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ABSTRACT 

Dietary risk factors for cardiometabolic health are generally well recognised; for mental 

health they are not so well understood. However lifestyle risk factors for poor physical health 

are the same risk factors for mental illness, including poor diet. This is reflected by the high 

level of poor physical health in people with mental illness. Mediterranean, whole food diets 

have been associated with reduced risk for chronic disease but very little research has 

investigated their mental health benefits. We provide a model for the pathways by which food 

components provided by a Mediterranean-style diet can facilitate healthy brain function. We 

then review evidence for the role of selected nutrients/food components - antioxidants, 

omega-3 fatty acids and B vitamins - in the brain and hence modulation of cognitive function 

and mental health. Converging evidence indicates multiple pathways by which these nutrients 

can assist in brain function, drawing from studies investigating them in isolation. There is 

very little work done on synergistic actions of nutrients and whole diets, highlighting a need 

for human intervention studies investigating benefits of Mediterranean-style diets for mental, 

as well as cardiometabolic health. 

 

Key words: Mediterranean diet, cognition, mental health, antioxidants, polyphenols, omega-3 

fatty acids, vitamin B6, vitamin B12, folate, homocysteine 
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Dietary risk factors for physical illness are also associated with increased risk of 

mental illness, a growing international priority. A World Health Organisation survey 

estimated that between one in four to one in six people in most countries, and nearly half of 

Americans, will meet the criteria for a mental disorder during their lifetime, including anxiety 

disorders, mood disorders, impulse control disorders and substance abuse disorders [1]. The 

prevalence of accelerated cognitive decline and dementia is increasing at an alarming rate 

worldwide, with an estimated 4-6 million new cases of dementia every year [2]. These 

cognitive and mental health problems therefore carry a significant burden of disease across 

the lifespan.  

There is widespread concern regarding the effects of modern, typically Western 

dietary patterns, i.e. consumption of high energy food with little nutritional value and 

inadequate intake of foods containing essential nutrients, on physical health and obesity. 

Traditional Mediterranean-style diets, characterised by high consumption of vegetables, fruit, 

legumes, olive oil, fish, cereals, nuts and seeds, moderate consumption of red wine, and low 

intakes of processed food, red meat, dairy products and vegetable oils, have been associated 

with improved cardiovascular health and decreased mortality [3], and protective benefits for 

cancer [4], obesity and diabetes [5]. These findings have largely been supported by a limited 

number of intervention trials [6-10].  

However relatively little attention has been given to the implications of these poor 

dietary patterns for society’s burgeoning mental health problems, which is surprising given 

the brain’s requirements for essential nutrients from food for its structure and function [11-

14] – although lifestyle approaches to mental illness are receiving more attention recently 

[15-21]. Some correlational and longitudinal population studies have suggested that healthy 

dietary patterns are associated with better mental health [16, 22-27] and reduced risk of 

cognitive impairment [4, 28-31]. There are very limited dietary interventions investigating 
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mental health outcomes: only 2 studies were identified in a relatively recent systematic 

review [6] and some in process [16] with an important call for more research in this area [20, 

21, 32].  

Nutritional supplement interventions have shown some promise in improving 

cognitive function and mental health. Randomised controlled trials have shown improved 

cognition in students with multi-micronutrient supplementation [33], likely to be particularly 

evident in children who are underperforming/living in low socio-economic areas [34]; 

substantially reduced violent behaviour in juveniles with mental health issues following 

micronutrient supplementation [35]; and 26-35% reduction in reprimands for violent 

behaviour in young adult offenders with micronutrient and omega-3 polyunsaturated fatty 

acid (n-3 PUFA) supplementation [36, 37]. Some nutrients important for brain function, that 

are also associated with a healthy Mediterranean-style diet, include antioxidants (e.g. 

vitamins A, C and E; polyphenols), omega-3 polyunsaturated fatty acids (n-3 PUFAs), B 

vitamins, monounsaturated fatty acids (MUFAs), vitamin D, and minerals including iodine, 

magnesium, zinc, selenium, potassium and iron. Individually many of these nutrients have, to 

varying degrees, been investigated for their association with and/or impact on cognition 

and/or mental health [38]. In particular, while iodine has been identified particularly for its 

critical role in early brain development [39-41], antioxidants [42-44] B vitamins [45-47] and 

n-3 PUFA [48] have received notable attention in this area relative to other nutrients.  

Although still somewhat on the outskirts of mainstream thinking, increasingly 

researchers are highlighting links between nutrients and mental health [17, 38, 49-51], and 

understanding of the underlying complex molecular mechanisms is advancing [52-54]. 

Importantly, although nutrients are critical for the developing brain, recent research on brain 

neurogenesis and plasticity confirms that good nutrition is important for optimal brain 

function throughout the lifecycle [52]. Increasing focus is also now placed by researchers on 
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brain-nutrition-gene interactions with suggestions that not only does genetic variation 

determine our individual response to nutrients but that nutrition and other lifestyle factors can 

influence gene expression and modulate brain function [53]. The purpose of this paper is to 

give a broad overview of research on food-derived antioxidant compounds – which 

predominate in a plant-based diet – and then a more detailed review of biochemical pathways 

of n-3 PUFA and B vitamins in brain function, and how these nutrients might therefore 

modulate mental health and cognition. Figure 1 gives a diagrammatic overview of the model 

that informs this.  

 

Figure 1: Overview of links between Mediterranean-style diet and healthy brain function via plant compounds 
and nutrients 

 

ANTIOXIDANTS 

Oxidation and the brain 

Oxygen is required for the body’s metabolic activities which sustain life; however this 

process, as well as exogenous damage from environmental sources such as exposure to air 

pollutants, tobacco smoke, drugs, pesticides and radiation, produces free radicals (e.g., 

superoxide, nitric oxide and hydroxyl radicals) and other reactive oxygen species (ROS; e.g., 
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hydrogen peroxide, peroxynitrite, and hypochlorous acid) [55, 56]. These are unstable 

molecules with one or more unpaired electrons that, when they exceed the body’s oxidant 

stress defense mechanisms, can start rampant chain reactions: acquiring electrons from other 

vulnerable molecules leaving those molecules unpaired so they need to find another electron 

in turn etc. These highly toxic molecules can result in impaired cellular lipid membranes and 

cell functions, and oxidized proteins, DNA, RNA and cell death – contributing to a range of 

chronic degenerative diseases, including cardiovascular disease, cancer, and premature aging. 

The brain is especially vulnerable to oxidative damage for several reasons [57-60]. For 

example, being lipid-rich and metabolically active with modest antioxidant defense 

mechanisms, it is particularly vulnerable to lipid peroxidation which decreases cell membrane 

fluidity and can damage membrane proteins, render receptors, enzymes and ion channels 

inactive, and ultimately break down membrane integrity. Other factors contributing to 

oxidation in brain include reaction of neurotransmitters dopamine, serotonin and 

norepinephrine with oxygen, with a resulting depletion in levels of glutathione, the most 

abundant endogenous antioxidant in the brain; and release of iron and copper ions following 

damage to brain in forms that catalyse free radical activity [58]. Drawing from 

multidimensional evidence in schizophrenia, cognitive decline, bipolar disorder and 

depression, anxiety disorders, substance abuse, autism and attention-deficit/hyperactivity 

disorder (ADHD), it has been proposed that pathogenic pathways created by oxidative stress 

in the brain may comprise a common underlying pathology that contributes to a range of 

psychiatric disorders [61]. There is an increasing body of evidence to support the role of 

oxidative stress, together with inflammatory processes, in cognitive impairment, 

neurodegeneration and psychiatric disorders [60, 62]. 
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Nutrients as antioxidants 

Antioxidants can prevent, inhibit or repair damage caused by oxidative stress [63, 64] 

(Figure 2). Non-enzymatic antioxidants include nutrients, which each have unique structures 

and related antioxidant functions [56]. Collectively antioxidants act in a variety of ways, 

including suppressing the formation of ROS, reducing hydroperoxides, sequestering metal 

ions, scavenging free radicals, stimulating the activity of antioxidant enzymes, or repairing 

oxidative damage [56]. Enzymes that prevent damage from ROS require dietary minerals 

selenium, copper, manganese and zinc as cofactors, as well as amino acids for their synthesis 

[65]. Vitamins A, C and E – of which fruit and vegetables are rich sources – are potent 

dietary antioxidants that can prevent cytotoxicity resulting from free radicals, act as direct 

scavengers of ROS and upregulate antioxidant enzyme activity. Vitamin C acts by becoming 

oxidized itself (providing an electron), thereby stopping the chain reaction, and appears to be 

particularly important for brain defenses as reflected by its high levels in cerebrospinal fluid 

and brain relative to plasma [58]. From the vitamin E group of tocopherols and tocotrienols, 

alpha-tocopherol appears to be the main form present in brain and its deprivation causes 

neurological damage [58]. Vitamins E and A prevent lipid peroxidation which is critical for 

the preservation of cellular membranes. Vitamin C works synergistically with vitamin E by 

restoring its radical scavenging activity [66]. A combination of the antioxidants vitamin C, 

vitamin E and alpha-lipoic acid was shown to improve flow-mediated dilation in elderly 

people, presumably by reducing plasma free radicals and restoring endothelial function [67].  
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Figure 2: Antioxidant and brain overview. ROS=reactive oxygen species 

 

n-3 PUFAs inhibit production of free radicals and have been shown to reduce 

oxidative stress created by traumatic brain injury in a rat model [68]; vitamins B6, B12 and 

folate prevent oxidation via their role in the metabolism of homocysteine which can cause 

oxidative stress in endothelial cells [55] (see sections on n-3 PUFAs and B vitamins). 

