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Abstract Abstract 
Locusts and grasshoppers cause considerable economic damage to agriculture worldwide. The 
Australian Plague Locust Commission uses multiple pesticides to control locusts in eastern Australia. 
Avian exposure to agricultural pesticides is of conservation concern, especially in the case of rare and 
threatened species. The aim of this study was to evaluate the probability of pesticide exposure of native 
avian species during operational locust control based on knowledge of species occurrence in areas and 
times of application. Using presence-absence data provided by the Birds Australia Atlas for 1998 to 2002, 
we developed a series of generalized linear models to predict avian occurrences on a monthly basis in 0.5 
degrees grid cells for 280 species over 2 million km 2 in eastern Australia. We constructed species-
specific models relating occupancy patterns to survey date and location, rainfall, and derived habitat 
preference. Model complexity depended on the number of observations available. Model output was the 
probability of occurrence for each species at times and locations of past locust control operations within 
the 5-year study period. Given the high spatiotemporal variability of locust control events, the variability in 
predicted bird species presence was high, with 108 of the total 280 species being included at least once 
in the top 20 predicted species for individual space-time events. The models were evaluated using field 
surveys collected between 2000 and 2005, at sites with and without locust outbreaks. Model strength 
varied among species. Some species were under- or over-predicted as times and locations of interest 
typically did not correspond to those in the prediction data set and certain species were likely attracted to 
locusts as a food source. Field surveys demonstrated the utility of the spatially explicit species lists 
derived from the models but also identified the presence of a number of previously unanticipated species. 
These results also emphasize the need for special consideration of rare and threatened species that are 
poorly predicted by presence-absence models. This modeling exercise was a useful a priori approach in 
species risk assessments to identify species present at times and locations of locust control 
applications, and to discover gaps in our knowledge and need for further focused data collection 
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Predicting avian distributions to evaluate spatiotemporal overlap
with locust control operations in eastern Australia
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Abstract. Locusts and grasshoppers cause considerable economic damage to agriculture
worldwide. The Australian Plague Locust Commission uses multiple pesticides to control
locusts in eastern Australia. Avian exposure to agricultural pesticides is of conservation
concern, especially in the case of rare and threatened species. The aim of this study was to
evaluate the probability of pesticide exposure of native avian species during operational locust
control based on knowledge of species occurrence in areas and times of application. Using
presence–absence data provided by the Birds Australia Atlas for 1998 to 2002, we developed a
series of generalized linear models to predict avian occurrences on a monthly basis in 0.58 grid
cells for 280 species over 2 million km2 in eastern Australia. We constructed species-specific
models relating occupancy patterns to survey date and location, rainfall, and derived habitat
preference. Model complexity depended on the number of observations available. Model
output was the probability of occurrence for each species at times and locations of past locust
control operations within the 5-year study period. Given the high spatiotemporal variability of
locust control events, the variability in predicted bird species presence was high, with 108 of
the total 280 species being included at least once in the top 20 predicted species for individual
space–time events. The models were evaluated using field surveys collected between 2000 and
2005, at sites with and without locust outbreaks. Model strength varied among species. Some
species were under- or over-predicted as times and locations of interest typically did not
correspond to those in the prediction data set and certain species were likely attracted to
locusts as a food source. Field surveys demonstrated the utility of the spatially explicit species
lists derived from the models but also identified the presence of a number of previously
unanticipated species. These results also emphasize the need for special consideration of rare
and threatened species that are poorly predicted by presence–absence models. This modeling
exercise was a useful a priori approach in species risk assessments to identify species present at
times and locations of locust control applications, and to discover gaps in our knowledge and
need for further focused data collection.

Key words: Australia; Australian plague locust; avian species occurrence; Chortoicetes terminifera;
ecotoxicology; fipronil; generalized linear models; locust control pesticides; locust outbreaks; organophos-
phates; predictive models; risk of exposure to pesticides.

INTRODUCTION

Agricultural pesticide effects on birds are a concern

worldwide (Mineau and Whiteside 2006). Locust

control operations represent one of the greatest uses

of pesticides in Australia due to the potential impact

of these insects on extensive agricultural areas. The

most destructive orthopteran pest in eastern Australia

is the Australian plague locust (Chortoicetes terminif-

era Walker), with outbreaks typically requiring

control in one of every two years (see Plate 1). The

Australian Plague Locust Commission (APLC) is

responsible for controlling locust populations that

pose an interstate threat in eastern Australia (Sym-

mons 1984). Since its operation began in 1977, the

APLC has used aerially applied broad-spectrum

chemical insecticides in this task. Whenever possible,

the control strategy has been preventive, spraying

flightless hopper bands, aiming to prevent swarm

formation and invasion of agricultural areas (Casimir

1965, Hunter 2004). Over the last 50 years various

broad-spectrum chemical insecticides have been ap-

plied aerially over eastern Australia, with the preva-

lence of the organophosphate fenitrothion in the last

two decades (Hunter 2004). In an attempt to reduce

the rate of application and potential effects on

vertebrates (Story et al. 2005), fipronil, a novel
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phenyl-pyrazol insecticide (Cole et al. 1993), was

introduced in 1999 as an alternative to organophos-

phate use. Although an effective insecticide at very

low application rates (Balança and de Visscher 1997),

fipronil has longer environmental persistence than

organophosphates (Ying and Kookana 2002). Locust

outbreaks provide an important ephemeral food

source for birds and are often accompanied by wide

and diverse bird assemblages (Szabo et al. 2003).

