The translocation of plants or cuttings could be used to 

provide an immediate increase in genotypic diversity within populations, and to test for 

adaptive differentiation between populations.  However, we also recommend that 

attempts be made to stimulate seed set through the controlled movement of pollen 

between genets, given that seed production could provide an ongoing source of novel 

genotypic variation within populations, and seed dispersal is the only means by which 

A. carneorum can colonise new sites. Such a strategy has previously been shown to 

increase fitness within small, isolated populations of other plant species (e.g. Severns 

2003; Holmes et al 2008). 
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A common concern about genetic rescue is that deliberate outcrossing between 

genetically divergent populations will result in outbreeding depression due to 

production of less well-adapted genotypes, or breakup of coadapted gene complexes 

(Edmands 2007; Hedrick & Fredrickson 2010). We therefore recommend that genetic 

rescue be attempted using crosses between clones spanning a range of genetic distances, 

to determine the scale at which benefits are maximised.  For populations found to 

contain more than one clone, this should include within-population crosses, in case local 

adaptation is a significant cause of among-population divergence.  

 

Finally, we emphasise that where environmental factors (e.g. grazing) are limiting seed 

production and seedling survival, the success of a genetic rescue program will be 

contingent upon the use of complementary strategies such as protection from grazing, 

and possibly ex situ conservation measures.  
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Table 1. Location, size, isolation and genotypic diversity of each of the Acacia carneorum populations sampled. Lat = latitude in degrees 1 
south, Long = longitude in degrees east, N = number of stems included in AFLP analysis, A = area of the population in ha, D = mean 2 
pairwise distance between sampled stems, Total stems = estimate of the total number of stems in the population†, Isolation = distance from 3 
the nearest (and next nearest) population in km, G = number of unique AFLP genotypes (genets) detected at the chosen threshold, Ave DR 4 
= average distance (in m) between ramets belonging to the same genet, Max DR = maximum distance (in m) between ramets belonging to 5 
the same genet, CD = clonal diversity, calculated as (G-1)/(N-1), PLP = percent of AFLP loci that were polymorphic within each 6 
population, H’ = Shannon’s diversity index, J’ = Pielou’s evenness index, Psex = the probability that unrelated individuals could display 7 
identical multilocus genotypes under random mating, PIDsib = the probability that related individuals could display the same multilocus 8 
genotype under random mating .  9 

 

Population 

 

Lat 

(˚S) 

 

Long 

(˚E) 

 

N  

 

A 

(ha) 

 

D (m) 

 

Total 

stems

† 

 

Isolation 

(km) 

 

G 

 

Ave 

DR 

(m) 

 

Max 

DR 

(m) 

 

 

CD 

 

PLP 

 

H’ (SE) 

 

J’ 

 

Psex 

 

PIDsib 

BD* 32.53 
 

142.16 12  17.9 624 891 1 (2)  10 49 69 0.82 41.2 0.979 0.979 <0.001 <0.001 

BIMB†† 32.10 140.22 14 8.9 - 443 2 (10) 2 - - 0.08 15.3 0.112 0.371 <0.001 0.151 

HD 29.47 141.27 10 4.2 96 210 69 (146) 7 41 53 0.67 33.0 0.759 0.898 <0.001 <0.001 

KOON†† 32.10 139.15 14 7.4 - 367 4 (11) 2 - - 0.07 16.5 0.112 0.371 <0.001 0.093 

LA 31.42 142.18 10 3.1 150 157 3 (15) 1 150 323 0 10.6 0 1 - - 

MCAMP* 32.72 141.99 12 2.0 62 106 3 (5) 5 41 99 0.36 28.2 0.477 0.683 <0.001 0.009 

MULY†† 31.60 140.80 10 5.0 - 249 3 (8) 3 - - 0.22 21.2 0.278 0.582 <0.001 0.024 
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QUANDONG 32.15 141.93 15 7.2 228 357 5 (35) 3 142 388 0.14 25.9 0.349 0.731 <0.001 0.002 

SBH 32.46 141.56 14 17.3 232 893 29 (33)  1 232 507 0 10.6 0 1 - - 

TW 29.73 142.97 13 5.2 92 258 139 (144) 4 105 194 0.25 21.2 0.407 0.676 <0.001 0.039 

*Populations in which seed set has been observed.  1 

†Based on the formula  N=13.34+43.53A +0.307A2, where A is the estimated area of the population 2 
†† For populations BIMB, KOON and MULY, coordinates for individual samples were not recorded, therefore it was not possible to calculate the mean 3 
distance between sampled stems, or the mean or maximum distance between ramets. 4 
 5 
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Figure captions 1 