Glutathione and peroxiredoxin/thioredoxin are the body’s major intracellular antioxidants 

thereby influencing every system in the body [58, 69]. Although these are not essential 

nutrients, the enzymes glutathione peroxidase and thioredoxin reductase require selenium as a 

cofactor, which works synergistically with vitamin E [65], and glutathione has close 

relationships with intracellular amino acids, especially those that contain sulfur. Accordingly, 

a range of dietary amino acids has been shown to enhance glutathione production: cysteine, 

glutamic acid, glycine, serine, arginine and methionine [69].  
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Polyphenols as antioxidants 

Plant-derived food, including fruit, vegetables, legumes, grains [70], nuts [71], red 

wine [72], tea [73], olive oil [74], herbs and spices [75], also contains thousands of non-

nutrient compounds called phytochemicals: phenolic and polyphenolic compounds with 

antioxidant properties. They all have at least one aromatic ring structure with one or more 

hydroxyl groups; and can then be classified via their chemical structure into at least ten 

different classes. The largest is the group of more than 4,000 flavonoids (with the following 

sub-groups: flavonols, flavones, flavonones, chalcones and anthocyanidins)[73, 76] which act 

primarily by scavenging ROS as well as metal chelation, breaking chains, preventing ROS 

formation and protecting ascorbic acid [77]. Importantly, various flavonoids can traverse the 

blood-brain barrier [58, 77], and there is some evidence for neuroprotective benefits via 

various mechanisms including direct scavenging of free radicals and assisting antioxidant 

defense mechanisms within cells via modulation of signaling cascades [77]. Other 

polyphenols include isothiocyanates [64]; stilbenes (e.g. resveratrol in red grape skin) [78, 

79]; phenolic acids [79, 80]; lignans (in linseed) [79]; beta carotene and other carotenoids 

including lycopene and lutein [55, 81]. Associations between fruit and vegetable 

consumption and lower risk of chronic disease have been attributed largely to antioxidant 

properties of phytochemicals [81-83], although they are thought to have other biological 

functions that are not yet fully understood via modulating the activity of numerous enzymes 

and cell receptors [75]. Recent studies have focused on Nrf2 [nuclear factor erythroid 2 p45 

(NF-E2)-related factor 2], a transcription factor that is activated by phytochemicals and plays 

a key role in the expression of genes responsible for antioxidants such as glutathione and 

antioxidant and detoxification enzymes [64, 84]. In support, a most recent paper reported 

increased neuronal superoxide dismutase and glutathione peroxidase activities via activation 

of the Nrf2 pathway with curcumin supplementation in a neurodegenerative rat model [85]. 
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It should be noted that, although research has focused predominantly on antioxidant 

properties of dietary polyphenols, there is evidence that their beneficial effects in brain 

extend to decreasing inflammation and numerous roles in neurological signaling pathways, 

e.g. via their role in expression of genes that encode antioxidant enzymes, neurotrophic 

factors and cytoprotective proteins – all contributing to neuronal stress adaptation and thereby 

decreasing neurodegeneration [77, 86]. Studies with rodents have reported significant 

reductions in a range of indices of age-related motor and cognitive decline following 

blueberry, blackberry, cranberry and strawberry extracts or walnut supplementation [19]. 

Although oxidative stress markers, measured by DCF fluorescence and glutathione levels in 

the brain, were reduced, other mechanisms of action were also proposed including improved 

neural signaling, buffering against excess calcium to prevent lowering of calcium 

homeostasis and reduction of stress signals (refer to Joseph et al. for a review [19]). 

Interestingly, hormetic-enhanced stress reduction has been proposed as a common pathway 

for the attenuation of age-related behavioural deficits observed via caloric restriction as well 

as polyphenol-rich diets [19]. Finally, Jenner’s group proposes that primary systemic health 

benefits of flavonoids, as well as tocopherols and tocotrienols, may be attributed to a role in 

maintaining gut health. This is indicated by their discovery that, although bioavailability of 

flavonoids is low, there is a reliable breakdown into simple phenolic structures in the colon 

[87, 88]. This may contribute to brain function via the brain-gut axis [89]. 

Research linking antioxidants and cognition/mental health 

Scapagnini et al [60] provide an overview of converging evidence for the role of 

various antioxidant nutrients or cofactors and compounds, such as selenium, zinc, vitamins C, 

E and A, carotenoids, and polyphenols - especially curcumin and green tea - in mood, 

cognition and mental health, prevention of oxidative damage to cellular membranes or DNA 

in the CNS or improved serotonin, dopamine, and glutathione levels that appear to be 
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modulated via markers of antioxidant activity. Human studies in mental health include a 

recently published prospective study in Italy that reported associations between low 

circulating carotenoids and depressive symptoms both at baseline and prospectively over 6 

years, controlling for confounders [90], and reduced risk of Alzheimer disease with high 

intake of vitamins C and E after multiple adjustments in the Rotterdam study [91]. Bouayed 

reviewed antioxidant properties of polyphenols and their pharmacological effects on the 

CNS. Coupled with evidence for ameliorating anxiety and depression in rat models, research 

investigating their effects on anxiety and depression in humans is warranted [92].  

A randomised controlled trial with vitamin C reported improved mood in healthy 

participants [93] and a recent systematic review of studies of polyphenols and cognitive 

outcomes reported cognitive benefits with polyphenol consumption [94]. A randomised 

controlled trial of Pycnogenol (containing phenolic acids, catechin, taxifolin and 

procyanidins) supplementation reported improved symptoms in children with ADHD [95], 

accompanied by increased glutathione levels and total antioxidant status [96]. In adults with 

ADHD a crossover trial comparing Pycnogenol, methylphenidate and placebo over 3 weeks 

did not show improved symptoms in the treatment groups compared with placebo which may 

be attributed to methodological limitations with dosage, duration and crossover effects [97]. 

People with schizophrenia who were given vitamins C and E along with n-3 PUFAs EPA and 

DHA for four months showed reduced psychopathology on a variety of measures [98]. 

Although biological plausibility is strong for antioxidant treatment of cognitive and mental 

health, more human studies are needed. 

 

OMEGA-3 POLYUNSATURATED FATTY ACIDS 

Long chain (LC) PUFA arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid 

(DHA, 22:6n-3) are highly concentrated in the brain and are vital fatty acids for neurological 
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development [99-102]. Furthermore there is a growing body of evidence for their role in 

mental health across the lifespan [48, 103]. Their parent fatty acids linoleic acid (LA, 18:2n-

6) and alpha-linolenic acid (ALA, 18:3n-3), respectively, are the two essential fatty acids we 

must obtain from our diets, because humans do not have the enzymes required for their 

synthesis. A diet rich in vegetables, nuts and seeds will provide abundant ALA. Humans do 

have the necessary enzymes to elongate and desaturate LA and ALA to AA and DHA 

respectively, but the amount of DHA that is synthesised from ALA is limiting [104-106]. 

Although we do not know whether this translates to conversion rates in neural tissue [104], 

researchers generally suggest that preformed n-3 LC PUFA is the ideal dietary source. Indeed 

it is argued that DHA should be considered as a semi-essential nutrient [107, 108]; that is, a 

nutrient that we can synthesise but not in adequate amounts for optimal health and therefore 

we should consume it directly from our diets – predominantly via fatty fish intake.  

Current dietary intake of fatty acids [101, 109-113] suggest that we do not have any 

deficiency in n-6 PUFA intakes and there is an argument that we are probably consuming too 

much LA [114, 115], due to high intakes of vegetable oils and processed food. We are 

certainly not consuming enough LC n-3 PUFA for optimal health, especially DHA [110]. 

There are major detrimental effects when AA and DHA are deficient in the diet or there is an 

imbalance between these two fatty acids [116]. This part of the review will focus on known 

mechanisms for the contribution of LC n-3 PUFA, especially DHA, to optimal brain function, 

increased neuronal cell growth and survival, and protection from injury. Diagram 1 shows a 

neuron, associated glial cells, the blood supply and the blood brain barrier. We have 

identified six key mechanisms by which LC n-3 PUFA affect brain health and each of these 

are shown by detailed diagrams stemming from Diagram 1. Please note that a great deal of 

the mechanistic evidence is derived from animal studies and in vitro evidence such as cell 
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culture work. However due reference to human evidence will also be incorporated where 

applicable. 