Thus, use of the moderately persistent fipronil has the

potential to prolong pesticide exposure to birds and

other animals consuming locusts. Also, indirect effects

of fipronil have been shown to be substantial: in

Madagascar the numbers of termite-feeding mammals

and reptiles have decreased because of long-term

decline in their termite prey (Peveling et al. 2003).

Australian birds native to semiarid regions are of

particular concern in that they are highly mobile and

are attracted to the same areas of recent rainfall and

increased productivity that stimulate locust outbreaks

(Davies 1984, Maclean 1996). Many avian species

preferentially consume locusts when available (Loyn

et al. 2001) and such food abundance provides

excellent conditions for breeding (Immelman 1963).

These conditions compound risks of both pesticide

exposure and effect, as evident in similar conditions of

ephemeral insect abundance, where the use of insec-

ticides has led to substantial mortality in predators

inadvertently exposed to pesticide control agents

(Hooper et al. 2003).

The APLC has increased its level of environmental

responsibility; for example, pesticides of lower toxicity

are used at reduced application rates as barrier

treatments and Metarhizium anisopliae var. acridum

FI-985, an entomopathogenic fungus, is used in

environmentally sensitive areas (Story et al. 2005).

Nonetheless, exposure of nontarget animals remains a

problem (Fildes et al. 2006, Story et al. 2007). More

than one-third of Australia’s threatened bird species

occur in the arid and semiarid zones (Reid and Fleming

1992), where locust outbreaks also occur. Therefore, it is

a conservation and management priority to identify

areas where birds and locust control coincide spatially

and temporally to anticipate potential for avian

exposure to, and potential effects of, locust control

pesticides.

The aim of this study was to evaluate the potential for

avian exposure to operationally applied locust control

pesticides in eastern Australia based on knowledge of

species occurrence in areas and at times of application.

We link bird survey data with environmental and other

spatiotemporal variables to predict the probability of

occurrence of a species in areas and times of interest. We

test the strength of these models in predicting species

occurrence and their resulting utility for informing

environmental managers of possible risks prior to

insecticide applications.

METHODS

Data set

Data were obtained from the Birds Australia Atlas

project database for continental eastern Australia,

between 136.008 and 152.008 E longitudes, and 17.008
and 37.008 S latitudes for the period 1998 to 2002. Based

on their geographical distribution, 280 species present in

the general area of locust control operations were

identified for inclusion in the analysis. Our database

extract contained 2 344 589 bird observations recorded

in 141 876 surveys. Each observation included a record

form number, location name and coordinates, start and

finish date, and survey method. The common name and

the Royal Australasian Ornithologists Union (RAOU)

code of the species observed at each location were also

recorded. From these data, a presence–absence matrix

was generated for the 280 species for each survey.

Sightings for each species were converted into point

coverage in ArcView GIS version 3.2a (ESRI 1992–

2000). This point layer was overlaid with a 0.58 grid,

rainfall, and vegetation polygon layers to consolidate

these attributes of the survey event and deduce spatial

and temporal information concerning the distribution

and habitat preference of each species. We used this

relatively coarse grid size based on the available bird

data; clearly in situations in which data density is

greater, it would be desirable to reduce the grid size.

Daily rainfall data for Australia for 1998–2004 were

obtained in a raster format from the Australian Bureau

of Meteorology. These data were converted into

polygon format, and monthly total rainfall values for

the 0.58 grid cells were generated by summing individual

daily interpolations in ArcInfo version 7.0.3 (ESRI

1995–2000). To simplify calculations, the obtained

monthly total rainfall values were treated as the real

value for each point of an individual 0.58 grid cell. The

habitat layer was based on the Vegetation–Post-Euro-

pean Settlement (1988) database of Geoscience Australia

(1990), reclassified into 18 categories. For a detailed

description of the methods and the resulting habitat

categories, see Szabo et al. (2007).

The Birds Australia Atlas data were collected by

volunteers in an ad hoc manner, using various area–

search methods and incidental observations. Analyses of

the data demonstrated potential limitations for their use,

specifically, that surveys were spatially and temporally

biased (Szabo et al. 2007). In an effort to develop

predictive capabilities and based on the characteristics of

the data, such as presence–absence records and non-

normal distributions, generalized linear models (GLM)

were identified as a suitable method to predict proba-

bilities of bird species occurrence (McCullagh and

Nelder 1983). Generalized linear models are a widely

used tool to predict species distributions on the basis of

environmental variables and have been used to model

avian distributions, such as patterns of distribution in

Australian woodland birds (MacNally 1990) and bird
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species distributions based on bird atlas results (Osborne

and Tigar 1992). In the case of bird survey data, GLM

consider all surveys simultaneously, thus avoiding the

necessity for using data for an isolated spatial point or

temporal instant. GLM can also handle different

binomial, ordinal and continuous, and temporal vari-

ables (Harrison and Navarro 1994).

Model building

Given the binomial nature of the dependent variable

(i.e., yes–no data on bird species presence), the logit-link

function and binomial error function were used to

identify which variables explained a significant propor-

tion of the presence of a particular bird species. The

general equation of the logistic regression model was:

P(y) ¼ (eLP)/(1 þ eLP) or ln[p/(1 � p)] ¼ LP, where LP

was the linear predictor fitted by logistic regression. To

obtain probability values, an inverse-link transforma-

tion was used (Guisan and Zimmermann 2000).

