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With the hit of new pandemic threats, scientific frameworks are needed to understand the unfold-
ing of the epidemic. The use of mobile apps that are able to trace contacts is of utmost importance
in order to control new infected cases and contain further propagation. Here we present a theoreti-
cal approach using both percolation and message–passing techniques, to the role of contact tracing,
in mitigating an epidemic wave. We show how the increase of the app adoption level raises the
value of the epidemic threshold, which is eventually maximized when high-degree nodes are prefer-
entially targeted. Analytical results are compared with extensive Monte Carlo simulations showing
good agreement for both homogeneous and heterogeneous networks. These results are important
to quantify the level of adoption needed for contact-tracing apps to be effective in mitigating an
epidemic.

Percolation theory [1–5] constitutes a subject of major
relevance in the field of complex networks. It provides
a simple mathematical framework which naturally
applies to both networks’ structural properties, (such
as resilience under random damage) [6–8], and critical
diffusion, (such as epidemic spreading in heterogeneous
structures) [9, 10]. As a matter of fact, even though
there exists several epidemiological models with different
flavors of complexity, the arguably most popular one,
i.e. the SIR model, was found [9, 10] to be mappable
to a static link-percolation problem, which allowed to
find analytical expressions for the epidemic threshold
depending on the underlying network topology. These
results, even if they might be only an approximation
of observed features in real epidemics, still constitute
a fundamental theoretical cornerstone in the field of
epidemic processes. Recently there has been an in-
creasing interest in studying the effectiveness of track
and tracing policies as a measure to contain epidemic
spreading [11–14]: for instance, in [14] the authors show
how an effective contact tracing strategy in scale-free
networks can reduce the probability of superspreading
events, while in [11] it is claimed that a widely used
contact-tracing app, combined with additional measures
such as social distancing might be sufficient to stop an
epidemic diffusion.

There are several mathematical arguments proposed
in the contemporary literature to justify the above-
mentioned effects, for instance in [14] a simple gener-

ating function argument is proposed in order to compute
the probability that contact tracing stops the epidemic
propagation, however a solid percolation approach able
to capture analytically the impact of a diffused tracing
app on the non-linear aspect of epidemic spreading has
not been proposed so far. In this work, we take a step
forward in filling this gap by proposing a stylized model
for epidemic spreading with contact-tracing and testing
policies based on link percolation.

In particular, we first consider each individual i, of a
given contact network, to be assigned a binary variable Ti
representing whether or not the individual has the tracing
app. Then, we propose a modified version of the popular
message-passing (MP) equations [15–22] which takes into
account the following rationale. Every infected individ-
ual with probability p, called the transmissibility of the
epidemic, transmits the disease to a susceptible neighbor.
An individual who has got the app, will know almost in-
stantaneously (this is an hypothesis far from reality, but
simplifies the analysis) if has been in contact with an
infected individual also having the app, an she/he imme-
diately self-isolates stopping propagation. However, if in-
fected from an individual still not having the app, she/he
will not know until symptoms appear. This can be for-
mulated as follows: individuals with the app (Ti = 1) can
infect only if previously infected by individuals without
the app (Ti = 0), while individuals without the app can
infect regardless the Ti value of their infector. By do-
ing so we are able to derive a modified non-backtracking
matrix [16, 23–26] whose largest eigenvalue determines
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FIG. 1: Sketch of the infection pathways that leads to the
epidemic spreading in a population in which there are indi-
viduals that have adopted the app and individual that have
not adopted the app.

the epidemic threshold pc. Furthermore, for the case of
uncorrelated networks, we are also able to derive an ana-
lytical expression for pc as a function of the average dis-
tribution of the tracing app, namely T (k). Our results
show that in general the more the app is diffused among
the population the higher is the value of pc, meaning that
the endemic state is less likely to be achieved. Moreover
we show that given a fixed app coverage on a random
network ensemble, the optimal T (k) which maximizes pc
corresponds to a hub-targeting strategy. By applying the
message-passing algorithm to real networks we also show
that this strategy gives excellent results compared with
other state-of-the-art ranking algorithm for the centrality
of nodes in epidemic spreading.