 

Diagram 1. Neuron associated glial cells 

 

LC PUFA as structural components of the cell membrane of the brain  

AA and DHA are major structural components of brain cells [117]. The essential fatty 

acids, LA and ALA, as well as eicosapentaenoic acid (EPA), are only found in trace amounts 

in brain phospholipids and EPA (precursor to DHA) is found mainly in phosphatidylinositol 

(PI) [118]. However, an important role of EPA in the brain may be related to actions of 

eicosanoids which is explained later. Phospholipid molecules contain hydrophic tails 

(repelled by water; therefore aggregate) and a hydrophilic head (attracted to water), enabling 

them to form lipid bilayers. The different phospholipid structures include phosphatidic acid 

(PA), phosphatidylethanolamine (PE), phosphatidylcholine (lecithin; PC), phosphatidylserine 

(PS) and phosphoinositides (PI, PIP, PIP2 and PIP3). These structures enable a multitude of 
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complex chemical pathways and processes involved in cellular structure and function 

including signal transduction. 

Increasing brain PC, PE, PS and PI levels 

In order to synthesise PC, cytidine (the major circulating pyrimide in rats) is required 

as precursor of cytidine triphosphate (CTP), which together with phosphocholine can be 

converted to CDP-choline, and then together with diacylglycerol (DAG) can be converted to 

PC [119]. However, cytidine and CDP-choline are not readily taken up by the brain. In rats, 

oral intake of CDP-choline does not increase brain levels (0.2% of administered dose ended 

up in the brain versus 60% in liver) [120]. An alternative way to synthesise PC is by using 

uridine, which is the major circulating pyrimide in humans and gerbils [121]. The brain is 

known to be able to take up uridine [122] as there is a high-affinity nucleoside transporter 

(CNT2) at the blood brain barrier (BBB) that allows the uptake of uridine but not cytidine 

[123]. Humans use uridine for the synthesis of PC in the brain via the Kennedy cycle [119, 

124]. Uridine is converted to uridine triphosphate (UTP) which together with phosphocholine 

is subsequently converted to CDP-choline, which when combined with DAG forms PC. DHA 

is used in the formation of DAG, and DHA-rich DAG is preferentially used for the synthesis 

of phospholipids used for membrane synthesis [125]. 

CDP-DAG together with serine can form PS and CMP. Subsequently PS can be 

decarboxylated to form PE and via 3 methylation steps PE can be converted to PC. 

Furthermore, like PC explained above, PS and PE can be synthesised directly from serine and 

choline respectively. CDP-DAG together with inositol can be converted to PI [126].  

Figure 3 shows the different glycerophosphates (phospholipids) as % of dry weight 

from human brain gray matter, white matter and myelin (data taken from O’Brien et al. 

[117]). Generally the choline glycerophosphates (CGP) and ethanolamine glycerophosphates 

(EGP) are in similar proportions across the age groups with serine glycerophosphates (SGP) 
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being the lowest. Figures 4a-4c show the major fatty acids associated with the different 

glycerophosphates (data taken from O’Brien et al. [127]). The greatest proportion of PUFA 

(40-60%) is found in gray matter in EGP and SGP (Figures 4b and 4c), with very little in 

CGP (Figure 4a). Palmitic acid differed in the 3 glycerophosphates, being the highest in CGP 

and extremely low in SGP. Myelin contained the least amount of PUFA (especially in CGP 

and SGP) and highest amount of oleic acid (and nervonic acid, data not shown). There was no 

real effect of age, except possibly an increase in oleic acid in gray matter [127] as well as a 

pronounced decrease in stearic acid and increase in DHA (55 y compared to 9 y) in SGP. The 

increase in DHA in SGP could be indicative of our neural cell survival (see survival section). 

Furthermore, even though CGP contains very little DHA, there is a notable increase in CGP 

DHA levels in gray matter at 55 y compared to earlier years (Figure 4a). This increase could 

also be due to neuronal cell survival, as plasma CGP-DHA levels are reduced in people with 

Alzheimer’s disease [128] (see section on neurodegeneration). 

Note that the data shown in figures 4a-c is taken from n=1 for each age group and 

there is likely to be some variation, which could come from dietary intake and physiological 

requirements. Currently we do not have any human data that shows the direct effect of dietary 

fatty acids with the amount of fatty acids in the brain. We do know however, that dietary 

EPA and DHA correlate very well with circulating EPA and DHA in plasma and erythrocytes 

membranes [129].  Most other dietary fatty acids are metabolised prior to uptake into tissues 

and therefore do not correlate to circulating levels, e.g. dietary LA does not correlate to tissue 

levels of LA, as LA is metabolised to AA, and AA is then taken up by the tissues. Whilst 

dietary EPA and DHA do correlate to circulating levels and dietary intakes affect these 

levels, we do not definitively know what extent these dietary effects are in the brain. The 

likely greater influences to the variation of brain fatty acids are physiological and 

pathophysiological. There may be a hierarchy of fatty acid accumulation in the brain (i.e. 
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DHA is preferentially in EGP and SGP in the gray matter of the brain in Figures 4b and 4c 

but not in CGP as shown in Figure 4a). Therefore one can see from the graphs that this 

hierarchy of where DHA is in the brain is most likely not to be highly influenced by dietary 

intake but is most likely driven by physiology. Furthermore, DHA has been found to be at 

sub-optimal levels in the brains of people that had Alzheimer’s disease (see 

neurodegeneration), yet dietary intake of DHA does not appear to be deficient [130]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b: proportion of fatty acids in EGP = ethanolamine 
glycerophosphates). 22:6n-3 = DHA; 22:5n-3 = 
docosapentaenoic acid (n-3); 22:5n-6 = docosapentaenoic acid 
(n-6); 20:4n-6 = arachidonic acid; 18:1n-9 = oleic acid; 18:00 = 
stearic acid; 16:00 = palmitic acid. All male Caucasian, n=1 in 
each age group. 
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Figure 4c: proportion of fatty acids in SGP (= serine 
glycerophosphates). 22:6n-3 = DHA; 22:5n-3 = 
docosapentaenoic acid (n-3); 22:5n-6 = docosapentaenoic acid 
(n-6); 20:4n-6 = arachidonic acid; 18:1n-9 = oleic acid; 18:00 = 
stearic acid; 16:00 = palmitic acid. All male Caucasian, n=1 in 
each age group. 
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Figure 3: Different glycerophosphates as % dry weight from 
human (all male Caucasian, n=1 in each age group) gray matter, 
white matter and myelin (data taken from O’Brien et al (107)). CGP 
= choline glycerophosphates; EGP = ethanolamine 
glycerophosphates; SGP = serine glycerophosphates. 
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Figure 4a: proportion of fatty acids in CGP (= choline 
glycerophosphates). 22:6n-3 = DHA; 22:5n-3 = 
docosapentaenoic acid (n-3); 22:5n-6 = docosapentaenoic acid 
(n-6); 20:4n-6 = arachidonic acid; 18:1n-9 = oleic acid; 18:00 = 
stearic acid; 16:00 = palmitic acid. All male Caucasian, n=1 in 
each age group. 
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The synthesis of phospholipids requires all the raw ingredients (or substrates) to be 

present; otherwise the amount and quality of the phospholipid can be compromised. In animal 

studies, gerbils fed uridine alone did not increase phospholipids (PC, PE, PS and PI). Gerbils 

fed DHA alone did not increase PC levels but did increase the other phospholipid classes (PE, 

PS, and PI) to some extent. However gerbils fed both uridine and DHA increased PC levels 

by 28%. DHA alone increased PE by 26% and in combination with uridine by 59%. DHA 

alone increased PS by 75% and in combination with uridine by 160%. DHA alone increased 

PI by 29% and in combination with uridine by 100% [131]. These results suggest that the 

addition of DHA amplifies the phospholipid synthesis and that there is a hierarchy of 

preferred synthesis of the different phospholipids species with incorporation of DHA being 

the highest in PS followed by PI, then PE and PC. The doubling of PS may have implications 

for increased survival of neurons (see section on survival below).  

Animal studies have been supported by cell culture studies using pheochromocytoma 

neuroendocrine cells (PC12 cells). DHA is taken up by these cells and is activated by acyl 

CoA synthetases [132, 133], which can now be used for the synthesis of DHA-containing 

phospholipids. Given that DHA enhances phospholipid synthesis, as explained previously, 

and the increased phospholipids promotes neurite outgrowth [134], then one can deduce that 

DHA promotes neurite growth. Furthermore the effect of combined uridine, choline and 

DHA can result in increased number of synapses and dendritic spines [134] as explained 

below.  

The effect of LC PUFA on neurite growth (Diagram 2)  

For successful outgrowth of neurites from developing neurons, the cell first increases 

its membrane surface area [135]. In order to do this, the cell requires 1) a signal which is 

provided by the nerve growth factor (NGF) [136]; 2) phospholipase A2 to release the 

necessary fatty acids (AA and DHA) [137]; 3) a specific target molecule for fatty acids that 



18 
 

can facilitate the necessary fusion of the plasma membrane, which has been identified as 

syntaxin 3 [138]; and 4) fusion proteins, namely, soluble N-ethylmaleimidsensitive-factor 

attachment protein receptor (SNARE) to facilitate fusion of membranes [139, 140]. The 

ability of syntaxin 3 to partner with SNARE requires AA and DHA [138].  