In the model, presence–absence data were used as the

dependent variable. Based on our knowledge of the

biology of the species in question, 23 environmental

variables were derived from a GIS as the explanatory

variables, including climatic (rainfall), geographic (co-

ordinates), temporal (month), and habitat variables (see

Appendix A). To obtain the general equation, some

variables were transformed. All response functions were

modeled as linear, quadratic, or trigonometric. Several

ecologically sound models were tested for each species,

and the best-fit model was selected based on the Akaike

information criterion (Akaike 1973). The geographic

variables used were: x (latitude), y (longitude), x2, y2,

xy. The time variable ‘‘month’’ was 1 for January, 2 for

February, and so on. The functions cm6¼ cos(month3
p/6), sm6 ¼ sin(month3 p/6), cm3 ¼ cos(month3 p/3)
and sm3¼ sin(month3 p/3) were taken into account as

new time variables to capture the periodic nature of

modeled phenomena. The variable ‘‘rain’’ was the

rainfall in the considered month in the grid cell of the

observation, whereas ‘‘lagrain’’ was the rainfall of the

previous month in the same grid. To minimize the

influence of high rainfall events that could influence the

results out of proportion, the square root of the rainfall

values was used in the models. Habitat preference was

calculated independently for each species. To incorpo-

rate habitat preference as a variable (‘‘habpref’’) into the

model, habitats with more than 10% of a species’

observed occurrences were included in ‘‘like,’’ while

those with less than 2% were included in ‘‘dislike.’’

Although habitat-specific reporting rates were continu-

ous variables, habitat preference by a given species was

entered in the model as categorical variables ‘‘like’’ and

‘‘dislike.’’ The variable ‘‘method’’ had four categories,

three formal survey types, ‘‘2-ha area search’’ for 20

minutes, ‘‘area search within a 500 m radius’’ for at least

20 minutes, and ‘‘area search within a 5 km radius’’ for

at least 20 minutes; plus an additional provision for

‘‘incidental’’ sightings, in which no formal survey was

made (Barrett et al. 2003).

The models were run using R version 2.0.1 (R

Development Core Team 2004). Each species was

modeled in a separate run using a possibly different

combination of predictors. Given the different habitat

preference and the highly variable reporting rates of

different species, the general model was tailored to data

available for a given species. This species-specific subset

of predictors proved more predictive at the model

calibration step than one general model for all species.

Our original goal was to generate similar models for all

bird species. However, because the number of observa-

tions for each species limited the complexity of the model,

the models were adapted to this limitation. Because of

this, the individual species models consisted of a general

term (LP1) accounting for the species-specific habitat

preference, and a specific term (LP2) that encompassed

the ‘‘observability’’ of the species. Due to the large

number of terms, it is convenient to adopt a ‘‘coefficient-

free’’ form of model specification, as is common in

statistical packages. For example, xþ y specifies a linear

predictor of the form b0þ b1xþ b2y, while (xþ y)3 z is

interpreted as b0þb1xþb2yþb3zþb4xzþb5yz. In other

words, multiplication signs (3) indicate interactions

between the terms in the parentheses.

Because some species were never sighted in some

habitats, it was not feasible to include a nominal

predictor variable with 18 habitat types due to

collinearity. In order to get around this issue without

losing information by imposing coarser classification

of habitat, the following procedure was adopted. For

combination of species and habitat type, a habitat

preference ratio ‘‘habpref ’’ was calculated as Nsi/Nsu,

where Nsi ¼ number of sightings, Nsu ¼ number of

surveys in the same habitat. For each species, the

linear predictor LP1 included the individual indicator

variable of all ‘‘liked’’ habitats with ‘‘habpref ’’ . 0.10

and Nsi . 3, together with a species-specific indicator

variable ‘‘dislike,’’ lumping together all habitats with

‘‘habpref’’ , 0.02. When all habitats were either liked

or disliked, the ‘‘dislike’’ term was omitted to avoid

collinearity. The second part of the model (LP2) was

based on spatial coordinates (x, y), cyclic trigonomet-

ric functions of month of the year (cm6, sm6, cm3,

sm3), rainfall (in mm) at the location of the survey in

the given and previous months (rain, lagrain), and

survey method (method). In the case of rare species, it

is only feasible to fit a GLM with a small number of

terms. For abundant species, a relatively complex

model including interactions among time, space, and

rainfall is needed in order to capture interesting

features such as migratory behavior. Therefore a set

of four models of increasing complexity were adopted

according to the number of sightings of a particular

species. The simplest model ignores time and has only

three terms. As the number of sightings increases,

JUDIT K. SZABO ET AL.2028 Ecological Applications
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additional terms can be added without introducing

problems of collinearity or overfitting:

Convergence problems were identified by the number

of Fisher iterations: when this number was higher than

12, the fitting was repeated with a model simplified by

one step (McCullagh and Nelder 1983). This was usually

the case for species with few observations (reporting rate

, 0.0005). Model performance was evaluated based on

the r2 of the model fit and the area under curve (AUC)

values (Pearce and Ferrier 2000).

The probabilities of occurrence of each species in each

month and each grid cell were calculated in R and the

results were imported to ArcView for visual display. In

general, the results of GLM can be visualized easily in a

GIS, with the calculation of the inverse of their link

function (Guisan and Zimmermann 2000).

