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ABSTRACT 14 

The nature of the transition from one contrasting macrobenthic assemblage 15 

to another across interfaces between intertidal seagrass and unvegetated 16 

sand was investigated in the subtropical Moreton Bay Marine Park, eastern 17 

Australia, via six two-dimensional core lattices.  The same pattern of 18 

transition was manifested in each lattice.  Macrofaunal abundance, species 19 

density (both observed and estimated total) and assemblage composition did 20 

not vary within the 0.75 m wide marginal bands of each habitat type with 21 



 2 

distance away from the interface.  Neither were there significant differences 1 

in assemblage metrics or composition between the marginal and non-edge 2 

regions of either habitat.  There were, however, very marked differences 3 

across the 25 cm wide strip on either side of the actual interface, the 4 

interacting assemblages reacting symmetrically.  All these differences in 5 

composition, abundance and species density therefore took place over an 6 

ecotone distance of only 0.5 m at most.  Spatial trends in assemblage 7 

metrics across the boundary zone were captured accurately by second and 8 

third order polynomial regression models.  It also appeared that edge effects 9 

on individual species within the seagrass were a variable local response not 10 

a consistent effect of closeness to the bare sand. 11 

 12 
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1. INTRODUCTION 16 

Most natural environments, including coastal marine ones (Eyre et al., 17 

2011), are mosaics of different habitat patches and the transitional zones 18 

between these patches are increasingly being recognised as ecologically 19 

important, not least because landscape structure affects habitat quality 20 

(Levin et al., 2001; Zajac et al., 2003; Ries et al., 2004; etc.).  The quality of 21 

seagrass habitats is of particular current concern because of their recent 22 

worldwide decline and fragmentation (Lotze et al., 2006; Waycott et al., 2009; 23 
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Fourqurean et al., 2012), because of concerns that the resultant denuded 1 

habitat may support lesser animal abundance and biodiversity (e.g. Pillay et 2 

al., 2010), and because seagrass beds provide economically important 3 

ecosystem services, including not only physically protective habitat for the 4 

juveniles of commercially-significant fish and crustaceans but also food for 5 

those juveniles in the form of the smaller benthic macrofauna that 6 

seagrasses support in abundance (Duarte, 2000; Unsworth and Cullen, 7 

2010; Coles et al., 2011; Barbier et al., 2011).   8 

Throughout much of the world, sheltered intertidal and shallow 9 

subtidal sandflats occur in one of two characteristically alternative patch 10 

states: one being seagrass beds, the other unvegetated sediment.  These two 11 

alternatives are dynamic and interchangeable, with each member of the pair 12 

expanding into territory held by the other in one area or another of shared 13 

sandflats (e.g. Yamakita et al., 2005; Berkenbusch et al., 2007; Carr et al., 14 

2010).  Although not always the case in vegetated versus unvegetated 15 

comparisons, especially in high latitude areas subject only to Arenicola 16 

bioturbation (see e.g. Asmus and Asmus, 2000; Polte et al., 2005), wherever 17 

the bare sediment is structured by the bioturbation of burrowing 18 

thalassinidean crustaceans (Pillay and Branch, 2011) benthic macrofaunal 19 

assemblages supported by the two alternative habitat types may be very 20 

different, as, for example, in the Nanozostera capensis versus Callichirus 21 

kraussi system in Langebaan, South Africa (Siebert and Branch, 2007) and 22 

in the Nanozostera muelleri versus Trypaea australiensis system in Moreton 23 

Bay, Australia (Barnes and Barnes, 2012).  At these localities, as well as at 24 
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others (Boström and Bonsdorff, 1997), areas of bare sediment are dominated 1 

by burrowing species whilst the seagrass supports a large epifaunal 2 

component.  Such faunal contrasts can often be linked to the marked 3 

change in nature and stability of the substratum induced by the contrasting 4 

ecosystem bioengineers (Berkenbusch and Rowden, 2007; Siebert and 5 

Branch, 2007; etc.).  6 

Some aspects of the boundary zone between seagrass and adjacent 7 

habitat types have received detailed attention.  In particular, edge effects 8 

within blocks of seagrass have been extensively studied in both the Atlantic 9 

and the Pacific (Bologna and Heck, 2002; Tanner, 2005, 2006; Warry et al., 10 

2009; Murphy et al., 2010; etc), with, somewhat paradoxically, it often being 11 

reported that densities of seagrass-associated animals were higher on the 12 

margins of the bed than nearer its centre.  Equivalent work on edge effects in 13 

unvegetated sediment is much rarer, however.  The studies by van Houte-14 

Howes et al. (2004) and Tanner (2005) are two of the very few that have 15 

extended right across an interface to examine both two habitat types.  Van 16 

Houte-Howes et al. (2004) explored the boundary between mid-intertidal 17 

unvegetated sand and Nanozostera muelleri in North Island, New Zealand, 18 

and they reported evidence that distinctive assemblages were present at the 19 

edges of the seagrass (at least under conditions of abundant seagrass 20 

shoots).  These authors investigated the transitional zone via a series of 21 

sampling points relatively far apart and spanning the relatively large total 22 

distance of 100 m (at -50, -10, -1, +1 and +50 m, where zero is the interface 23 

itself).  Tanner (2005), from the perspective of the abundance of certain 24 
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seagrass-associated species in fragmented systems, narrowed the zone of 1 