Therefore upon the stimulus of the NGF, PLA2 releases AA and DHA from the cell 

membrane and these fatty acids bind to syntaxin 3, a plasma membrane bound protein, and 

with the help of SNARE proteins, they promote fusion of the membrane phospholipid bilayer 

thus enabling neurite outgrowth. In the cell culture studies by Darios et al [138], fatty acids 

that can facilitate the neurite outgrowth are LA, AA, ALA, DHA, but not saturated fatty acids 

or monounsaturated fatty acids. LA and ALA are the precursor fatty acids for AA and DHA 

respectively [101], but are not found in appreciable amounts in the brain. Thus neurite 

outgrowth is reliant on AA and DHA being present in the brain. 

 

Diagram 2. The effect of DHA on neurite growth 

 

However another study using gerbils showed that EPA and DHA, but not AA, 

increased brain phospholipids as well as synaptic proteins [121]. This study also showed that 

the combination of uridine (food sources include tomato and broccoli), choline (food sources 

include egg, cod fish, wheat germ, cauliflower, spinach, quinoa) and DHA or EPA resulted in 

a further increase of phospholipids and synaptic protein levels than just the fatty acids (DHA 
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or EPA) alone. The cell culture studies described by Darios et al [138] above suggest that AA 

is as effective as DHA to promote neurite outgrowth. In contrast, this in vivo study by Cansev 

and Wurtnam [121] showed AA not to be effective. The limitations of cell culture studies is 

that it is an isolated environment which is usually tightly controlled, whilst in vivo studies 

using animal models (e.g. gerbils) is a closer representation of what will occur in the whole 

body in a complex system. The reason for the difference between AA not being effective in 

vivo, but is effective in cell culture studies is unknown but as suggested by Cansev and 

Wurtman [121] could be due to: different affinities in uptake, different affinities for the 

enzymes involved in DAG and phospholipid formation, differential activation of genes 

encoding proteins needed for membrane synthesis [141], different rates of deacylation, or 

different biochemical pathways other than via the Kennedy cycle [142], or the different half-

lives where blood DHA and EPA are much higher than AA [143, 144]. 

DHA has also been shown to stimulate neurogenesis in rat embryo neural stem cells 

in vitro as well as increasing the number of newborn neurons in the granule cell layer of the 

dentate gyrus in adult rats in vivo [145]. Therefore DHA is important not only in the 

formation of new neuronal cells, but increasing the number of neurones in the adult brain. 

Furthermore, uridine, choline and DHA have been shown to increase the levels of various 

proteins required for the synthesis of synapses. Gerbils fed a combination of uridine, choline 

and DHA resulted in increased levels of the vesicular protein synapsin-1 (41%), post-synaptic 

protein PSD-95 (38%) and neurite neurofibrillar proteins NF-M (48%) and NF-F (102%) 

suggesting an increase in the number of synapses [134]. Increased dendritic spines and 

number of synapses was also achieved following oral supplementation with DHA alone and 

particularly in combination with uridine [131]. 

The evidence to date suggests that we need a combination of molecules (uridine, 

choline, AA, DHA) for neurite outgrowth, synthesis of synaptic membranes and dendritic 
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spines. It is pleasing to note that mother nature has taken care of this, as breast milk contains 

uridine, choline, AA and DHA to promote normal growth [146, 147]. 

 

Diagram 3. Phospholipid bilayer DHA 

 

LC PUFA and membrane fluidity (Diagram 3) 

Cell membranes are made up of a phospholipid bilayer, with cholesterol and proteins 

embedded in it (Diagram 3). The spatial arrangements of these phospholipids are dependent 

on the fatty acyl chains associated with the phospholipids. The usual combination of fatty 

acids to phospholipids is one saturated fatty acid and one unsaturated fatty acid per 

phospholipid molecule irrespective of the polar head group [148]. In the brain, the most 

abundant saturated fatty acids are palmitic (16:0) and stearic (18:0) acids and the most 

abundant unsaturated fatty acids are DHA, arachidonic acid (AA, 20:4n-6) and oleic acid 

(18:1n-9) [117, 148] (see Figures 3 and 4 above). The spatial arrangements of these 

phospholipids are dependent on the fatty acyl chains associated with the phospholipids. For 

example, the spatial arrangement used by a saturated fatty acid with no double bonds is much 

less than that of DHA (22:6n-3, with 6 double bonds) [101]. The activity of membrane bound 

enzymes, like the sodium potassium ATPase are influenced by the fluidity gradient of the 

membrane [149]. Cell membrane fluidity, or flexibility of movement through a lipid bilayer, 
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is influenced by highly unsaturated fatty acids like DHA, i.e. the higher the DHA content, the 

greater the fluidity/flexibility. A good example of scientific evidence that supports this 

membrane fluidity theory is rhodopsin. Usually when light hits rhodopsin in the eye, 

elongation of rhodopsin occurs which is necessary for good vision [150] and when DHA is 

replaced with docosapentanoic acid (22:5n-6) in the eye conformational changes occur that 

affect the rhodopsin photocycle [151]. Human studies support this in that supplementation 

with DHA in infants results in increased visual acuity, especially in girl infants [152]. 

LC PUFA and neurotransmitters (Diagram 4) 

The effect of DHA increasing synapses and membrane fluidity such that membrane 

proteins have improved function also relates to neurotransmitters (diagram 4). It is well 

known that neurotransmitters are synthesised from specific amino acid precursors; namely, 

acetylcholine (precursor choline), serotonin (precursor tryptophan), nor-epinephrine and 

dopamine (precursor tyrosine) [153]. Therefore brain levels of choline, tryptophan and 

tyrosine will affect the respective neurotransmitter levels. When neurotransmitters are 

released from the synapse, they bind to specific receptors; namely, serotonin binds to 5-HT1 

receptor, nor-epinephrine binds to a’-2 beta receptor, dopamine binds to the D1 and D2 

receptor (Diagram 4). Taking dopamine as an example, once dopamine binds to its receptor, 

this increases protein kinase A activity, which in turn phosphorylates ion channels and hence 

allows them to open up and therefore allowing the signal to be transmitted. Experimental 

evidence shows that when the LC n-3 PUFA is low, protein kinase A activity is reduced 

which results in reduced phosphorylation of ion channels resulting in reduction of ion 

channels opening up [101, 154]. This means that in conditions where LC n-3 PUFA is low, 

more dopamine is needed to depolarise the cell. Therefore for effective neurotransmission we 

need LC n-3 PUFA to be present in cell membranes of the brain. In support, a series of rat 

studies identified that profound n-3 PUFA deficiency impacts on dopaminergic and 
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serotonergic systems, and that a reversal diet can enable some recovery of dopamine and 

serotonin levels [155]. A further study identified increased levels of brain derived 

neurotrophic factor (BDNF) – which is known to facilitate synaptic transmission – after 

dietary DHA supplementation in rats following a traumatic brain injury which had reduced 

BDNF levels [68]. In this study, which also showed decreased oxidative stress as mentioned 

in the earlier section on antioxidants, impaired learning following the brain injury was 

attenuated with DHA supplementation. 

 

Diagram 4. DHA and neurotransmitters 

 

LC PUFAs and the endothelium: eicosanoids and blood-brain barrier (Diagram 5) 

Prior to describing what goes on in the brain, the effect of LC PUFA and eicosanoid 

production should be explained. A person’s cell membrane fatty acid composition reflects 

their dietary fatty acid intakes. The Inuit’s blood fatty acid profile showed very high levels of 

the LC n-3 PUFA, EPA and DHA and low levels of AA because they consumed a diet high 

in whales and seals which are rich in LC n-3 PUFA. These LC n-3 PUFA get incorporated 
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into cells throughout the body and displace LC n-6 PUFA [156]. Documented by early 

explorers, Inuit had a propensity for spontaneous frequent nose bleeds and when wounded on 

the battle field, they lay there bleeding for quite a long time before their blood would clot 

[157]. This was subsequently explained by the eicosanoids formed from the fatty acids 

released from the endothelial cells lining the blood vessels. The eicosanoids produced from 

the LC n-3 PUFA are prostaglandins and leukotrienes of the 3- and 5-series, which inhibit the 

prostaglandins and leukotrienes of the 2- and 4-series produced from AA and result in 

reduced blood clotting therefore increased blood flow [158]. Eicosanoids from the 3- and 5-

series also have anti-inflammatory and vasodilatory properties [159, 160].  

 

Diagram 5. Eicosanoids and blood‐brain barrier 

 

A recent study by Ajmone-Cat et al [161] showed that DHA inhibited the synthesis of 

inflammatory products, including IL-6, TNF-alpha, in activated microglia in cell culture 

studies. This effect of DHA could be due to resolvins and neuroprotectins produced from 

DHA, although more research is warranted, and could have implications for reducing the 

inflammatory process that is associated with neurodegenerative diseases (discussed later). 