The probability of co-occurrence of a given bird

species with APLC locust-spraying events was calculated

in R by running the models at the time and location of

locust control events (data obtained as a GIS layer from

APLC). Between 1998 and 2005, 2277 spraying events

occurred in the study area. The 50 events that occurred

in January 1998 were excluded because the variable

‘‘lagrain’’ was not available from the previous month.

The models were run to obtain probabilities for grid cells

instead of discrete points to allow for the variation in the

area of land sprayed and the mobility of birds. For this,

rainfall data were recalculated for grid cells, percentages

of all vegetation categories in the particular grid cell

were used, and the coordinates used were those of the

center of the grid cell. For the very common species, in

which ‘‘method’’ was one of the predictors, the category

‘‘2-ha area search’’ was used for the predictions. For

each species, the probability of co-occurrence with one

locust control event was calculated separately by

summing the probabilities of being present in each

spraying grid-month. Grid-month is a unit defined both

spatially and temporally, including events that occurred

in a particular grid cell within the same calendar month.

For instance, spraying events on 31 January and 1

February at the same exact location were considered two

separate grid-month events, whereas one on 1 March

and another on 31 March at the same location were

counted as one. Two events on the same day at a

relatively close location but in different grid cells were

counted as two grid-months events.

Probabilities of occurrence in the grid-month of

locust-spraying events were calculated for all bird

species. The probabilities of occurrence were compared

among species and the 20 species with the highest

probabilities of being present at each locust control grid-

month were identified.

Model evaluation

To evaluate the model we used two independent data

sets, the so-called ‘‘training’’ and ‘‘evaluation’’ data sets,

sensu Guisan et al. (1999). The Birds Australia Atlas

data were used as the training data set, while the

evaluation data set was obtained during field trips,

which occurred before the model was developed to avoid

bias in the data collection. Nine field trips, of 5–22 days

in duration, were conducted by one of the authors (J. K.

Szabo) between 2001 and 2005 in areas of known or

potential locust infestations and insecticide treatment in

New South Wales (NSW) and Queensland (Qld) (Fig.

1). Most observations were made in highly modified

agricultural habitat, predominantly grazing land. The

Riverina region of NSW was visited three times: in 2001,

2004, and 2005. In the first year, there was minimal

locust activity, whereas during the other two trips, large

locust swarms of medium to high density were seen.

Another trip was conducted in northern NSW in 2001,

covering an area of 55 000 km2 over a variety of

habitats. Surveys were spatially scattered and no locust

bands or swarms were observed; however, birds were

seen feeding on locusts and other insects. The Armidale

field trip included three study sites, one with a creek

system, previously sprayed with fenitrothion. All survey

locations had drying green vegetation, mostly tussock

grasses and thistles. Locust hoppers were present in

higher densities and were sprayed with Metarhizium and

fipronil by the APLC. All other field trips were

conducted in Queensland. The Quilpie sites, visited in

2003 and 2004, had ‘‘Arid grass’’ vegetation with sparse

Acacia cover, cleared for grazing (for vegetation

category descriptions, see Szabo et al. 2007). Locust

activity only occurred in 2004 and the locust bands were

sprayed with fipronil and fenitrothion. Additionally,

Astrebla National Park was surveyed in 2003 and

Windorah in 2004. Two trips were made to central

Queensland near Tambo in 2003 and 2005 to areas

covered mostly in open ‘‘Astrebla’’ pastures and cleared

‘‘Eucalypt woodland’’ habitat. Overall, field trips varied

in the number of survey points, with the fewest (24) in

Quilpie 2004, and the most (61) in Riverina 2004. At

each survey location, 20-minute area searches were

conducted as described by Loyn (1986), and geograph-

ical location (x, y coordinates), day, month, year, time

of the day, species, maximum numbers of birds seen, and

their activity (e.g., feeding on locusts) were recorded.

No. sightings Model for LP2

Nsi , 100 x þ y þ ffiffiffiffiffiffiffiffi

rain
p

100 � Nsi � 500 x þ y þ x2 þ y2 þ cm6 þ sm6

þ cm3 þ sm3

þ ffiffiffiffiffiffiffiffi

rain
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lagrain
p

500 � Nsi � 5000 (x þ y þ x2 þ y2)

3 (cm6 þ sm6 þ cm3 þ sm3)

þ (x þ y) 3 (
ffiffiffiffiffiffiffiffi

rain
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lagrain
p

) þ xy

Nsi . 5000 (x þ y þ x2 þ y2)

3 (cm6 þ sm6 þ cm3 þ sm3)

þ (x þ y) 3 (
ffiffiffiffiffiffiffiffi

rain
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lagrain
p

)

þ xy þ method.
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Models for each species on the training data set were

evaluated at particular locations and times correspond-

ing to those of the field trips that provided the

evaluation data set. The individual probabilities of

being present at locations in a field trip were summed

to obtain a cumulative predicted occurrence for each

species. This value was compared with the total number

of sightings of the same species at that particular field

trip. From the expected cumulative occurrence vs. the

observed numbers regression, residuals were calculated

for each species for each field trip. Because under- and

over-predicted probabilities of particular species indicate

ineffectiveness in the model’s predictability for the given

site, species with high absolute residual values (,�5 or

.5, arbitrarily chosen) were selected in each field trip

data set for further interpretation. References to species

refer to their common names as recorded in the Birds

Australia Atlas; scientific nomenclature follows Sibley

and Ahlquist (1985). Scientific names and families of the

species mentioned in the figures and tables are shown in

Appendix B.