Basic model of spreading with app- Let us assume a
contact network G(V,E) formed by |V | = N individuals
i = 1, 2, . . . N , each individual i ∈ V is assigned a vari-
able Ti indicating whether the individual has got the app
Ti = 1 or not Ti = 0. Assuming the contact tracing app
has immediate effect on quarantining suspicious cases, a
person with the app can infect only if it is infected by a
person without the app, while a person without the app
can infect regardless if he has got the infection from a per-
son with the app or without the app (see Figure 1). Now,
we propose a stochastic infection model as follows: for
every link (i, j) we draw a random variable xij ∈ {0, 1}
indicating whether the eventual contact between one in-
fected and one susceptible node, found at the two ends
of the link, leads to the infection. We parametrize this
dynamic by taking 〈xij〉 = p, where p indicates the trans-
missibility of the epidemic.

We can simulate the stationary state of this spread-
ing process on networks of arbitrary topology, i.e. in-
cluding spatial networks with high clustering coefficient,
by implementing the following Monte Carlo algorithm
which takes advantage of the mapping between epidemic
spreading and percolation. We name T−T the links con-
necting two individuals adopting the app. These links
do not contribute to the propagation of the infection
to nodes other than the two connected nodes. In or-
der words the causal chains of infection stop when they
involve a T − T link. Therefore we first consider the gi-
ant component of the link percolation process in which
all the T −T links are removed and all the other links are

retained only if xij = 1. To calculate the total fraction
of infected individuals in addition to the nodes in this
giant component we include also the nodes with the app
infected by nodes with the app. (see SM [27] for details).
Message-Passing approach- To analytically predict the

propagation of the epidemic on a network we use the
powerful MP (Message-Passing) approach [16–18, 28, 29].
Although this approach is proven to give exact results
only on locally tree-like networks, it is also well known
to be very robust in the case of networks with loops,
when the underlying MP algorithm converges [30]. In
this work we adopt the MP approach and we use it to
predict the phase diagram of the spreading process on
network ensembles as a function of the level of adoption
of the app in the population.

The considered spreading model is stochastic and has
different sources of randomness that can be taken into
account by different MP algorithms in which we average
different level of information [17]. The simplest message
MP can be derived assuming to know everything about
the spreading dynamics. This would entail first to know
the contact network, secondly to know which individu-
als have the app, i.e. the configuration {Ti}i∈V , and
finally to know which links have led to an actual infec-
tion, i.e. {xij}(i,j)∈E (see SM [27] for details). One can
then relax the hypothesis of perfect knowledge about the
epidemic process and we can consider the message pass-
ing processes in which we average over the distribution
of {xij}(i,j)∈E . In this situation the outcome of the epi-
demic spreading is dictated by the following MP equa-
tions. A node i spread the virus to node j only with
probability σi→j ∈ [0, 1] where this message is found by
the MP equation

σi→j = pTi

1−
∏

`∈N(i)\j

(1− (1− T`)σ`→i)


+p(1− Ti)

1−
∏

`∈N(i)\j

(1− σ`→i)

 , (1)

where N(i) indicates the neighbours of node i. These
equations directly implement the model as described in
Fig. 1. Moreover a node i is infected with probability
σi ∈ [0, 1] with

σi =

1−
∏

`∈N(i)

(1− σ`→i)

 . (2)

Therefore the expected fraction S of infected individuals
is given by

S =
1

N

N∑
i=1

σi. (3)

This process has an epidemic threshold achieved when
the maximum eigenvalue Λ(B) of the modified non-
backtracking matrix B is equal to one, i.e.

Λ(B) = 1. (4)
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The modified non-backtracking matrix B for this algo-
rithm is defined in terms of the non-backtracking matrix
A of the network as

B`i→ij = p(1− TiT`)A`i→ij . (5)

Here A [16] has elements

A`i→ij = a`iaij(1− δ`j), (6)

where a is the adjacency matrix of the network and δrs is
the Kronecker delta. Equations (4) and (5) clearly show
that the epidemic threshold is dictated essentially by the
non-backtracking matrix of the network where we have
removed all the T − T links.