investigation to the 2 m on either side of the bare sand/seagrass boundary 2 

and showed marked changes in population density of various seagrass 3 

polychaetes, crustaceans and bivalves across this zone in a N. muelleri 4 

meadow at LWS in South Australia.   5 

In order to examine in detail the actual transition from seagrass faunal 6 

assemblage to that of the adjacent unvegetated sediment, the present study 7 

was designed to investigate the precise interface between the two.  Further, 8 

this was conducted at a locality for which recent data on the contrasting 9 

faunal assemblages of the seagrass and unvegetated sediment away from the 10 

interfaces were also available (Barnes and Barnes, 2012), permitting each 11 

marginal habitat zone to be placed in context.  Three specific questions were 12 

addressed.  (i) Do faunal transitions between seagrass and bare sediment 13 

take the form of sharp ecotones or of more gradual ecoclines (sensu Attrill 14 

and Rundle, 2002; Yarrow and Marín, 2007)?  (ii) Do the two interacting 15 

faunal assemblages react symmetrically to habitat change across the 16 

interface?  (iii) What is the effect of the transition on the magnitude and 17 

spatial variation of local benthic abundance and biodiversity?      18 

 19 

2. METHODS 20 

2.1. STUDY AREA, SAMPLE COLLECTION AND PROCESSING 21 

Macrofaunal sampling was conducted over a period of 11 weeks during 22 

the 2012 austral spring along the sheltered Rainbow Channel western coast 23 



 6 

of North Stradbroke, a large (27,400 ha) sand-dune barrier island in the 1 

relatively pristine Eastern Banks region of the oligohaline, sub-tropical 2 

Moreton Bay Marine Park, Queensland (Dennison and Abal, 1999).  The 3 

Eastern Banks contain the majority of the Bay’s 190 km2 of seagrass 4 

(Roelfsema et al., 2009) and support its greatest numbers of animal 5 

species, including many southern outliers of the tropical Great Barrier Reef 6 

fauna (Davie and Hooper, 1998). Here, for example, the seagrass is the 7 

refuge and feeding ground for juveniles of many species of penaeid prawns 8 

and fish as well as for green turtle and dugong (Weng, 1990; Davie et al., 9 

2011).  In the specific area sampled, the beds are predominantly of the 10 

dwarf-eelgrass Nanozostera muelleri capricorni (= Zostera capricorni = 11 

Zosterella capricorni) with some Halodule uninervis (especially at lower shore 12 

levels) and Halophila ovalis, and the seagrass extends from the sublittoral 13 

right up into the mangrove zone amongst the seaward pneumatophores of 14 

Avicennia marina, i.e. over an intertidal vertical height of half the tidal range 15 

(i.e. over c. 1 m) and in places for a distance of >500 m.  Typically, the 16 

seagrass plants are of the smaller morphological forms characteristic of 17 

shallow areas (Young and Kirkman, 1975).  Also within the seagrass zone 18 

are unvegetated areas of the fine- to medium-grained quartz sand that 19 

comprises the island (Laycock, 1978), often occurring as a series of large 20 

patches from about LWN to MSL.  Such areas are structured by two 21 

bioturbating decapods, the thalassinidean Trypaea australiensis and soldier 22 

crab Mictyris longicarpus, both dependent on sedimentary diatoms 23 

(Spilmont et al., 2009).  The same sand, with or without a surface coating of 24 

mud, underlies the upper-shore mangroves. 25 
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Data on the macrobenthic assemblages were collected from three sites 1 

over a distance of 2.5 km centred on the Moreton Bay Research Station at 2 

Dunwich — (a) Deanbilla, (b) Polka, and (c) Yerrol (Fig. 1) — roughly in the 3 

middle of a virtually uninterrupted 25+ km long belt of seagrass.  Precise 4 

sampling sites were located where the margins of the seagrass beds 5 

appeared neither to be advancing nor retreating to avoid possible 6 

complications resulting from temporally transitional states.  Advancing 7 

seagrass was identified by lines of young plants extending out from the bed 8 

and retreating seagrass by the occurrence of dead root-rhizome mats 9 

beneath the surface of the adjacent bare sand.  As advocated by Fortin 10 

(1994), in all cases data were collected from two-dimensional lattices across 11 

and along the bare sand/seagrass interface (see Fig. 1).  Six replicate 12 

lattices were worked, each comprising 60 core samples in the form of 6 13 

transects (‘rows’) worked parallel to the interface, at +0.75, +0.5, +0.25, -14 

0.25, -0.5 and -0.75 m from it (where '+' indicates seagrass and '–' indicates 15 

unvegetated sand), and 10 core samples (‘columns’) taken at 1 m intervals 16 

along each transect; this interval allowed for the high level of small-scale 17 

spatial variability previously seen in such systems (Winberg et al., 2007; 18 

Barnes and Ellwood, 2012).  Interfaces were sampled at three intertidal 19 

heights, near LWS, LWN and MSL, each replicated at two different sites 20 

(LWS and LWN at both Deanbilla and Polka; MSL at Deanbilla and Yerrol).  21 

At LWS and LWN the interfaces were between seagrass and unvegetated 22 

open sandflat, and near MSL they were between seagrass and the sand 23 

adjacent to the seaward zone of Avicennia pneumatophores.  As noted at 24 

other localities (e.g. Bryan et al., 2007; Carr et al., 2010), the boundary 25 
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between N. m. capricorni beds and blocks of unvegetated sand can be very 1 