RESULTS

Species-specific significant coefficients were selected

from the individual model runs for each species. For

most species, geographic location was important in

linear, as well as quadratic and interaction, terms. Time

as a predictor was significant in approximately half of

the species. As noted in Methods, a different set of

habitats was included in the model for each species, and

from these, not all were significant as a single term. The

number of species for which particular parameters were

significant is shown in Appendix C. The predictive value

of the models was highly variable depending on the

species (Fig. 2).

The 2227 point locations of locust control spraying

events from 1998 through 2005 corresponded to 326

grid-month control events. When bird species were

ranked according to the probability of occurrence, the

order of species was different in each spraying grid-

month. Given the spatial and temporal variability of the

locust control events, a high number of species (108)

were among the top 20 in at least one grid cell with

locust control (Table 1).

A total of 346 point locations from nine field-derived

evaluation data sets were used to evaluate the species

models (Fig. 2). Observed and cumulative predicted

species occurrences were compared for each field trip (see

two examples in Fig. 3). Even though these data sets

were spatially and temporally different, their results were

FIG. 1. Survey locations used in GLM evaluation. Field trip descriptions include the time of the survey, the number of survey
points (n), and presence or absence of Australian plague locusts. All sites with locusts were controlled.

JUDIT K. SZABO ET AL.2030 Ecological Applications
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quite similar. For most species, the prediction was

reliable; that is, under- and over-predicted species did

not represent a high proportion of all species. Interest-

ingly, under-predictions were biased toward sites with

locusts present: 29 species were under-predicted only at

sites with locust presence, 11 species were under-

predicted on both locust and non-locust sites, and three

species were under-predicted at sites without locusts

(Table 2). Compared to the number of under-predicted

species, fewer species (19) were over-predicted at sites

with locust presence only, six species were over-predicted

on both locust and non-locust sites, and no species were

over-predicted at sites without locust only (Table 3). In

both under- and over-predicted species, the more species

observed at a site, the greater the accuracy of the

prediction (r2 ¼ 0.2252 between the number of species

seen and the percentage of low residuals, IB (in balance)

values in Table 4, for all sites). Locust presence improved

this relationship (r2¼ 0.4856 for sites with locusts). The

number of species seen at a site was inversely related to

the proportion of under-predicted species and the

strength of this relationship also improved with locust

presence (r2¼ 0.3598 and r2¼ 0.8118 for all sites and for

sites with locusts, respectively). The number of over-

predicted species similarly declined with the increase in

the number of observed species, although r2 values were

very low (,0.05; Table 4).

DISCUSSION

Model predictions

We used two different measures to evaluate model

performance, r2 and AUC. The reasons for many very

high AUC values are twofold. Even without using any

data at all, a prediction that a species will never be

present would turn out to be correct a large proportion

of the time and the ROC curves on which the AUC is

based only depend on the relative order of the predicted

probabilities, rather than the actual values of these

probabilities. Thus it is possible for the predicted

probabilities to be quite inaccurate and still obtain a

good AUC. AUC measures thus gave an overly

optimistic assessment of prediction performance, where-

as r2 measures give an overly pessimistic assessment.

FIG. 2. Comparison of correlation coefficient (r2) and area under curve (AUC), two accuracy techniques for the predictive
models for 280 bird species. (A) Distribution of r2 values. Species for which r2 . 0.5 are identified by numerals above histogram
bars: 1, Chestnut-banded Whiteface (N¼ 63 individuals); 2, Yellow-plumed Honeyeater (N¼ 6261); 3, Torresian Crow (N¼ 7206);
4, Banded Whiteface (N¼ 246); 5, Eyrean Grasswren (N¼ 126); 6, Thick-billed Grasswren (N¼ 55); 7, Spinifex Pigeon (N¼ 424);
mean¼ 0.198, SD¼ 0.119. The panel is based on Szabo et al. (2007), with permission. (B) Distribution of area under curve values:
mean¼ 0.802, SD¼ 0.113.

TABLE 1. Bird species predicted most frequently to be present
at each locust control event and the probability of their
occurrence in the eastern Australia study areas.

Species Percentage

Willie Wagtail 100
Galah 99.69
White-plumed Honeyeater 99.39
Australian Magpie 97.85
Crested Pigeon 97.24
Magpie-lark 96.01
Australian Raven 79.75
Weebill 76.07
Striated Pardalote 72.70
Grey Shrike-thrush 59.51
Spiny-cheeked Honeyeater 55.83
Yellow-throated Miner 53.37
Rufous Whistler 52.45
Brown Treecreeper 46.93
Black-faced Cuckoo-shrike 46.63
Singing Honeyeater 43.56
Red-rumped Parrot 42.33
Australian Ringneck 40.80
Pied Butcherbird 36.20
Noisy Miner 32.21

Notes: Percentage indicates the proportion of times the
species occurred among the top 20 in each of the 326 grid-
month units. For scientific names see Appendix B.
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The GLM predicted that high numbers of avian

species are likely to coincide spatially and temporally

with locust control events in eastern Australia. Widely

distributed, common species were predicted to be

present at more than 95% of the locust control events,

with maximum predicted probabilities of presence in

locust-spraying grid-month units ranging from 0.391

(Magpie-lark Grallina cyanoleuca) to 0.703 (White-

plumed Honeyeater Lichenostomus penicillatus). Rare,

habitat-specialist species were predicted to be present at

fewer locust control sites with lower probabilities. For

instance, the highest predicted probabilities of presence

for habitat specialists Gibberbird (Ashbyia lovensis) and

Plains-wanderer (Pedionomus torquatus) in a locust

control grid-month were only 0.062 and 0.037, respec-

tively. However, these species had low predicted

probabilities of occurrence not only in locust control

grid-month units, but also at other times and locations.