We can also average over the probability distribution
of {Ti}i∈V . Specifically we can assume that Ti (the . . .
indicates the average over the probability distribution
of {Ti}i∈V ) is only a function of the node degree, i.e.
Ti = T (ki). This is a minimal assumption that allows
to derive analytical calculations, however we note that
the adoption of the app might depend on an additional
social contagion process of awareness behavior in a sce-
nario close to the one proposed in Ref. [31]. In order
to mimic these alternative scenarios in the SM [27] we
have considered the cases in which the adoption of the
app depends on either the eigenvector centrality or the
non-backtracking centrality of the nodes.

For formulating the MP algorithm in the case in which
we assume to known only the function T (k), the trans-
missibility p, and the actual contact network, we consider
for every ordered pair of linked nodes (i, j) the two mes-
sages indicating the probability that node i infects node
j given that node i has adopted (σ̂Ti→j) or not adopted

(σ̂Ni→j) the app. These two messages are given by

σ̂Ti→j = Tiσi→j ,

σ̂Ni→j = (1− Ti)σi→j . (7)

The MP equations for these messages can be obtained
by averaging the MP Eqs.(1) over all the configuration
{Ti}i∈V and read:

σ̂Ni→j = p(1− T (ki))

1−
∏

`∈N(i)\j

(1− σ̂N`→i − σ̂T`→i)


σ̂Ti→j = pT (ki)

1−
∏

`∈N(i)\j

(1− σ̂N`→i)

 . (8)

The probability that node i is infected σi is given by

σi =

1−
∏

`∈N(i)

(1− σ̂N`→i − σ̂T`→i)

 , (9)

while the expected fraction S of infected nodes is given by
Eq. (3). In this case the relevant matrix B determining

the epidemic threshold given by Eq. (4) is (see SM [27]
for details)

B`′`→ij = p[1− T (ki)]δ`iA`′i→ij
+ p2[1− T (ki)]T (k`)A`′`→`iA`i→ij . (10)

Finally we consider the case in which we do not have
perfect knowledge about the network itself and can per-
form the average over an uncorrelated network ensemble.
In this case we have two equations: one for S′N and one
for S′T , indicating the probability that by following a link
we reach an infected individual without the app or with
the app respectively. These equations (see SM [27] for
details of the derivation) read,

S′N = p
∑
k

kP (k)

〈k〉
(1− T (k))

[
1− (1− S′N − S′T )k−1

]
,

S′T = p
∑
k

kP (k)

〈k〉
(T (k))

[
1− (1− S′N )k−1

]
. (11)

Here T (k) indicates the probability that a node of degree
k gets the app. The probability that a random node gets
the infection is given by

S =
∑
k

P (k)
[
1− (1− S′T − S′N )k

]
, (12)

The transition is achieved for

pc = min

(
1,

1

2κT

[
−1 +

√
1 + 4

κT
κN

])
. (13)

where

κN =
〈k(k − 1)(1− T (k))〉

〈k〉
.

κT =
〈k(k − 1)T (k)〉

〈k〉
. (14)

Optimization -
The formula for pc, provided by Eq. (13), is an increas-

ing function of κT so in order to maximize pc we need to
maximize κT . Under the L1 norm∑

k

P (k)T (k) = T . (15)

This optimization problem gives the discrete Heaviside
step function

T̃ (k) = θ(k − kc, α) (16)

taking the value 0 ≤ α = T −
∑
k>kc

P (k) < 1 at k = kc.
Therefore the optimal solution is to have all nodes of de-
gree k > kc with 100% app adoption and the node with
exactly k = kc with the maximal adoption allowed by
the constraint in Eq. (15). For this choice of T (k) we
have checked the validity of the proposed message pass-
ing theory by comparing the results obtained by a direct
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FIG. 2: (Color online) The fraction of infected nodes S is plotted versus p for several networks. The results obtained by
averaging the Monte Carlo simulations of the configurations {Ti}i∈V and {xij}(i,j)∈E are compared with the results of the MP
algorithm defined by Eqs. (8) and Eq. (9), where T (k) is given by Eq. (16) with α = 0 and kc as indicated in the legend of each
panel. The value K in all panels corresponds to the largest degree of the network and therefore corresponds to the case of no
app coverage. (a) Poisson network with N = 5× 104 nodes and average degree λ = 4. (b),(c),(d) Friendship networks from
the music streaming site Deezer in the countries of Romania (N = 41773), Hungary (N = 47538) and Croatia (N = 54573)
respectively [32].