In addition to anti-inflammatory and vasodilatory properties, LC n-3 PUFA have an 

effect on glucose transport and uptake by the brain – via endothelial cells of the blood brain 
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barrier. It is well known that the brain utilises glucose as its energy source [153] and can use 

ketone bodies during periods of starvation [162], but not exclusively. Studies based in rats 

have shown that dietary DHA deficiency resulted in 30-50% reduction in brain membrane 

DHA levels in phospholipids and this corresponded to a 30% reduction in glucose uptake 

across the blood brain barrier [163]. It was subsequently shown that glucose transporter in 

astrocytes (GLUT-1 45kDalton isoform) was reduced by approximately 30% but the neuronal 

glucose transporter (GLUT3) was unaffected [164]. This reduced GLUT1 in astrocytes is due 

to reduced post-transcription of the glucose transport protein itself, as mRNA for GLUT1 was 

not affected [164]. Therefore a deficiency may result in reduced glucose supply to the brain 

(as shown in rat studies), but it is not known if increased levels of DHA would result in 

increased glucose supply and uptake by the brain. However, DHA appears to be concentrated 

in tissues that utilise a lot of energy, such as the brain and retina. Brenna et al [165] took data 

from a study in monkeys where they measured local cerebral metabolic rate for glucose [166] 

and plotted that against their own DHA levels with a resulting correlation of r2 = 0.68, 

p=0.0003 [165]. These properties of LC n-3 PUFA are consistent with the hypothesis that 

they play a role in endothelial function in the brain which may improve blood flow and 

blood-brain barrier integrity [167], as well as reducing inflammation in the brain. In support, 

Jackson et al reported a direct effect of a high-DHA supplement on cerebral blood flow in the 

cerebral cortex of healthy adults compared with placebo [168]. Not only is glucose – and 

glucose delivery – required for ongoing brain function but reduced cerebral blood flow [167] 

and inflammation [169] have both been associated with mental illness. Insulin has also been 

shown to cross the blood-brain barrier. Recent research has demonstrated in a rat model that 

fructose intake coupled with DHA deficiency led to insulin resistance in the brain, as well as 

memory impairment; whereas a DHA-enriched diet counteracted these effects via improved 

synaptic plasticity and reduced glucose-induced peroxidation of the endothelium [170]. 
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Neuronal survival (PS-DHA) (Diagram 6) 

Neuronal survival appears to be linked to the amount of PS-DHA in the brain. Human 

brains will do their utmost to ensure that the levels of PS-DHA are maintained. In situations 

where DHA deficiency occurs and DHA supply in the brain is limited, DPAn-6 is substituted 

for DHA (similar to what occurs in the eye, as explained above) in PS in the brain [171] and 

may play a role in further PS-DHA depletion [172]; this appears to be a survival mechanism. 

At least in vitro cell culture studies, supplementation with DHA and DPAn-6 (but not oleic 

acid) increases PS synthesis [173, 174], with DHA being more effective [172].  

Alcohol consumption impairs the biosynthesis of PS [175] and therefore contributes 

to the loss of PS from the brain. PS-DHA is extremely important for neuronal cell survival 

[172]. Given that neuronal cells do not regenerate very well, it is important that they have a 

mechanism in place that ensures their survival. One such mechanism is maintaining the high 

levels of PS via DHA enrichment of PS in their membranes [172]. As explained above, a 

combination of uridine, choline and DHA more than doubles PS-DHA in gerbils brains [131]. 

Therefore DHA encourages survival of brain cells and in order to maintain a healthy brain 

that is able to survive, we need to ensure that there are adequate amounts of DHA and that the 

brain can synthesise PS-DHA and also prevent its depletion (i.e. no alcohol intake).  

Another survival mechanism is via neuroprotectin D1 (NPD1). NDP1 (10, 17S-

docosatriene) is synthesised from DHA [176] due to an insult like ischemia. Ischemia induces 

a cascade of events where there is a rapid release of fatty acids (AA and DHA) by 

phospholipase A2, which can be converted to a variety of oxygenated metabolites (see 

section on neurodegenerative diseases). DHA is converted by the enzyme 15-LOX to 10, 

17S-docotriene, known as NPD1 [176]. NPD1 is a neuroprotectin molecule because it is 

known to reduce leukocyte infiltration and reduce pro-inflammatory gene expression [177].  
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Other DHA metabolites are the prostaglandins F4 neuroprostanes [178]. These 

neuroprostanes are increased in neurodegenerated diseases like Alzheimer’s disease [179, 

180] which may be a signal for oxidative stress [172]. However, in cell culture studies, 

neuroprostanes formed from DHA are potent inhibitors of NF-kb signalling and may 

contribute to the anti-inflammatory actions of DHA [181]. These results are yet to be 

confirmed in animal models of Alzheimer’s disease as well as human studies. 

Certainly, it has been shown in animal models of Alzheimer’s disease that DHA 

supplementation protects against neuronal damage [128]. This protection against neuronal 

loss could be due to the maintenance of PC-DHA levels in the brain, which prevents neuronal 

death, and/or via anti-inflammatory mechanisms, and/or via the promotion of neural growth. 

More research is warranted to elucidate the exact mechanisms by which DHA exerts its 

effects.  

 

Diagram 6. Neural survival (PS‐DHA) 
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Neurodegeneration (Diagram 7)  

Ageing has been described in a recent review by Ledesma as an internal clock plus 

oxidative stress [182]. The total lipids in the brain increases for the first 20 years of life, 

followed by a gradual decline until 80 years of life and major changes occur after 80 years of 

age resulting in a rapid decline of total lipids in the brain as a result of neurodegeneration 

[182]. Figure 5 shows the levels of the different phospholipid classes (PC, PS, PE, PI) in the 

whole brain (gray and white matter) for the first 40 years of life (data taken from Rouser 

Yamamoto [183]).  

 

Figure 5: levels of the different phospholipid classes (PC, PS, PE, PI) in the whole brain (gray and white 
matter) for the first 40 years of life (data taken from Rouser Yamamoto (166); extrapolated from 13 healthy male 

whole brains aged 6 months to 98 years). 
 

Ageing is associated with decreased neurotransmitter release [184] and alters 

neurotransmitter signalling [185]. The aged brain has little dead neuronal cells [186] but 

performance decreases with age. Oxidative stress (ROS) increases, the cell’s ability to 

detoxify decreases and the cells go through adaptive processes to survive [187]. Different 

degrees of severity of ROS lead to decreases in dendritic remodelling and increases in 

excitotoxins, which hamper neuronal function [182].  

As explained under the neurite outgrowth section, for synaptic vesicle fusion to occur, 

two bilayers must merge, resulting in extreme structural changes. The ability of cell 
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membrane to show curvature (i.e. DHA rich cell membrane) is a key requirement for fusion 

[188]; therefore the more highly curved the more fusogenic. Synaptic membranes are rich in 

AA and DHA at molar levels [189]. The ability to change the strength of a synaptic 

connection (referred to as synaptic plasticity) is believed to underlie memory and learning 

processes [182]. Barnes in 1979 showed a correlation between the age-associated decline in 

synaptic plasticity and neuro-cognitive impairment in rats [190]. Since then it has been shown 

that learning and memory deficits are related to strengthening of the synapse (memory 

formation) and synapse weakening (memory loss). The thresholds for the induction of 

memory formation and memory loss increase and decrease with age, respectively [191]. The 

older one gets, the more forgetful one gets [192, 193], the lower the ability to remember 

things and the greater the memory loss [194]. However, restoration of AA and DHA levels in 

the brain could rescue the age related impairment in memory formation [195]. 

 

Diagram 7. DHA preventing cognitive decline 

Ageing is associated with a decrease in NR2B (a subunit of the NMDA receptor) 

which is related to a decline in learning [196]. Ageing is also related to decreases in the 

AMPA receptor subunits (GluR2) in rats, which potentially could alter the calcium flux that 

may be related to neurodegeneration associated with ageing [197]. GluR2 is also necessary 

for the growth and maintenance of dendritic spines [198]. An ageing brain has been shown to 
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have lower PUFA content. Dyall et al have shown that supplementation with EPA and DHA 

in rats fully reversed the age related decrease in NR2B and GluR2 subunits and also restored 

some of the phospholipid loss [199]. 

Phospholipase A2 can release DHA from the membrane and be converted to NDP1 by 

15-LOX. NDP1 protects neuronal cells in various ways (see Diagram 7): It 1) reduces the 

transcription of pro-inflammatory factors like NF-kB; 2) reduces inflammatory gene 

expression (COX-2, TNF-alpha); 3) reduces pro-apoptotic proteins (Bax, Bik); 4) enhances 

anti-apoptotic proteins (Bcl-2, BFl-1, Bc1-xl); 5) reduces amyloidogenesis (AB-42 peptides); 

6) enhances neurotrophic cell survival (sAPPa); and 7) reduces oxidative stress, thereby 

reducing apoptosis and brain cell degeneration [200]. This suggests that DHA, via NDP1 is 

protective and promotes brain survival. However, during oxidative stress, DHA can be 

converted to neuroprostanes (F4, D4, E4, A4, J4) which promote apoptosis and exacerbate 

the oxidative damage to neuronal cells, promoting cell death [200]. Therefore in this 

situation, we require antioxidants to prevent oxidative stress (refer to section on antioxidants). 