Rare species with a restricted range could be present

with high probabilities at locust control events that

occur in their preferred habitat. In fact, we know from

previous studies on the Plains-wanderer (Story et al.

2007) that this particular species has a high risk of

exposure; thus we assume that the probabilities predict-

ed by the models for similar rare species are under-

predictions due to a lack of sufficient data. For the

Plains-wanderer and other similar species, more data are

required for reliable predictions. A study focusing on a

TABLE 2. The number of times a bird species was under-predicted by GLM with residuals .5 at sites with and without locusts.

Species

No. under-predictions

Locusts present No locusts

Australian Magpie 5 2
Australian Raven 5 1
Nankeen Kestrel 4 3
Brown Falcon 4 2
Richard’s Pipit 4 1
White-browed Woodswallow 4 0
Masked Woodswallow; Budgerigar; Brown Songlark 3 0
Black Kite; Zebra Finch; Singing Bushlark 2 1
Galah; Masked Lapwing; Crested Pigeon; White-faced Heron; Straw-necked Ibis; White-
necked Heron; Wedge-tailed Eagle; White-breasted Woodswallow; White-winged Triller

2 0

Australian Pratincole 1 2
Banded Lapwing; White-winged Chough 1 1
Apostlebird; Blue Bonnet; Noisy Miner; Grey-crowned Babbler; European Starling;
Australian Wood Duck; Yellow-rumped Thornbill; Grey Teal; Little Pied Cormorant;
Chirruping Wedgebill; Diamond Dove; Whistling Kite; Magpie-lark;
Black-faced Woodswallow

1 0

Australian Bustard; Emu; Black-shouldered Kite; White-winged Fairy-wren 0 1

Notes: Boldface font indicates that the species was observed feeding on locusts. For scientific names see Appendix B.

FIG. 3. Cumulative predicted occurrence and field observations of bird species at field trip locations: (A) Northern NSW
(without locusts present) and (B) Quilpie/Windorah 2004 (with locusts present). The most under-predicted species are labeled by
species name.
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single species with a high conservation interest in a high-

risk area (the Plains-wanderer in the Riverina region of

NSW), is currently underway (J. K. Szabo, unpublished

data).

Using the models developed here, the occurrence of

rare species cannot be predicted with confidence, due to

the limitations of the Birds Australia Atlas data set. For

some species, additional variables should be included in

the model to reliably predict their distribution. The

scarcity of available data restricted the complexity of the

predictive models (Szabo et al. 2007). However, the

models worked better for other, more common species.

Although classification techniques such as support

vector machines and tree-based methods are very

effective for a variety of situations, they are also prone

to overfitting, especially when the domain of the test

data differs from that of the training data. One of the

many challenges in this study was that the times and

locations of particular interest (i.e., locust outbreaks and

sprayings) did not correspond very closely to typical

times and locations within the database. Another

challenge was the high degree of inherent variability:

whether or not a particular species was sighted on a

particular occasion was largely a matter of chance rather

than a reproducible phenomenon. We believe that, in

this situation, simpler models such as logistic regression

can outperform more sophisticated techniques.

The Birds Australia Atlas data provide a novel and

hitherto unavailable source of data on Australian birds.

Unlike grid-based national atlases, the Birds Australia

Atlas is point based, which is one of its most important

features, allowing for georeferencing (Barrett et al.

2003). Its data collection was limited as it depended

upon a relatively small number of dedicated volunteers

in a vast and mostly unpopulated country. Nevertheless,

it does represent the only large-scale attempt to evaluate

species presence in remote and poorly populated areas.

Because the abundance of certain avian species is likely

to increase in locust infested areas (as observed in the

case of some species), the use of presence–absence data

alone will result in a conservative evaluation of pesticide

risk to avian populations. Of course, predictions would

be more accurate were the data actual counts of

individuals, as opposed to presence–absence.

In some instances, when low predicted probabilities at

locust control locations were reliable, this may have

been a result of habitat preference of these species,

particularly avoidance of agricultural and pastoral areas

where locust control activities typically occur. However,

locust control sometimes occurs on nonagricultural and

non-pastoral lands, and it is these events that will have

TABLE 4. Summary of the comparison of the model predictions and the evaluation data sets per field trip.

Study site, year, and
locust presence–absence

No. species
recorded

Correlation
No. species Proportion

(predicted/observed) UP OP UP OP IB

Locusts present

Riverina 2005 99 0.607 5 2 0.05 0.02 0.93
Riverina 2004 90 0.620 14 13 0.16 0.14 0.70
Quilpe 2004 81 0.553 10 15 0.12 0.19 0.69
Tambo 2005 81 0.492 8 0 0.10 0.00 0.90
Tambo 2003 72 0.479 14 3 0.19 0.04 0.76
Armidale 2003 56 0.461 17 6 0.30 0.11 0.59

Locusts absent

N.NSW 2001 114 0.461 7 2 0.06 0.02 0.92
Riverina 2001 65 0.670 7 2 0.11 0.03 0.86
Quilpe 2003 49 0.519 6 3 0.12 0.06 0.82

Notes: Pearson correlation values between predicted and observed numbers were all at P , 0.01. For under-predicted (UP)
species, residuals , �5; for over-predicted (OP) species, residuals . 5; in-balance (IB) species have residuals between�5 and 5.