implementation of the Monte Carlo algorithm predicting
the fraction of nodes affected by the epidemics with the
results of the MP algorithm defined in Eq. (8), (9) find-
ing an excellent agreement between the two, for both real
and synthetic networks (see Figure 2).

Improvement on pc- Equation (16) tells us that in an
uncorrelated random network, given a fixed app cover-
age T , the best strategy in order to maximally delay the
percolation transition is given by targeting the hubs. In
order to verify the optimality of Eq. (16) when compared
to different strategies, we considered the more general
form of T (k) given by:

T (k) = ρ+ (1− ρ)θ(k − kc, α), (17)

where θ(k − kc) is the discrete Heaviside step function
taking the value α at k = kc, and ρ ∈ [0, 1] denotes a
uniform fraction of individuals adopting the app. Thanks

to Eq. (17) we are able to interpolate between a purely
random strategy obtained by taking the limit kc → ∞
and the optimal strategy given in the limit ρ → 0. It
is straightforward to check that under the constraint de-
fined in Eq. (15) we have respectively limkc→∞ T (k) = T
and limρ→0 T (k) = T̃ (k).
We have used Eq. (13) to investigate the phase diagram
(characterized by the epidemic threshold pc) of a Poisson
network as a function of ρ and kc (see Figure 3). We ob-
serve that a diffused adoption of the app can significantly
increase pc, which happens when ρ increases or when kc
decreases.

To show, in a particular example, the increase of pc due
to the adoption of the app, we consider the real dataset
Livemocha social-network [33]. As we can see from Fig. 4
the random adoption strategy, achieved when kc = kmax,
yields a very small increase in the value of pc compared to
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FIG. 3: (Color online) The phase diagram of the epidemic
model mitigated by the adoption of the app is shown for a
Poisson network of N = 104 nodes with average degree λ = 4.
Here T (k) is given by Eq. (17) with α = 0. The epidemic
threshold pc is plotted as a function of ρ for different values
of the cutoff kc.

the optimal distribution, corresponding to ρ = 0. There-
fore in a scenario of limited resources, represented by the
constraint defined in Eq. (15), the optimal strategy cor-
responds to distribute the app from higher-degree nodes
to lower-degree ones until the resources are exhausted.
The resulting increase in pc computed according to Eq.
(13) is quite dramatic and non trivial, for instance from
Fig. 4 we read that if the app is optimally distributed
among ∼40% of the population the increase of pc is ∼17-
fold, while if the same percentage is covered randomly
the increase is ∼1.2-fold. This optimization principle is
obtained under the assumption that the adoption of the
app is dictated by the degree of the nodes. However in
a real scenario this hypothesis might appear too restric-
tive. Devising an ad-hoc optimization algorithm simi-
lar to the ones proposed in [28, 29, 34] is beyond the
scope of this Letter. However, in order to check how the
obtained optimal strategy compare with other possible
mechanisms driving the adoption of the app in the SM we
show that targeting the hubs remains a very good strat-
egy also if compared to targeting the high eigenvector
centrality nodes or the high non-backtracking centrality
nodes [25, 26] in a number of real datasets.