It has been shown that supplementation with DHA in animals [201] and in humans 

[202] can improve cognitive function, and may prevent cognitive decline in people with mild 

cognitive impairment [48, 203]. Increased anxiogenic like behaviour is found in rats that have 

reduced DHA [154, 204] and susceptibility to psychological stress in humans can be 

improved with fish oil supplementation [205]. Certainly brain levels of choline, ethanolamine 

[206] and DHA [207] have been shown to be sub-optimal in people with Alzheimer’s 

disease. Furthermore, breakdown products of phospholipids (indicative of phospholipid loss 

from the brain) are elevated in people with Alzheimer’s disease [206]. In an experimental 

mouse model of Alzheimer’s disease, it was shown that neuronal dysfunction occurred 

months before the appearance of abnormal plaques [208] and similarly in humans cognitive 

decline precedes neurodegenerative diseases like Alzheimer’s disease. Hence there is 
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potential for therapeutic intervention in people with mild cognitive decline to prevent the 

progression to neurodegenerative diseases. Given the potential additional benefit of 

supplementation with DHA, uridine and choline in combination, these clinical trials on the 

potential behavioural benefits are warranted. 

 

VITAMINS B6, B12, FOLATE AND HOMOCYSTEINE 

There has been considerable interest in the role of B vitamins in cognition and brain 

function, particularly vitamin B6, folate and vitamin B12, which influence homocysteine 

levels throughout the body. The B vitamins represent a group of 8 water-soluble essential 

nutrients: vitamins B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 

(pyridoxine), B7 (biotin), B9 (folate/folic acid) and B12 (cobalamin) [209]. Historically, a 

severe deficiency in these vitamins was associated with profound clinical manifestations, 

such as beriberi and anaemia; and neurological changes or impairment in brain function were 

also commonly observed.  However, what were once major public health problems in some 

parts of the world have declined, replaced by evidence of a sub-clinical deficiency in B 

vitamins [210]. Sources of B vitamins include a wide range of unprocessed foods such as 

whole grains, lentils, beans, potatoes, bananas, chili peppers, nuts and animal products. Folate 

is depleted during harvesting, storage, distribution and cooking, and in the refinement of 

grains such as white rice and corn. The low bioavailability of folate in our food supply 

combined with its role in fetal growth, development and prevention of neural tube defects led 

to calls for folate fortification of foods [210]. In the latter half of last century, subclinical 

deficiency of vitamin B6, folate and vitamin B12 as a cause for physical and mental health 

problems has been investigated.   
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Vitamins B6, B12 and Folate 

Vitamin B6, vitamin B12 and folate all play an important role in human metabolic 

processes. There are three naturally occurring forms of vitamin B6: pyridoxine, pyridoxal and 

pyridoxamine, and all three can also occur as phosphorylated compounds. The principal form 

present in food and in the body is pyridoxal 5’-phosphate (PLP), which functions as a 

carbonyl-reactive coenzyme for many reactions involved in amino acid metabolism, 

including metabolism of sulphur-containing amino acids such as homocysteine, formation of 

neurotransmitters epinephrine, norepinephrine, serotonin, and γ-amino butyric acid (GABA), 

taurine synthesis (a conjugator of bile acids and important in eye and brain function), and 

conversion of tryptophan to niacin by kynureninase [209].  

 

Figure 6. B vitamins and homocysteine metabolism. B6, vitamin B6; B12, vitamin B12; HCY, homocysteine; 
MTHF, 5-methlytetrahydrofolate; SAH, S-adenosylhomocysteine; SAM, S-adenosyl methionine; THF, 

tetrahydrofolate. Adapted from Obed and Herrmann (2006). 
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Folate refers to several compounds related to folic acid, including tetrahydrofolate 

(THF). The most stable form of folic acid (pteroyl glutamic acid) is the primary form found 

in pharmaceuticals and used in food fortification, although it is not the natural form occurring 

in foods and the body. THF plays an important role in 1-carbon transfers in the body, 

receiving 1-carbon radicals (also known as methyl groups) and donating them during various 

biochemical reactions, and is essential for the DNA biosynthesis cycle [209, 210]. 

Specifically, the 5-methyl THF form together with vitamin B12 are also required for 

methionine synthase to add a methyl group to homocysteine to form S-adenosylmethionine 

(SAM) (an active form of methionine and important methyl donor in all cells) and THF as 

part of the methylation cycle (see Figure 6). Under normal physiological conditions this 

allows rapid removal of homocysteine and the levels of homocysteine to remain relatively 

low in the cell [211].  

Due to the role of vitamin B12 in methylation cycle, a deficiency in vitamin B12 also 

results in a functional folate deficiency, with folate being trapped in the methyl-5 THF form. 

Although the DNA and methylation cycles both regenerate THF, folate catabolism and 

excretion via the skin, urine and bile also occurs and levels must be replenished through the 

diet [209]. Folate deficiency will reduce the methylation and DNA cycles. During 

development, an inadequate intake of folic acid can increase the risk of improper closure of 

the neural plate which goes on to form the spinal cord and cranium between 21 to 27 days 

post conception. Folic acid requirements are increased during pregnancy especially during 

periods of rapid fetal growth to decrease the risk of fetal neural tube defects including spina 

bifida and anencephaly [210].  

Vitamin B12, or cobalamin, is a compound only synthesised by bacteria. Its two 

coenzyme forms, methylcobalamin and deoxyadenosylcobalamin, are used by the enzymes 

methionine synthase and methylmalonyl-CoA mutase respectively. Methylmalonyl-CoA 
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mutase plays a role in the conversion of methylmalonyl-CoA to succinyl-CoA in the 

catabolism of propionate in the mitochondria. In the cytosol, methionine synthase transfers a 

methyl group from 5-methyl THF form of folate to homocysteine to produce methionine 

(Figure 6). Vitamin B12 therefore also plays an important role in the use of folate and the 

lowering of homocysteine levels in humans. Clinical vitamin B12 deficiency is not usually 

due to inadequate dietary intake, but rather malabsorption due to autoimmune atrophy of the 

gastric mucosa, referred to as pernicious anaemia in severe cases [209]. Pernicious anemia is 

known to increase with age. The deficiency causes megaloblastic anaemia similar to that seen 

in folate deficiency and/or neurological dysfunction. The effects of the deficiency can be 

traced back to the requirement of vitamin B12 for conversion of folate by methionine synthase 

– the methyl-folate trap – and the reduction in DNA synthesis. [210].   

Homocysteine 

Although elevated plasma or serum homocysteine (hyperhomocysteinemia) was once 

considered no more than a marker for an impaired methylation cycle, it is now implicated in 

human disease in its own right, and widely recognised as a marker for cardiovascular risk 

[212, 213]. Homocysteine is a sulphur-containing amino acid produced exclusively from the 

methylation cycle (Figure 6); it is not available from dietary sources [211]. The methylation 

cycle also determines removal of homocysteine. Donation of a methyl group by SAM 

generates S-adenosylhomocysteine (SAH). Under normal physiological conditions, when 

intracellular homocysteine levels are low, SAH then is rapidly converted to homocysteine by 

SAH-hydrolase within the cell. However, as intracellular homocysteine rises, the SAH-

hydrolase reaction shifts to favour production of SAH instead, with a resultant rise in 

intracellular SAH [211]. SAH is known to be a potent inhibitor of SAM-dependent 

methylation reactions. Alterations in SAM/SAH ratio will result in a decrease in activity of 
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methyltranferases, with implications for methylation reactions involving DNA, proteins, 

phospholipids and neurotransmitters [214].  

The B vitamins play in important role in removal of homocysteine and therefore 

maintenance of normal low levels. Folate and vitamin B12 are required for the methylation of 

homocysteine to methionine and remethylation and synthesis of SAM. Pyridoxal phosphate 

(vitamin B6 in its active form) is a coenzyme of cystathionine synthase and cystathionine 

lysase, which are required for metabolism of homocysteine to cysteine [215]. The metabolism 

of homocysteine is mostly similar throughout the body, including the brain, although some 

differences occur. Although homocysteine can also be remethylated by an alternative 

pathway via betaine-homocysteine methyl transferase (BHMT), it appears that this pathway 

does not occur in the brain [216]. However, the action of this pathway may still affect brain 

function through reduction of systemic homocysteine levels. Homocysteine can also be 

transported into neurons via a specific membrane transporter [217].  

Homocysteine can be easily transported in and out of cells, and measures in urine or 

blood reflect intracellular homocysteine production and use. Free homocysteine represents 

less than 5% of total homocysteine in plasma, as most homocysteine is present in a protein-

bound form [211]. Plasma total homocysteine is a reliable marker of homocysteine levels, 

with normal values in the range of 7-14 µmol/l [218]. An elevation in plasma or serum 

homocysteine for an extended period of time is known as hyperhomocysteinemia [211]. 