sharp, and the sites near LWS and LWN had such sharp boundaries (Fig. 2 

2).  The seagrass/ pneumatophore-field interface near MSL, however, was 3 

mostly more diffuse, broken up into small patches, and with an extensive 4 

overlap of up to 20 m, although in places the seagrass had its upper limit 5 

as a sharp boundary immediately below the pneumatophore-zone edge and 6 

it was in these areas that the two upper-shore lattices were located.  With 7 

one exception, all lattices were located in areas where large continuous 8 

blocks (>0.5 ha) of the two habitat types met to avoid the potentially 9 

confounding variable of patch size (Bowden et al., 2001; Mills and 10 

Berkenbusch, 2009).  However, as previously (Barnes and Barnes, 2012), 11 

the core samples near MSL at Yerrol had to be located on the margin of a 12 

patch of seagrass isolated from the lower shore bed by an intervening 13 

stretch of bare sand.  Coordinates of each lattice were taken by means of a 14 

hand-held GPS+GLONASS unit (with a stated accuracy of 3 m).  To 15 

compare transitional zone assemblages and those from within the main 16 

blocks of the relevant habitat types, equivalent data on the nature of faunal 17 

assemblages at each locality >4 m away from any boundary zone were 18 

extracted from the earlier database of Barnes and Barnes (2012).   These 19 

data were from samples taken 12 months previously, also from transects of 20 

10 replicate cores.  21 

All core samples were of 54 cm2 area and 10 cm depth on the basis 22 

that (a) most benthic macrofauna in seagrass is known to occur in the top 23 

few mm of sediment (e.g. 98% in the top 5 mm in the study by Klumpp and 24 
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Kwak, 2005), and (b) earlier work (Barnes and Ellwood, 2012) had 1 

suggested that 10 replicates of that surface area would yield an acceptable 2 

standard error <17.5% of the arithmetic mean in estimation of local 3 

macrofaunal abundance.  This sampling procedure collects the smaller and 4 

most numerous members of the macrofauna that constitute the large 5 

majority both of invertebrate biodiversity (Albano et al., 2011) and of the 6 

food of the commercially-significant juvenile nekton (O’Brien, 1994), but not 7 

the scarcer megafauna or the deeply-burrowing species that include the 8 

ecosystem bioengineers Trypaea (that burrows down to depths of 1m) and 9 

Mictyris (that vacates its burrow during the first part of low tide), although 10 

juveniles of both species were frequently obtained.  Trampling adversely 11 

impinges on seagrass systems (e.g. Eckrich and Holmquist, 2000) and 12 

hence great care was taken to cause minimal disturbance to the site, 13 

particularly to areas to be sampled on future occasions.            14 

Collection and treatment of these core samples essentially followed the 15 

same standard procedure as earlier studies of macrofaunal assemblages 16 

associated with Nanozostera beds both within the North Stradbroke 17 

intertidal (e.g. Barnes and Barnes, 2011, 2012) and elsewhere (e.g. Barnes 18 

and Ellwood, 2011; Barnes, 2013).  Cores were collected at low tide, soon 19 

after tidal ebb from the sites, and these were gently sieved through 710 µm 20 

mesh on site.  All sieved samples were immediately transported to a local 21 

laboratory, where each was placed in a 30 x 25 cm white tray in which the 22 

living fauna was located by visual inspection and was counted; the time 23 

interval between collection and analysis of any given batch of samples never 24 
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exceeding 24 hours.  This continued until no further animal could be seen 1 

during a 3-minute period.  Animals were identified to species level wherever 2 

possible, with nomenclature as listed in the World Register of Marine 3 

Species (WoRMS, www.marinespecies.org).  Several taxa, however, although 4 

relatively important in Moreton Bay, have not yet been investigated 5 

systematically in southern Queensland (Davie and Phillips, 2008) and their 6 

identification to named species poses ‘enormous problems’ (Davie et al., 7 

2011, p. 8).  Such animals were treated as morphospecies, an operationally 8 

appropriate procedure to detect spatial patterns of numbers of species and 9 

their differential abundance (Dethier and Schoch, 2006; Albano et al., 10 

2011).  The number of seagrass shoots in each sample was also recorded, 11 

but sessile macrofauna attached to the seagrass leaves was not. 12 

2.2. STATISTICAL ANALYSES 13 

Raw data on numbers of each component species in the various 14 

sampling horizons at different distances from the actual interface were 15 

subjected to similarity analysis and various assemblage metrics were 16 

derived and compared across the same distances, both univariately by 17 

ANOVA and via spatial analyses. Assessment of faunal similarity and of 18 

univariate changes in biodiversity metrics were carried out via EstimateS 19 

8.2.0 (Colwell, 2011; Colwell et al., 2012).  Given the high proportion of rare 20 

species in the local seagrass fauna [29% of the 184 species obtained from 21 

the boundary zone were represented by single individuals, and a further 22 

14% by doubletons], estimates of total numbers of species (Smax) per unit 23 

area (i.e. of species density sensu Gotelli and Colwell, 2001) were derived 24 
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from the observed numbers of species (Sobs) and their differential 1 

abundance.  Different estimators of true species density yield different 2 

results, hence each value of Smax was obtained by taking the mean of three 3 

disparate EstimateS measures: Chao-2, Michaelis Menten Means, and 4 

Abundance-based Coverage, using, where appropriate, the bias-correction 5 

formula for Chao-2 and an upper abundance limit of 5 for infrequent 6 

species for the Abundance-based Coverage estimator.  To permit 7 

quantitative comparison (Jost, 2006), both α and γ species diversities were 8 

assessed as the linear 'effective number of species' by the reciprocal of the 9 

Hill (1973) N2.  Also because of the high probability of absence of species 10 

present at low population density from any given sample, changes in 11 

quantitative faunal composition (β-diversity) across adjacent transitional 12 

horizons were estimated by the Chao et al. (2005; 2006) abundance-based 13 

Sørensen (Bray-Curtis) (dis)similarity statistic, as modified to correct for 14 

undersampling bias, again with a set upper abundance limit per sample for 15 

rare species of 5.  This modification substantially reduces the negative bias 16 

of traditional similarity indices, especially when samples from species-rich 17 

assemblages are likely to be incomplete (Chao et al., 2005).  Estimated 18 

numbers of shared species between different assemblages were likewise 19 

obtained from Chao et al.’s (2000) coverage-based estimator.  Univariate 20 

comparison of these assemblage metrics at various distances from the 21 

interface, i.e. species density, total faunal abundance and dissimilarity, 22 

used one-way or two-way ANOVA after ln[x+1] transformation of data, 23 

followed by post-hoc Tukey HSD tests where applicable. 24 
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Spatial analyses were executed using a combination of GeoDa 1 