Conclusions- In this work we provide a message-
passing theory able to predict the epidemic threshold
of disease spreading among a population which has
the option of adopting a tracing app. The simplicity
of our model allows us to derive a simple analytical
estimate for the epidemic threshold and leaves plenty of
room for taking into account more complex and realistic
factors. For instance, we assumed that the tracing app
is perfect, however the we can relax this assumption in
order to allow also for imperfect tracing and isolation.
Another interesting follow up for the model could be
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FIG. 4: (Color online) Relative increase of pc computed from
Eq. (13) on the Livemocha social-network (N ∼ 104 × 103

nodes, E ∼ 2×106 edges) [33], where T (k) is given by Eq. (17)
under the constraint (15), and p0c = 〈k〉/〈k(k − 1)〉 represents
the value of the percolation threshold in the absence of app
coverage (which can be obtained from Eq. (13) in the limit
κT → 0). Here p0c = 0.00306, while the app coverage is fixed

at T = 0.39175, corresponding to an optimal T̃ (k) with kc =
20 and α = 1. The plot shows that for this particular value
of T , corresponding to ∼40% of the nodes having the app,
the optimal distribution is reached at ρ = 0 and corresponds
to a ∼17-fold increase of pc, whereas in the case of a purely
random strategy, obtained at ρ = T , the increase of pc is
∼1.2-fold.

the introduction of a time dimension similar to the one
proposed in [25], in order to assess how the modified
non-backtracking matrix presented in Eq.(5) affects not
only the percolation threshold itself, but also the speed
of the epidemic.
The proposed stylized mathematical framework can
overall be useful to assess the expected impact of
contact-tracing apps in the course of an epidemics if
adopted correctly. The compartmental epidemic model
used is the classical SIR, and do not pretend to be a
model fitted for the current pandemic of COVID-19,
however the physical intuition we grasp from the pre-
sented analysis may prove fundamental to prescribe the
best targeting strategy for app adoption, as well as it
captures the highly non-linear effect on the reduction of
the incidence provided by a certain fraction of adoption.
Our preliminary results show both numerically and
theoretically that the adoption of the app by a large
fraction of the population increases the value of the
epidemic threshold. In case of uncorrelated networks
we are able to derive a closed analytic expression for pc
which depends on both the network degree-distribution
P (k) and the average app distribution T (k). Thanks
to this expression we finally prove in a constrained-
resources scenario that the value of pc is maximized
when high-degree nodes are preferentially targeted. Our
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results show that an optimal targeting gives rise to a
dramatic increase in the value of pc when compared to
a strategy in which the same amount of resources is
uniformly distributed. The more randomly the app is
diffused among the population the less is the increase in
the percolation threshold, or equivalently, the less the
app has the power of mitigating the epidemics. Overall
our results show that even if the adoption of a tracing
app has the effect of preventing an epidemic wave, the
same level of adoption can be optimally distributed by
taking into account the heterogeneity of the population
contact network in order to obtain a mitigation effect
which is significantly higher.
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Percolation on sparse networks. Physical Review Letters,
113(20):208702, 2014.

[17] Ginestra Bianconi. Multilayer networks: structure and
function. Oxford University Press, 2018.

[18] Filippo Radicchi and Ginestra Bianconi. Redundant in-
terdependencies boost the robustness of multiplex net-
works. Physical Review X, 7(1):011013, 2017.

[19] George T. Cantwell and M. E. J. Newman. Message pass-
ing on networks with loops. Proceedings of the National
Academy of Sciences, 116(47):23398–23403, 2019.

[20] F. Altarelli, A. Braunstein, L. Dall’Asta, J. R. Wake-
ling, and R. Zecchina. Containing epidemic outbreaks
by message-passing techniques. Phys. Rev. X, 4:021024,
May 2014.

[21] Linyuan L, Duanbing Chen, Xiao-Long Ren, Qian-Ming
Zhang, Yi-Cheng Zhang, and Tao Zhou. Vital nodes iden-
tification in complex networks. Physics Reports, 650:1 –
63, 2016. Vital nodes identification in complex networks.

[22] Salomon Mugisha and Hai-Jun Zhou. Identifying optimal
targets of network attack by belief propagation. Phys.
Rev. E, 94:012305, Jul 2016.

[23] Florent Krzakala, Cristopher Moore, Elchanan Mossel,
Joe Neeman, Allan Sly, Lenka Zdeborová, and Pan
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