TABLE 3. The number of times a bird species was over-predicted by GLMwith residuals less than�5 at sites without locusts and at
sites with locust occurrences.

Species

No. over-predictions

Locusts present No locusts

White-plumed Honeyeater 3 2
Striated Pardalote 2 1
Rufous Whistler 2 0
Grey Shrike-thrush; Weebill; Yellow-throated Miner; Pied Butcherbird 1 1
Superb Parrot; Noisy Friarbird; Yellow-rumped Thornbill; Rufous Songlark; Superb Fairy-
wren; Brown Treecreeper; Sulfur-crested Cockatoo; Sacred Kingfisher; Noisy Miner; Grey
Butcherbird; Black-faced Cuckoo-shrike; Grey Fantail; White-throated Gerygone; Spotted
Bowerbird; Australian Ringneck; Peaceful Dove; Apostlebird; Rainbow Bee-eater 1 0

Notes: Boldface font indicates that the species was observed feeding on locusts. For scientific names see Appendix B.
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the greatest potential to lead to exposure of birds that

avoid disturbed habitats.

The validity of the predictions in a model depends on

the quality of the input data and the statistical

components. Model choice took into account the goals

that it was set to achieve and represented a compromise

between reliability and complexity. A very simple model

rarely explains the phenomenon studied, whereas a

complicated model can be impossible to develop

completely (Burnham and Anderson 2002). When

included, rainfall seemed to be a strong temporal force,

especially as it was the only factor reflecting between-

year difference in the same month of different years

(year not being included as a factor). Because the models

were developed to predict probabilities at locust control

events, ideally locust presence should have been among

the predictors. Unfortunately, data available describing

locust presence (as opposed to locust control events) is

not reliable enough for this purpose, and predicting the

probability of occurrence of locust species presents the

same problems as those predictions for birds, i.e., lack of

data and dependence on unpredictable variables, such as

rainfall.

The inclusion of additional predictors would further

complicate bird models and, for some species, the

complexity of the model was already restricted by data

availability (i.e., the number of observations available in

the Birds Australia data set). For these and potentially

additional species with insufficient data, further compli-

cating the models would not be a useful exercise.

Compared to species with robust data sets, models for

rarely observed species were simpler, with lower quality

fit; as a consequence, their distribution was not well

explained by their models. The solution for these species

would be additional field surveys, preferably at sites with

locust presence or control. These data could be

incorporated into the training data set to improve

predictions.

Because the input to the species models was bird

sightings, the models do not predict occurrence, but

rather the ‘‘observability’’ of species, i.e., the probability

of seeing the species if we searched in that particular

location at a particular time. Therefore, the model will

necessarily under-predict hard-to-see, rare, or cryptic

species.

The GLM approach that we used requires a minimal

data set; the smaller or more diffuse the data, the less

reliable the assessments will be for rare species. GLM

makes a number of assumptions about the data that

require testing before application. Typically, these

assumptions imply the following conditions: (1) there

exists a probability (dependent variable) for any possible

linear combination of the independent variables; (2) the

variability of the dependent variable is linearly explained

by the independent variables as a linear predictor; and

(3) the distribution of the dependent variable (the

inverse of which is the link function) is known (in this

case, it was assumed that GLM with a logit-link

function would fit well); (4) the values of errors were

independent of each other across observations, as well as

independent of the independent variables in the model;

(5) the covariance of dependent variables was constant

across cells; and (6) there was no multicollinearity (i.e.,

linear independence) among the independent variables

(McCullagh and Nelder 1983, Venables and Ripley

1994). There were limitations in our ability to meet all of

these assumptions, which were a result of working with

field data. Coarse data resolution and data bias

probabilities are unavoidable when working on field

data collated centrally from various sources without a

consistent sampling strategy.

Even though the amounts of data available seem vast

compared to other countries with locust outbreaks, there

was a lack of bird survey data for both areas and times

of locust control, given the spatiotemporal bias in the

Atlas surveys (Szabo et al. 2007). As our main interest

was to predict avian presence–absence at these exact

locations and times, it was necessary to use more

complicated models for data extrapolation. The predic-

tions of the model were less reliable in locations with

fewer visits because the model interpolates data from

more frequently visited locations, causing spatial uncer-

tainties. This problem was especially relevant in the case

of rarely recorded bird species that were often such a

small component of the data set that they cannot be

reliably used to build predictive models. Intensive

sampling would be necessary to develop predictive

models for rare species and quantify their habitat

preference.

Different bird species ‘‘behaved’’ differently in the

sense that different factors, such as sampling intensity

and method, affected them to a varying degree, which

required customized models when predicting their

distributions. Also, avian species differed in their

distribution, rarity, habitat preference, and temporal

variations in the number of times they were recorded.

For most species, the abundance data showed a highly

skewed distribution, with zeros (species not found)

occurring most frequently. Results of the habitat

preference calculations were in accordance with the

literature for those species with sufficient input data, but

are contradictory for rare species, for which a few odd

sightings can distort the results.