software and the Geostatistical Analyst tools within ArcGIS10.  Spatial 2 

statistical techniques employed were cross-scale trend analysis, calculation 3 

of the global Moran’s I statistic at both local and regional scales, and 4 

calculation of a semivariogram and associated semivariogram surface for 5 

each lattice.  Trend analysis was undertaken to ascertain whether 6 

transitions in the four assemblage metrics could accurately and 7 

consistently be captured in a simple spatial model. Trends were explored at 8 

both local (lattice) and regional (all sites) scales by plotting values of the 9 

metrics along an axis representing distance from the bare sand/seagrass 10 

interface. Local scale analysis examined mean values from all sites along 11 

the transition axis, whilst regional scale analysis retained the relative 12 

geographical positions of each site. A series of models was developed 13 

(linear, first, second and third order polynomial) to express the observed 14 

changes in each metric at both regional and local scales. The accuracy of 15 

each model was expressed as the percentage of variation of the observed 16 

distribution explained by the model (R2). To assess cross-scale consistency 17 

in models, the most accurate model type was recorded at both local and 18 

regional scales. 19 

To assess the strength of spatial relationships between the 20 

macrofaunal assemblages, the global Moran’s I statistic was calculated on 21 

each of the four metrics as a measure of spatial autocorrelation between 22 

point sample locations.  This was calculated for specified distance classes 23 

as the cross product for a given assemblage metric at points across a 24 

shamylto
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defined neighbourhood such that only the pairs of points within a specified 1 

distance class of each point location were taken into account (Hamylton, 2 

2013). This yields a large positive I in the presence of positive spatial 3 

dependence, a large negative I in the presence of negative spatial 4 

dependence, and values close to zero with a random assemblage 5 

distribution.  Spatial autocorrelation was also assessed at the local scale by 6 

generating a semivariogram for each lattice. This calculated Geary’s C 7 

statistic on the total number of individuals sampled to assess similarity for 8 

every possible combination of pairs of sample points across each lattice grid 9 

(Hamylton, 2013).  Geary’s C measures correspondence for a given distance 10 

class on the basis of the squared difference of a particular characteristic 11 

between pairs of point locations, and ranged from 0 to some unspecified 12 

value larger than 1.  Values of Geary’s C were then plotted against the 13 

distance between points to generate a semivariogram exploring the 14 

magnitude and spatial configuration of locally-measured autocorrelation 15 

plotted across the map. The distance at which Geary’s C levelled off and no 16 

further increase in the statistic was observed as the distance between point 17 

pairs increased, the sill point, was recorded for each semivariogram. This 18 

corresponds to a given distance range beyond which there was no spatial 19 

autocorrelation.  Finally, a semivariogram surface was generated to map 20 

the value of the Geary’s C across each lattice as a localized measure of 21 

assemblage metric similarity in geographical space. To account for the 22 

anisotropic effect across the tidal axis, a search direction of 90º was used to 23 

define the neighbourhood of each point. The surface was generated using 24 

an interpolation technique that combined values in the semivariogram plot 25 
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into bins based on the direction and distance between pairs of point sample 1 

locations. Binned values were then averaged and smoothed to produce the 2 

semivariogram surface. 3 

 4 

3. RESULTS 5 

Faunal assemblages of the adjacent 0.75 m wide boundary zones on 6 

either side of the interface between seagrass and unvegetated sand at each 7 

lattice showed markedly different abundance and species density (all one-8 

way ANOVA F1,34 >60; P <<0.0001).  Overall, the marginal strip of seagrass 9 

supported an observed total of 168 species (estimated true total 220) at an 10 

overall abundance of 2,430 ind. m-2 and a γ-diversity of 16.0. The abutting 11 

marginal strip of sand, in contrast, supported only 61 observed species 12 

(estimated true total 78), 750 ind. m-2, and a γ-diversity of 11.6.  Even 13 

though contiguous, the two assemblages shared only 24% of their observed 14 

total fauna and only 44% of their higher-level taxa (at the level of 15 

suborder/superfamily).  The relative richness of the seagrass assemblage 16 

was not a consequence of its greater abundance (Gotelli and Colwell, 2001) 17 

since the number of species per macrobenthic individual within the seagrass 18 

was always considerably larger than that in the unvegetated sand (at a ratio 19 

of 1 : >1.5) (Fig. 3a).  Per unit area the ratio was close to 1 : 2.7.  The 20 

seagrass-edge assemblage was dominated numerically by the rissooid 21 

Calopia imitata (434 m-2), grapsoid Enigmaplax littoralis (300 m-2), 22 

phoxocephaloid Limnoporeia sp. (191 m-2), buccinoid Nassarius burchardi 23 

(109 m-2) and apseudoid Longiflagrum caeruleus (100 m-2), which were the 24 
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only species to contribute ≥4% of the total individuals.  In the unvegetated 1 

sand the same percentage was contributed by each of the haustorioid 2 

Urohaustorius mertungi (174 m-2), grapsoid Mictyris longicarpus (65 m-2), 3 

galeommatoid Mysella vitrea (61 m-2), cerithioid Finella fabrica (47 m-2), 4 

veneroid Eumarcia fumigata (42 m-2), phyllodocidan and scolecidan Goniada 5 

?tripartita (39 m-2), Leitoscoloplos ?normalis (34 m-2) and Nephtys spp (33 m-6 

2), oedicerotoid Doowia dexterae (32 m-2) and spionidan Spio pacifica (31 m-2).  7 