Figure 1. Map showing the distribution of Acacia carneorum and the populations 2 
sampled for AFLP genotyping. 3 
 4 
Figure 2. Frequency distribution of pairwise genetic distances among A. carneorum 5 
samples included in AFLP analysis, measured as the Euclidean distance (a count of the 6 
number of AFLP loci at which samples differ).  The dashed line indicates the threshold 7 
below which samples were considered to belong to the same genet. 8 
 9 
Figure 3.  Frequency histograms showing the number of ramets belonging to each genet 10 
within each population. 11 
 12 
Figure 4.  The spatial distribution of ramets belonging to each genet within each 13 
population.  Different symbols indicate different genets within a population. Note 14 
however that symbols are population-specific: no genets occurred in more than one 15 
population, therefore the same symbol in different populations refers to different genets. 16 
Diagrams for all populations are presented at the same scale to enable comparison of the 17 
spatial extent of genets.  Note that for populations BIMB, KOON and MULY, 18 
coordinates for individual samples were not recorded, therefore the spatial distributions 19 
of ramets in these populations are not presented. 20 
 21 
Figure 5. Principal Coordinates Analysis illustrating clustering of populations using 22 
genetic distances among individuals’ AFLP genotypes. The first two axes explained 23 
31% and 21% of the variation respectively.   24 
 25 
 26 

27 
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Appendix 1 1 
 2 
Estimating the number of adult stems present in stands of Acacia carneorum 3 
 4 
Resources for survey are rarely adequate to allow exhaustive counts of individual plants at many 5 
locations. For Acacia carneorum, which exhibits clonality via root suckering, the density of stems is often 6 
high, with clusters of smaller young suckers surrounding older stems. In order to estimate the total 7 
number of adult stems within stands, the number of adult stems (defined as those >1m tall) in one to six 8 
5m wide transects 150-200m in length in six stands within Kinchega National Park was counted (Table 9 
1). The number of transects depended on the size of the stand, while the length depended on its shape, 10 
with narrow stands having shorter transects. In a further three very small stands the total number of adult 11 
stems was scored (all count data courtesy of Marsh 2010). We considered each transect as an independent 12 
estimate of adult density and used an estimate of the area of occupancy of each stand to derive an 13 
estimate of the total number of adults in the stand. Thus we had several estimates of the number of adult 14 
stems from a range of stands with varying area of occupancy, ranging from 0.13 ha to over 60 ha.  15 

We then used a curve fitting program (CurveExpert 1.4 - Hyams 2009) to find an appropriate 16 
formula for predicting the number of stems in any stand. For simplicity, we constrained curves to linear 17 
or quadratic form. We found that a quadratic curve (y=13.34+43.53x +0.3068x2) provided the best fit 18 
(r=0.9028), while the linear fit (y=-79.33+63.06x) was also excellent (r=0.9014) (Fig. 1). At small areas 19 
of occupancy (Fig. 1b), the quadratic model is more appropriate since the linear formula predicts that 20 
populations occupying less than 1.3 ha have fewer than zero plants. In contrast, while clearly some space 21 
is required to sustain any plants, it is conceivable that >13 plants could occupy an area of much less than 22 
1 ha, as predicted by the quadratic curve. 23 
 24 
 25 
References 26 
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 29 
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 32 
 33 
 34 
Table 1. Data used for estimating number of adults for a given area. 35 
 36 
Estimated 
Area (ha) Site 

number of 
transects

Symbol in 
graph 

15.2 BD 6 1 
1.8 FR 3 11 

0.6 WLC 3 10 
6.9 WF 6 4 

60.5 AC1 6 6 
1.1 ED n/a* 7 

0.13 S5 n/a* 8 

0.16 OP1 n/a* 9 

0.74 S26 1 5 
*Actual total counted 37 
 38 
 39 
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Fig. 1. Relationship between area of occupancy and estimated number of adults per population. These 4 
data are derived from density estimates from nine populations at Kinchega National Park, with population 5 
estimates derived from one to six 100-250 m long transects for larger areas of occupancy (different 6 
symbols for different populations) and smallest areas of occupancy from a total count (data courtesy of 7 
Marsh 2010). Solid line for linear curve, dashed line for quadratic curve. (a) Full data set, showing 8 
estimates for up to 70 ha area of occupancy, (b) Constrained data set, showing estimates for up to 20 ha.  9 
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Appendix 2.  

 
Effect of modifying the threshold for clone assignment on estimates of clonal diversity  
 
The number of unique genets detected within each population for threshold genetic distances (number of AFLP loci differing) between 0 
and 10. The highlighted row indicates the threshold used for clone detection.  

Threshold 
genetic 
distance 
(no. loci) 

Threshold 
genetic 
distance 
(%) 

Number of genets within each population 

BD BIMB HD KOON LA MCAMP MULY QUANDONG SBH TW
0 0 12 13 9 13 1 12 10 15 12 10
1 2 12 7 9 9 1 11 10 11 2 7
2 3 11 6 9 3 1 9 7 8 1 5
3 4 10 5 7 3 1 6 6 6 1 5
4 5 10 2 7 2 1 5 3 3 1 4
5 6 9 2 7 2 1 3 3 3 1 2
6 8 9 1 4 1 1 1 3 2 1 1
7 9 4 1 3 1 1 1 2 1 1 1
8 10 4 1 2 1 1 1 1 1 1 1
9 11 3 1 2 1 1 1 1 1 1 1

10 12 3 1 1 1 1 1 1 1 1 1
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