Severe hyperhomocysteinemia (>100 µmol/l) has a number of genetic causes which affect 

homocysteine metabolism and is associated with vascular disease, mental retardation and 

seizures. Moderate (15-30 µmol/l) or intermediate (30-100µmol/l) hyperhomocysteinemia is 

more commonly present in the general population. Apart from folate, vitamin B12 or vitamin 

B6 deficiency, other determinants of moderate hyperhomocysteinemia include lifestyle 

factors such as smoking, coffee and alcohol consumption, exercise and diseases such as renal 
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failure, diabetes, hypothyroidism and malignancies [218]. In addition, homocysteine levels 

are higher in men, increase with age and also whilst taking some medications including 

methotrexate, anticonvulsants, lipid-lowering drugs and oral contraceptives [211, 218]. For 

further review on total plasma homocysteine levels and determinants of 

hyperhomocysteinemia, see Refsum et al, 2004 [218]. 

B vitamins, homocysteine and brain function  

The possible ways in which subclinical deficiency of B6, folate and/or B12 could 

impair brain function and increase mental health risk are multiple (Figure 7). Although there 

are some proposed mechanisms which implicate B vitamins independently, most are related 

to the associated increase in homocysteine.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Roles of B vitamins and homocysteine in one-carbon metabolism, transsulfuration pathway and brain function. 
Homocysteine can be transported into neurons via a specific membrane transporter. Remethylation of homocysteine to 
methionine occurs in the presence of folate and B12. Methionine is an important source of methyl groups in the brain. 
Homocysteine can also be converted to cysteine (a precursor of glutathione) in the presence of B6. Homocysteine can cause 
DNA damage directly or through reduction in DNA methylation, leading to synaptic dysfunction and apoptosis. 
Homocysteine can lead to excitotoxicity through direct actions on glutamate receptors. Although the pathway for 
remthylation of homocysteine via BHMT does not occur in the brain, it may still influence brain function through actions on 
systemic homocysteine levels. Adapted from Mattson and Shea (2003). 
BHMT, betaine-homocysteine methyltransferase; MS, methionine synthase; MTHFR, 5, 10-methylenetetrahydrofolate 
reductase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine. 
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B vitamins and homocysteine actions on cerebral vasculature 

Elevated homocysteine is a known risk factor for cardiovascular disease [212, 213]. 

Considering the shared incidence of vascular disease and poor mental health, including 

depression [219, 220], schizophrenia [221] and cognitive impairment [222], homocysteine 

may influence brain function via vascular mechanisms. Elevated plasma total homocysteine 

has been associated with white matter lesions and silent brain infarctions in older people with 

and without Alzheimer’s disease, both markers of damage to cerebrovascular circulation and 

risk factors for future clinically apparent stroke and cognitive decline [223, 224]. A study in 

patients with subcortical vascular encephalopathy (a distinct type of vascular dementia), 

cerebral large vessel disease and healthy controls found elevated plasma homocysteine in 

patients with subcortical vascular encephalopathy compared with the other two groups [225]. 

This indicates that increased homocysteine may exert its effects by injuring small penetrating 

cerebral arteries and arterioles rather than larger brain-supplying arteries.  

Animal studies also point towards a possible effect of homocysteine on the 

microvasculature of the brain. Feeding mice a B-vitamin-deficient diet for 10 weeks induced 

hyperhomocysteinemia and damage to hippocampal microvasculature without evidence of 

neurodegeneration [226]. This was accompanied by impaired special learning and memory in 

the mice. The authors concluded that this damage could occur in the absence of or preceding 

neurodegeneration. There is also evidence that homocysteine can increase microvascular 

leakage in the brain [227], leading to vascular remodelling which could disrupt the blood-

brain barrier [228]. 

B vitamins and homocysteine actions on the brain 

Neurotransmitters 

B vitamins are required for the effective production of the monoamine 

neurotransmitters serotonin, epinephrine, and dopamine. Specifically, vitamin B12 and folate 
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are required for the generation of SAM, a methyl donor in the serotonin and catecholamine 

pathways. Furthermore, when intracellular homocysteine levels are elevated due to deficiency 

in B vitamins, the SAH-hydrolase reaction pathways will shift to generate SAH leading to 

inhibition of methylation [211]. In the brain, this can lead to decreased methylation, and 

therefore decreased production of neurotransmitters. Supporting this are reports of 26% 

higher SAH levels in the prefrontal cortex of Alzheimer’s disease patients compared with 

normal controls and increased inhibition of catechol-O-mehtyltransferase and 

phenylethanolamine N-methyltransferase (two methyltransferases related to catecholamine 

methylation) with increasing brain SAH levels [229]. Lowered activity of these 

methyltransferases was also associated with poorer cognitive function, a lower age of onset 

and increased severity in markers of neurodegeneration. Furthermore, low concentrations of a 

marker of serotonin in the central nervous system (5-hydroxyindole acetic acid in 

cerebrospinal fluid, CSF) have been observed in folate-deficient patients with 

neuropsychiatric illnesses [230], epilepsy [231] and depression [232], and there is evidence 

that administration of intravenous pyridoxine hydrochloride increases synthesis rate of the 

neurotransmitter serotonin in the brain of the Rhesus monkey [233]. Further, 5-hydroxyindole 

acetic acid and other CSF markers of dopamine turnover (homovanillic acid) and 

noradrenaline (3-methoxy-4-hydroyphenylglycol) were reduced in a sub-group of depressed 

patients with high plasma total homocysteine [234]. The patients with elevated homocysteine 

also presented lowered CSF SAM and lowered serum, red cell and CSF folate but not serum 

vitamin B12 compared with other depressed patients, healthy and neurological control groups.  

Folate may also be directly involved in the regulation of neurotransmitter metabolism. 

The direct mechanism by which this would occur is still not fully known; however it has been 

postulated that tetrahydrobiopterin (BH4) metabolism, a cofactor for the synthesis of 

monoamine neurotransmitters which has some structural similarities to folate, could be 



38 
 

involved [211]. Folate may play a role in the regeneration of BH4 after oxidation, and the 

enzymes of folate metabolism, MTHFR and dihydrofolate reductase (DHFR), have been 

suggested to be involved in BH4 metabolism. This is supported by reports of correlations 

between lower red cell folate, CSF monoamine metabolites and CSF BH4 in depressed 

patients [232]. 

Neurotoxic effects 

Homocysteine has been shown to be neurotoxic, leading to DNA damage and 

apoptosis [235]. In the nervous system, elevated homocysteine promotes excitotoxicity 

through stimulation of NMDA receptors, and induce neuronal DNA damage, triggering 

apoptosis and effects on synaptic and glial function [236, 237]. The associated methyl donor 

deficiency impacts on DNA repair, causing uracil misincorporation and leading to DNA 

strand breakage [238]. DNA damage then activates poly-(ADP-ribose) polymerase (PARP) 

leading to cell-cycle arrest or apoptosis through ATP depletion and activation of tumour 

suppressor protein (p. 53 [237]).  These effects of B vitamin deficiency and/or elevated 

homocysteine on DNA repair through DNA nucleotide misincorporation appear to be not 

only important in development but also in post-mitotic neurons in the adult [237].  

Homocysteine induces apoptosis in rat hippocampal neurons in cell culture, with DNA-strand 

breakage, activation of PARP and NAD depletion observed [235]. This precedes 

mitochondrial dysfunction, oxidative stress and caspase activation. The authors therefore 

proposed a possible endangering effect [235], where elevated homocysteine may sensitize 

neurons to the oxidative stress and excitotoxicity already observed in neurodegenerative 

disorders [239, 240]. There is also evidence that homocysteine and/or folate deficiency 

induced DNA damage can sensitize rat hippocampal neurons to oxidative damage induced by 

amyloid B-peptide, specifically through reduced repair of amyloid B-induced oxidative 

modification of DNA bases [238]. 
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These effects of elevated homocysteine on neuronal apoptosis could be enhanced 

during aging or in neurodegenerative disorders by the presence of oxidative stress and altered 

intracellular calcium homeostasis which accompany them [237]. Homocysteine has also been 

shown to be neurotoxic to neurons and neuron cells in culture, particularly in the presence of 

elevated glycine which would occur in the case of stroke or head trauma [236].  These 

findings could partially explain the observed increased mental health risk in certain clinical 

populations, including following stroke or traumatic brain injury, and in frail older people 

[241-243]. 

Oxidative stress 

B vitamins may exert neuroprotective effects through modulating homocysteine-

induced oxidative stress in the brain. Homocysteine is known to induce oxidative stress 

through activation of glutamate receptors and consequent reactive species generation, or by 

autoxidation to homocysteine and other disulphides releasing O2 and H2O2 [244-247].  