The rank-abundance curves of both assemblages, but particularly of that in 8 

the seagrass, were of the concave form (Fig. 3b) characteristic of a number of 9 

benthic marine systems (Hughes, 1984; and see Hubbell, 1997). 10 

One-way ANOVA comparisons of the abundance of the dominant 11 

species in the marginal and in the non-edge areas of their respective habitat 12 

types did not show any significant differences in unvegetated areas of sand, 13 

except in respect of Finella which was more abundant in the marginal sand 14 

zone than in the main sandflat (ANOVA F1,22 = 4.9; P = 0.04).  In the seagrass 15 

beds, several animals (including Calopia, Limnoporeia, Longiflagrum and the 16 

paratanaoid Leptochelia) showed greater abundance at the seagrass edge at 17 

some sites but were less abundant marginally at others.  Tanaids, for 18 

example, were five times more abundant near some edges, but only half as 19 

dense at others.  Overall, the 25 peracaridan species present were more 20 

abundant at the edge at half the sites but were less abundant at the other 21 

half.  The most numerous seagrass inhabitant, Calopia, was also more 22 

abundant near edges at two sites, but was less so at two others.  On average, 23 

the locality’s 33 rissooid and other microgastropod species were less 24 
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abundant at the edge at two-thirds of the sites and overall were only half as 1 

abundant marginally, although the effect was not statistically significant.  2 

Only in respect of the rissooid Pseudoliotia was there a significant difference 3 

overall (ANOVA F1,22 = 13.1; P = 0.001), this microgastropod being less 4 

abundant near the seagrass margins. 5 

Regardless of site and of shore height, all six lattices displayed the 6 

same pattern of distribution of both assemblage dissimilarity between 7 

adjacent sampling horizons and changes in overall abundance and species 8 

density across the boundary zone.  Variation in quantitative assemblage 9 

composition between adjacent sampling horizons (i.e. β-diversity) is shown in 10 

Table 1.  There was effectively no change between horizons within each of 11 

the two marginal habitat blocks and no interactions with shore height (two-12 

way ANOVA all F2,2,4 <2.5; P >0.1), but a marked and highly significant 13 

increase in dissimilarity occurred across the 25 cm wide strip on either side 14 

of the actual interface.  The mean value of the dissimilarity statistic within 15 

each habitat block was 0.10 (SE 0.02) and between the main body of the 16 

habitat type and its margin was 0.19 (SE 0.04), with in each case no 17 

difference between the values within seagrass and within the sand (within 18 

marginal zone ANOVA F1,22 = 0.22, P >0.6; marginal vs non-marginal ANOVA 19 

F1,10 = 0.21, P >0.6).  On either side of the interface the mean dissimilarity 20 

statistic rose to 0.56 (SE 0.04). 21 

Variation across the boundary zone in faunal abundance, observed 22 

and estimated true species density, and levels of α-diversity is shown in 23 

Figure 4a-c.  Two-way ANOVA tests of these features in the seagrass 24 
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marginal horizons and in the unvegetated sand margins indicated no 1 

significant effect of distance of the sampling horizon from the interface on 2 

any assemblage metric, and no significant interaction between this distance 3 

and position on the shore (All seagrass F3,2,6 <1.2, P >0.3. All unvegetated 4 

sand F3,2,6, except α-diversity, ≤0.6, P >0.6; α-diversity F =3.3, P = 0.06).  In 5 

each case, this included comparisons between the marginal zone and the 6 

non-edge area of the habitat concerned.  As previously noted at these sites 7 

(Barnes and Barnes, 2012), values of the 1/N2 α-diversity metric were very 8 

variable (see Fig. 4c).         9 

In marked contrast to the constancy within each of the marginal 10 

habitat zones, however, and as seen above in assemblage composition (Table 11 

1), there were highly significant differences in faunal abundance and 12 

observed and estimated true species density (though not α-diversity) between 13 

adjacent horizons across the 25 cm wide strip on either side of the actual 14 

interface (Table 2), where a very sharp change in seagrass abundance also 15 

occurred (Fig. 4d).  Each of the four seagrass horizons was significantly 16 

different from each of the four unvegetated-sand horizons in both faunal 17 

abundance and species density (all Tukey HSD test statistics ≥ 6; P ≤0.003). 18 

Therefore, effectively all the dramatic change in composition, abundance and 19 

species density between the faunal assemblages of seagrass and of adjacent 20 

unvegetated sand took place over the very small distance of 0.5 m at most.  21 

Categorising the component assemblage species as either ‘seagrass 22 

specialist’, ‘unvegetated-sand specialist’ or ‘generalist’, on the basis of 23 

whether their abundance in the two habitat types was greater or less than a 24 



 18 

ratio of 1 : 2.5, and removing all rare species (those with ≤5 individuals in 1 

total) from the analysis, the two assemblages reacted symmetrically to the 2 

interface (Fig. 5).  Total abundance of the generalist category (principally 3 

Nephtys, Goniada, Spio and Mysella) was unaffected by the transition.  As a 4 

result of the difference in overall abundance, however, these four taxa were 5 

significant elements in the fauna of the unvegetated sand (see above) but not 6 

in that of the seagrass. 7 

Figure 6 illustrates a plot of the four assemblage metrics at the local 8 

and regional scales. Spatial trends in the metrics were captured accurately 9 

at both scales (local R2 = 0.87-0.93; regional R2 = 0.71-0.74) using second 10 

and third order polynomial regression models, although local-scale models 11 

consistently performed better than regional-scale ones. In terms of cross-12 

scale comparisons, the highest performing model type remained consistent 13 

transitioning from the local to the regional scale. The metric modelled with 14 

the highest accuracy at each scale was α species diversity. 15 

Global Moran’s I statistics calculated for all sites together and for each 16 

individual lattice are shown in Table 3. Three of the four metrics (faunal 17 

abundance and the two species density measures) exhibited significant 18 

positive spatial autocorrelation of moderate strength (I = 0.16 to 0.44), 19 

although α species diversity mostly showed weaker levels of autocorrelation 20 

that approximated a randomly distributed community (I = -0.18 to 0.11).  21 

The semivariogram surfaces (Fig. 7) indicate a symmetrical pattern of 22 

autocorrelation about the bare-sand/seagrass interface at all sites. With the 23 

exception of the Polka LWS site that showed by far the smallest maximum 24 
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sill points (30 cm) and most uniform distribution of spatial autocorrelation 1 

values, lattices displayed low levels of autocorrelation close to the interface 2 