The Australian Atlas data set was composed of four

different survey methods (Barrett et al. 2003); however,

for the model predictions for field trip and spraying

locations, only one method, the 2-ha area search, was

used. Because the spraying predictions refer to grid cells

instead of a point location, it might have been better to

use an average of all methods according to their

proportions in the database, or to choose a method

that maximizes the probability for that particular

species. The method with the maximum reporting rate

is species specific, but it would only be an issue for very

common species (n � 5000), as ‘‘method’’ was not

chosen as one of the predictors for all other species in

JUDIT K. SZABO ET AL.2034 Ecological Applications
Vol. 19, No. 8



order to reduce model complexity. For very common

species, the method with the highest proportion of

sightings was usually the 5-km area search. The 2-ha

area search method was chosen as a predictor because

this was the method used on the field trips.

In summary, because of the high number of uncon-

trolled variables inherently present in a non-manipula-

tive design, models based on such data may have high

uncertainties associated with them (Oreskes et al. 1994).

Model evaluations

In general, it is possible to reject a model when its

results are not credible, but it is not possible to validate a

model by comparing its results to limited sampling data

(Rykiel 1996). Predictions reported in this study are

probabilities of occurrence of a bird species at a given

location at a given time, with values between 0 (absence)

and 1 (presence). A high probability value does not infer

the presence of a species at one visit to the area (Nicholls

1989); rather, probabilities can be interpreted as the

proportion of times the species is expected to be seen out

of a large number of visits (e.g., a probability of 0.01

means that the species would be expected to be present

at the given location around 30 times if the area is visited

3000 times). As relatively few locations were visited

during the individual field trips, the predictions of the

models were tested on a small data set and a perfect fit

could not be expected. Still, the field surveys of avian

species occurrence and behavior during locust outbreaks

demonstrated the strength of the derived species list,

identified under-predicted and unanticipated species and

emphasized the need for special considerations for rare

and threatened species. For the majority of the species,

the models were in agreement with the field-collected

evaluation data set. In general, the more species seen at a

site, the greater the accuracy of the predictions and the

lower the proportion of under-predicted species. Locust

presence further improved this relationship. In field trips

in which there was a high level of locust activity, a higher

number of species was under-predicted than over-

predicted, suggesting that aspects of the site (i.e.,

abundance of an irruptive food source) positively

attracted the birds to it. For these species, the absolute

value of the residuals was higher at field trips with locust

activities than at field trips without significant locust

activities. This suggests that locust presence contributed

to the higher occurrences of some avian species, such as

the Australian Raven (Corvus coronoides), Richard’s

Pipit (Anthus novaeseelandiae), White-browned Wood-

swallow (Artamus superciliosus), Masked Woodswallow

(A. personatus), and Brown Songlark (Cincloramphus

cruralis). All of these species have been observed feeding

on locusts in the field (J. K. Szabo, unpublished data).

Other, non-insectivorous bird species were also under-

PLATE 1. Australian plague locust (Chortoicetes terminifera Walker) swarm photographed during the 2004 Riverina outbreak.
Inset: a mature individual. Photo credit: J. K. Szabo.
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predicted at some field trips, some of which, notably the

Zebra Finch (Taeniopygia guttata) and the Budgerigar

(Melopsittacus undulatus), are nomadic, and were

probably attracted to the sites by the abundance of

grass seeds (Wyndham 1983, Zann 1996). Over-predict-

ed species, such as the White-plumed Honeyeater,

Rufous Whistler (Pachycephala rufiventris), Sacred

Kingfisher (Todiramphus sanctu), and Grey Shrike-

thrush (Colluricincla harmonica) are species primarily

associated with riparian habitats and woodlands (Mor-

combe 2000). The underrepresentation of these species

can be explained by the bias in the location of the field

trips. Field trip surveys were mostly conducted in

‘‘locust habitats,’’ typically open grasslands and agricul-

tural areas. Therefore, there was a bias in the field trip

survey locations compared to the Birds Australia survey

locations (which may have focused on sites with greatest

avian abundance for the interest of the volunteer

observer). It is not surprising that avian species that

feed on grasses and seeds (i.e., the same irruptive food

source on which locusts are feeding), other temporarily

abundant insects, or on the locusts themselves, will select

the same habitats as locusts. Such species were

overrepresented in the field trip evaluation data sets

and under-predicted by the models, which were based on

the general, coarse habitat characterization of the

location. Species preferring more dense habitats were

over-predicted by the model and underrepresented in the

evaluation data set.

This study was the first attempt to predict avian

species occurrences in areas of locust control in eastern

Australia. For the users of a model, the usefulness of its

predictions is more important than its complete reliabil-

ity (Rykiel 1996). With these species-specific models, we

hoped to achieve usefulness.

High numbers of species were predicted to be

present at times and locations of locust control and

therefore would be likely to be exposed to locust

control pesticides. This method could be used as an a

priori approach in species risk assessments to identify

species that would be present at times and location of

locust control applications, as well as to help identify

gaps in our knowledge and need for further data

requirements.
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APPENDIX A

Details of environmental variables available for inclusion in models developed to predict the probability of occurrence of 285
avian species in eastern Australia (Ecological Archives A019-084-A1.

APPENDIX B

Scientific names mentioned in the tables following Sibley and Ahlquist (1985) (Ecological Archives A019-084-A2).

APPENDIX C

Model fit summary and significance of logistic regression coefficients for 280 species (Ecological Archives A019-084-A3).
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