(i.e. sill points of c. 30 cm – less than the distance apart of sampling points 3 

across the interface) and higher levels within each of the two abutting 4 

habitat types (i.e. sill points of c. 40-75 cm, c.f. the interval between 5 

sampling points of 25 cm there) (Fig. 7).   6 

Since the potential effect of positive spatial autocorrelation on the 7 

reliability of the ANOVAs above will be to increase the chance of Type I errors 8 

(Legendre, 1993; Dale and Fortin, 2002), its only effective occurrence in the 9 

data nested within each of the abutting habitat types will result in it having 10 

no adverse influence on our statistical conclusions. No relevant null 11 

hypotheses involving within-habitat comparisons were rejected, and the 12 

rejected cross-habitat null hypotheses were all based on data lacking 13 

significant spatial autocorrelation.   14 

 15 

4. DISCUSSION 16 

Although the precise faunal assemblages present in the seagrass and 17 

bare sand near Dunwich vary significantly from location to location and 18 

those in the seagrass also vary up the shore (Barnes and Barnes, 2012), the 19 

same three features of interfaces between these two habitat types stand out 20 

regardless of site and shore height, i.e. occurred in all six lattices.  First, the 21 

faunal assemblages of the marginal zone of both seagrass and unvegetated 22 

sand in each lattice not only did not vary with closeness to the actual 23 
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interface but were not significantly different from those present locally away 1 

from the edges of their respective habitat types.  Secondly, as in the main 2 

habitat areas (Barnes and Barnes, 2012), the assemblages immediately on 3 

either side of the interface were very different, with the seagrass supporting 4 

both greater animal numbers (>3 x) and species densities (>2.5 x).  Only a 5 

few generalist species were common to both (some 10% of the total).  All 6 

marginal seagrass horizons were significantly different from all marginal 7 

sandflat ones in composition, faunal abundance and species density.  Hence 8 

there must be a very abrupt change from one assemblage type to the other 9 

across the interface.  Thirdly, that this was accomplished over a distance of 10 

only 0.5 m at most is unexpected; although Warry et al. (2009) have shown 11 

that 0.5 m is a large distance for seagrass harpacticoids and other 12 

meiofauna.  Local ecological changes over small distances are commonplace 13 

in seagrass systems (Thrush et al., 2001; Barnes and Ellwood, 2012) but the 14 

changes taking place over 0.5 m here are far from local, occurring at all 15 

shore heights investigated and at all localities.  Attrill and Rundle (2002, p. 16 

929) define an ecotone (as distinct from an ecocline) as ‘an area of relatively 17 

rapid change, producing a narrow ecological zone between two different and 18 

relatively homogeneous community types’:  the boundary zone and 19 

assemblage types studied here exactly fit this definition.  Although Hansen 20 

and di Castri (1992) consider that ecotones can range in width from 21 

distances measured in centimetres to those measured in kilometres, the 22 

dimension of this ecotone must be one of the smallest ever recorded in 23 

association with a major change from one ecosystem bioengineer to another 24 

in what is otherwise essentially the same substratum type.  Walker et al. 25 
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(2003), for example, considered an ecotone width of 4 m to be a ‘sharp’ 1 

boundary, and to Kingston and Morris (2000) one less than 20 m is ‘abrupt’.  2 

Unlike most other transitional zones (Rand et al., 2006; Kark, 2013), that 3 

between seagrass and unvegetated sand on Stradbroke certainly does not 4 

appear to support mixed faunal assemblages enriched by elements from both 5 

juxtaposed habitat types and to display peak local species density and 6 

faunal abundance.  Mean species diversity was indeed largest in this region 7 

(Fig. 6d), although here this indicates a more even allocation of total 8 

individuals between the few species present rather than increased numbers 9 

of faunal elements (Magurran, 2004; Barnes and Barnes, 2012).  10 

There are a number of potential reasons why the Stradbroke 11 

seagrass/sandflat ecotone might be of such particularly small width.  The 12 

interfaces chosen for study were deliberately those that appeared stable, and 13 

therefore those in actively advancing or retreating boundary zones may well 14 

be more extensive.  Much may also depend on the precise habitat provided 15 

by the marginal seagrass areas (van Houte-Howes et al., 2004; Tuya et al., 16 

2011).  At the sites investigated, there was no diminution in the number of 17 

seagrass shoots per unit area as the interface was approached (see Figure 18 

4d), and maintenance of a relatively constant habitat framework — water 19 

velocities excepted (see below) — right up to the interface itself may well aid 20 

continuation of relatively constant assemblage characteristics until that 21 

point.  Thirdly, the two assemblages are dominated by organisms of 22 

contrasting biology: the seagrass fauna being largely epifaunal and that of 23 

the unvegetated sand being mainly infaunal (Barnes and Barnes, 2012).  It is 24 
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well established (Orth et al., 1984; van Houte-Howes et al., 2004; etc) that 1 

seagrass root/rhizome systems inhibit burrowing, whilst the lack of a plant 2 

cover can expose surface-dwelling species to heavy predation.  Such 3 

contrasting assemblages are not universal, however.  Differences between 4 

seagrass and adjacent sand assemblages, and hence changes across 5 

seagrass/sand boundaries, in high-latitude, high-abundance but low 6 

biodiversity regions such as the north-west Atlantic, for example, have in 7 

contrast been shown to be less significant (Asmus and Asmus, 2000; Polte et 8 

al., 2005; Barnes, 2010).  Bray-Curtis similarity between seagrass (N. noltii) 9 

and muddy-sand assemblages at a 52°N site that supported a combined 10 

fauna of 33 species at overall densities of >50,000 ind. m-2, for example, was 11 

>0.8 (RSK Barnes, unpubl.); c.f. the equivalent Stradbroke value of 0.13.  In 12 

temperate N. m. capricorni systems at 36°-37°S in New Zealand, van Houte-13 

Howes et al. (2004) also found little difference between overall faunal 14 

abundance, species density and species diversity in the seagrass and in the 15 

unvegetated sediment, and noted that differences in assemblage composition 16 

between the two were due mainly to differential abundance.    17 

Thrush (1991) noted that spatial autocorrelation in variables that 18 

capture the biodiversity of macrobenthic assemblages has the potential to 19 

confound experimental designs and to affect the reliability of inferential 20 

statistics that may be used to assess distribution patterns. For example, the 21 

presence of spatial dependence can result in a violation of the statistical 22 

assumption of independence of observations.  Tobler’s (1970) First Law of 23 

Geography, that objects closer together tend to be more similar than those 24 
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further apart, has repeatedly been found to apply to point sample datasets of 1 

ecological communities (Fortin and Dale, 205), although critically not here 2 

across the seagrass/bare-sand interface.  Granted the considerable 3 

differences between values of the studied assemblage metrics in seagrass 4 

and in unvegetated sand, it is hence no surprise that moderate 5 

autocorrelation was detected within each boundary zone in three of the four 6 

metrics (i.e. in faunal abundance and both species density measures).  In 7 

contrast to the other metrics, however, α species diversity showed 8 

remarkable and generally consistent resistance to autocorrelation at all sites.  9 

This might be taken to suggest that 1/N2 could potentially be a good 10 

resistant measure of biodiversity for benthic studies, albeit one strongly 11 

biassed towards the evenness component.  That this is not so, however, is 12 

suggested by the very large degree of scatter in this metric seen in both this 13 

(Fig. 4c) and the earlier study of the sites by Barnes and Barnes (2012).  14 

Indeed, despite the very marked changes in habitat type, in assemblage 15 

composition, in overall faunal abundance and in species density across the 16 

interface, the 1/N2 metric failed to detect any significant change in 17 

biodiversity there.  Its resistance could simply be a measure of its 18 

insensitivity (see Magurran and Henderson, 2010). 19 

It is also noteworthy that the results of this study do not show large 20 

straight-forward and consistent edge effects.  Earlier work on the response of 21 

benthic animals to the edges of seagrass beds has produced a complicated 22 

picture (Ries and Sisk, 2004), reactions seemingly varying from group to 23 

group (Murphy et al., 2010) and from study to study (Tuya et al., 2011) or 24 
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not even occurring at all (Nakaoka & Toyohara, 2000).  The most consistent 1 

effect has been claimed to be the greater densities of peracaridan 2 

crustaceans (including tanaids) found at edges than away from them 3 

(Boström et al., 2006).  Nevertheless, in Port Phillip Bay, Victoria, tanaids 4 

increased in abundance away from the edge, and the effect in other 5 

peracaridans was dependent on size of patch investigated (Murphy et al., 6 

2010).  In the present study, tanaids were more abundant near the edge at 7 

some sites but were less so at others, as indeed were peracaridan 8 

crustaceans in general, and microgastropod species displayed the same 9 

pattern although overall they were only half as abundant marginally.  In the 10 

Stradbroke intertidal, only one animal (the microgastropod Pseudoliotia) 11 

showed a consistent reaction.  Little previous work has concerned small, 12 

fragile, epibenthic microgastropods such as Calopia and Pseudoliotia — 13 

forms that dominate the Stradbroke seagrass patches away from edges 14 

(Barnes and Barnes, 2011, 2012; Barnes and Ellwood, 2012).  But as water 15 

velocities are known to be higher near seagrass margins (Peterson et al., 16 

2004; Murphy et al., 2010), it is perhaps not surprising that some species, 17 

such as Pseudoliotia, should be less abundant and widespread under the 18 

more turbulent conditions near the interface, maybe via effects on their 19 

recruitment (Bologna and Heck, 2002; Matias et al., 2013) or because of 20 

dislodgement (Tuya et al., 2011).  In addition, small, fragile animals may be 21 

at greater risk from predators when relatively exposed (Kark and van 22 

Rensburg, 2006; Barnes, 2010).  Generally, however, it would appear that 23 

edge effects are a variable local response to specific habitat conditions within 24 
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patch margins rather than a consistent effect of closeness to an interface 1 

with a different habitat type.  2 

Winberg et al. (2007) have highlighted the value of examining multiple 3 

measures of macrobenthic biodiversity across a variety of spatial scales. The 4 

present study has examined spatial patterning in quantitative assemblage 5 

composition and in four assemblage metrics at the local (lattice) and regional 6 

(all sites) scales traversing spatial dimensions ranging over 5 orders of 7 

magnitude from 0.25 m to 2.5 km.  Significantly, the emergent assemblage 8 

features captured in each of the four metrics could accurately and 9 

consistently be characterised across scales as second and third order 10 

polynomial regression models.  Such models further our understanding of 11 

how communities are organised in space (Peres-Neto and Legendre, 2010) 12 

and can be used as a basis for predicting community composition at 13 

unsampled locations within the spatial extent of the sample lattice, for 14 

example, underpinning interpolation techniques such as kriging.  As is the 15 

case with all interpolation (as opposed to extrapolation) methods, predictive 16 

values should not be generated outside the geographical area within which 17 

the model parameters were defined by the trend analysis.   18 

Overall, we conclude that faunal transitions across stable bare 19 

sand/seagrass boundaries in Moreton Bay take the form of very narrow 20 

ecotones indeed, across which the two assemblages react symmetrically, 21 

with the actual interface being the location of the entire change in faunal 22 

abundance and biodiversity observed between the contrasting patch types.  23 

However, this state seems unlikely to be a necessary response to changes in 24 
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the prevailing habitat conditions per se and more likely to be a specific 1 

consequence of the two low-latitude, low-abundance but high-biodiversity 2 

faunal assemblages that are interacting here (or of the key members of those 3 

assemblages), in that such marked quantitative and/or qualitative changes 4 

in assemblages do not necessarily occur across intertidal bare 5 

sediment/Nanozostera bed boundaries elsewhere, e.g. in lower latitudes. 6 
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Table 1.  Changes in assemblage composition across adjacent sampling 1 

horizons on either side of seagrass/unvegetated-sand interfaces, as 2 

estimated by the Chao/Sørensen abundance-based dissimilarity statistic, 3 

corrected for undersampling bias (estimated complete similarity = 0; 4 

estimated complete dissimilarity = 1).  Positive horizon distances are in 5 

seagrass, negative ones in unvegetated sand, the interface itself being zero.  6 

The sharp change between +0.25 and -0.25 m from the interface (in bold) is 7 

highly significant (post-hoc Tukey HSD statistic >12; P <0.0001).   8 

 9 

    Sampling horizons being compared (in metres from interface) 10 

                            >+4 to  +0.75 to  +0.5 to  +0.25 to   -0.25 to   -0.5 to   -0.75 to 11 

Site  +0.75      +0.5     +0.25    -0.25         -0.5       -0.75       >-4 12 

        13 

Deanbilla MSL  0.03      0.03       0.08       0.70        0.01        0.19       0.43 14 

Yerrol MSL   0.18      0.10       0.10     0.56 0.23      0.25 0.08 15 

Polka LWN   0.34      0.00       0.18       0.50        0.12        0.04       0.04 16 

Deanbilla LWN  0.16      0.00 0.08     0.51        0.09        0.05       0.19 17 

Polka LWS   0.16      0.00       0.04       0.43        0.07       0.02       0.09 18 

Deanbilla LWS  0.35      0.28 0.20     0.67 0.00      0.23 0.18 19 

20 
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Table 2.   Summary of post-hoc Tukey HSD tests on various macrofaunal 1 

assemblage metrics immediately on either side of the unvegetated sand/ seagrass 2 

interface (i.e. 0.5 m apart).  Significant effects are indicated in bold.   3 

 4 

  Emergent property      test statistic       P  5 

 6 

 Faunal abundance    6.87   <0.001 7 

 Observed species density   9.62   <0.0001 8 

 Estimated true species density   6.49   <0.001 9 

 α-diversity      0.16     1 10 

 11 

 12 

13 



 40 

Table 3.  Global Moran’s I statistic calculated on mean assemblage metrics at 1 

the local (individual sites) and regional (all sites) scales. Significant effects (at 2 

P <0.05) are indicated in bold. 3 

 4 

Site      Abundance Smax          Sobs      α-diversity    5 

 6 

Deanbilla MSL  0.37  0.22  0.26         -0.18 7 

Yerrol MSL   0.29    0.16  0.35  0.05 8 

Polka LWN   0.21  0.41  0.44  0.11 9 

Deanbilla LWN  0.37   0.29  0.37  0.04 10 

Polka LWS   0.42    0.41  0.43         -0.2 11 

Deanbilla LWS  0.26    0.29  0.37         -0.0009 12 

All sites   0.44  0.38  0.43   0.26 13 

 14 

15 
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Legends for Figures 1 

1.  Sampling locations, with inset showing the structure of the individual 2 

core lattices. 3 

2.  Interface between intertidal seagrass and unvegetated sandflat at Polka.  4 

Foreground width some 2 m. 5 

3.  (A) Mao Tau numbers of macrofaunal species in marginal areas of 6 

seagrass and of unvegetated sandflat in relation to (a) cumulative number of 7 

individuals sampled (squares) [i.e. species richness] and (b) cumulative area 8 

sampled, as number of cores (circles) [i.e. species density].  (Sample 9 

accumulation orders randomised 50 times.)  (B) Ranked species abundance 10 

curves.   11 

4.  The distribution of assemblage metrics across the sampling horizons on 12 

either side of the interface between unvegetated sand (-) and seagrass (+) in 13 

the six lattices:  (A) mean macrofaunal abundance (± SE); (B) mean observed 14 

(Sobs) and estimated true (Smax) species density (± SE); (C) macrofaunal α 15 

diversity values; and (D) mean number of seagrass shoots per core sample (± 16 

SE; n = 60).  Values of macrofaunal abundance and species density away 17 

from the transitional zone (>+4 and >-4) are shown for comparison in A and 18 

B. 19 

5.  Percentage of maximum total abundance of seagrass specialist (n = 55), 20 

bare-sand specialist (n = 10) and generalist (n = 8) macrofaunal species (as 21 

judged by their local distributions) in each sampling horizon on either side of 22 

the intertidal interface between unvegetated sand (-) and seagrass (+). 23 
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6.  Spatial trend analysis plot of the assemblage metrics at the local (lattice) 1 

and regional (all sites) scales. Mean values for each lattice are shown on the 2 

left hand side and values are plotted in their geographical (x,y) locations on 3 

the right hand side with the z axis depicting the value of the metric. The x 4 

axis on both the local and regional plot is a proxy for distance from the 5 

seagrass/bare-sand interface. 6 

7.  Semivariogram plots and surfaces constructed for the lattices at each site.  7 

Stated sill points for each lattice are the maximum values at that site. 8 

9 



 43 

Figure 1 1 
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Figure 2 1 
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Figure 3 1 
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