Studies in animals and humans suggest a role of hyperhomocysteinemia in oxidative 

stress associated with poor mental health and also a role for B vitamins in protecting against 

these effects. Chronic hyperhomocysteinemia is associated with markers of oxidative damage 

and increased DNA damage in the parietal cortex and blood of rats. Concurrent 

administration of folic acid prevented these reported effects [246]. Furthermore, folate 

deprivation in neuronal cultures produces neurodegenerative changes characteristic to 

Alzheimer’s disease, increased cytostolic calcium, increased ROS and decreased oxidative 

buffering capacity, accompanied by an increase in homocysteine [245]. Children with autism 

have been shown to have a metabolic profile consistent with impaired methylation status and 

increased oxidative stress, including lower plasma methionine, SAM, homocysteine, 

cystathionine, cysteine and total glutathionine and higher plasma SAH, adenosine and 

oxidised glutathionine compared with healthy controls [248]. After supplementation with 
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folic acid, betaine and methylcobalamin (vitamin B12), aspects of this abnormal metabolic 

profile (methionine, SAM, SAH, adenosine, homocysteine, oxidised glutathionine, cysteine, 

total glutathionine) were improved and some reflected the normal levels displayed in the 

healthy control children. However, changes in speech and cognition were not assessed, 

although some clinical improvements in these were observed by the attending physician.  

Although homocysteine can be remethylated into methionine in the presence of folate 

and vitamin B12, homocysteine can also be converted into cystathionine by the enzyme 

cystathionine-β-sythase (CBS) and then to cysteine by γ-cystathionase (Figure 6). This 

pathway results in increased levels of the antioxidant glutathione, a possible compensatory 

mechanism which counteracts the potential oxidative effects by homocysteine in normal 

function [237]. Elevated homocysteine and decreased glutathione have been implicated in 

Alzheimer’s disease and Parkinson’s disease [239, 249], which could point towards a 

disruption of the transsulfuration pathway as a possible underlying factor in neuropsychiatric 

diseases. This effect could be further enhanced by elevated homocysteine induced by vitamin 

B6, folate and/or vitamin B12 deficiency. A previous set-back to this theory was that although 

production of glutathione from homocysteine-derived cysteine occurs most frequently in the 

liver, this pathway was thought be incomplete in the brain for some time [237]. However, this 

previously-held belief that conversion of cystathionine to cysteine did not occur in the brain 

has been challenged by work in human brain cells and slices which showed an intact and 

functional transsulfuration pathway [250]. From this point, given the dependence of sulfur 

metabolism on the interaction between gene regulation and B vitamins [251], further 

investigations into the neuroprotective effects of vitamin B6, folate and vitamin B12 through 

redox homeostasis are important. 
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B vitamins, epigenetics and inheritance of psychiatric disorders 

In addition to the effects of B vitamin deficiency due to decreased intake during 

adulthood and/or decreased absorption in later life on mental health risk discussed above, 

there is also some evidence that deficiency  before or during development could be 

implicated in mental health in later years and subsequent generations. Poor mental health is 

generally thought to have at least some heritable factor. However, there has been a move 

towards a focus on low birth weight and “programming” factors through epigenetics, or a 

change in gene expression not through alteration in actual DNA sequence but rather DNA 

methylation or chromatin structure [252, 253]. Nutrient deficiency at a specific time in fetal 

development could have long-lasting effects through tissues, organs and systems including 

the central nervous system, in later life. There also is growing evidence that epigenetic 

alterations can be transferred to subsequent generations, which may explain the apparent 

heritability of complex psychiatric disorders despite the failure to identify candidate genes 

[254].  

Interestingly, there was a 2-fold increased incidence of schizophrenia [255], and 

increased incidence of major affective disorders (unipolar and bipolar) [256] and addictive 

disorder especially in men [257] in the Dutch offspring cohort with gestation during the 

1944-45 Dutch hunger winter. Although diets during the famine were deficient in many 

macro- and micronutrients, a 2.5 fold increased incidence of neural tube defects has been 

observed in the cohort, indicating possible folate deficiency in mothers at the time and a 

possible epigenetic effect of nutritional deficiency in this cohort [253]. The timing of the 

nutritional insult appears to influence risk, with increased schizophrenia and addiction 

reported in offspring exposed to the Dutch hunger winter in the first trimester [255, 257], 

whilst increased affective disorders were reported in offspring exposed during the second and 

third trimesters [256]. The authors proposed that neurodevelopmental events that occur at late 
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gestation, including migration of neurons from ventricular zone to the neocortex and neuronal 

differentiation [258], could be affected by an insult at this time resulting in disrupted 

migration or impaired synaptic connections. There is also evidence to suggest people with 

affective disorder and schizophrenia have problems with neuronal structure and synaptic 

connections which could be neurodevelopmental in origin [259-261].  

These proposed effects on development and function through gene expression could 

be implemented through gene-silencing via DNA methylation or gene activation through 

methylation of suppressor genes [253]. Folate, vitamin B6 and vitamin B12 are all directly or 

indirectly involved in one-carbon metabolism and DNA methylation through production of 

SAM, a donor in over 80 methylation reactions. Animal models of schizophrenia [262, 263] 

have pointed towards hypermethylation of the reelin gene promoter and down-regulation of 

reelin and GAD67 expression, which produces two proteins involved in neuronal migration, 

axonal branching, synaptogenesis and cell signalling (reelin) and synthesis of the 

neurotransmitter gamma-aminobutyric acid (GAD67) [253]. Human post-mortem studies in 

schizophrenia and bipolar disorder have pointed towards the reelin and GAD67 as areas of 

interest [264, 265], and reduced reelin mRNA has been observed in autism [266]. Other 

candidates for alterations in gene expression leading to schizophrenia include the SOX-10 

gene, which codes for an oligodendrocyte-specific transcription factor [267].  

Homocysteine, B vitamins and mental health problems 

Whilst early clinical observations indicated that frank deficiencies in B vitamins were 

associated with cognitive deficit or dementia, it is only since the 1990s that deficiencies in the 

“low-normal” range have been considered for a role in dementia [268]. Since then, cross-

sectional and prospective studies have reported associations between lowered B vitamins 

and/or elevated homocysteine in plasma or CSF and increased cognitive decline or dementia 

risk (see Smith [268] for review). Evidence from randomised controlled trials for a positive 
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effect of homocysteine-lowering B vitamin supplementation on cognitive decline is limited to 

date [269]. However, there is evidence of a possible treatment effect at earlier stages of 

cognitive decline. A recent trial of older people with mild cognitive impairment, an early risk 

factor for dementia, found supplementation with high-dose folic acid, vitamin B12 and 

vitamin B6 for 24 months was associated with a slowing cognitive decline compared with 

placebo, particularly in those with elevated homocysteine [270]. These clinical benefits were 

accompanied by a slower rate of brain atrophy in the treatment group as assessed by MRI 

[271].  

A study conducted in acutely ill hospitalised older patients using a mixed nutrient 

supplement containing B vitamins (B2, B6, B12 and folate) for 6 weeks found improved 

vitamin status and decreased self-rated depressive symptoms in the treatment group 

compared with placebo after 6 months but no effect on cognitive function [272]. Plasma total 

homocysteine was assessed in a sub sample at baseline and 6 weeks, and mean plasma total 

homocysteine was lowered by 22% in the treatment group compared with placebo. Those 

with plasma total homocysteine levels in the lowest quartile (≤10µmol/l) after the treatment 

period had lower depression scores compared with the highest quartile (≥16.1µmol/l) [273]. 

It should be noted that older patients which this study excluded due to severe illness, 

dementia or living in institutional care are perhaps even more likely to be undernourished and 

therefore deficient in B vitamins, and therefore more likely to benefit from supplementation. 

Furthermore, as depression is a risk factor for cognitive decline in this group [274, 275], the 

effect of B vitamin supplementation on mental well-being in older people should be explored 

further. 

Cross-sectional research to date has shown some associations between lowered B6, 

folate and B12 and/or elevated homocysteine and increased depression [269].  Recently 

published research has shown an association between increased dietary folate intake and 
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reduced incidence of depression in young women [276]. Associations between increased 

depressive symptoms and lower serum folate levels, but not vitamin B12 were recently 

observed in 2524 adults aged 20-85 years [277]. Vitamin B12 intakes were not significantly 

associated with behaviour scores in a sample of 709 Australian adolescents aged 17 years, 

which the authors suggested could be because the mean intake of the sample was above the 

recommended dietary intake and/or due to the generally superior absorption of vitamin B12 in 

this younger population compared with older adults. However, lower intakes of vitamins B1, 

B2, B3, B5, B6 and folate were associated with higher externalising (aggressive/delinquent) 

behaviour and reduced intake of vitamin B6 and folate were associated with higher 

internalising (withdrawn/depressed) behaviour in this group [278]. There is also a small but 

growing body of evidence showing of a beneficial treatment effect of B vitamin 

supplementation on depression [269]. In addition, results of randomised controlled trials 

investigating folate supplementation as an adjuvant to standard psychotropic medication have 

been promising, perhaps due to folate-induced restoration of neurotransmitter function (see 

Bottiglieri et al [211]). Considering the links between folate, vitamin B12 and vitamin B6 in 

metabolism and their role in lowering homocysteine levels, further clinical trials across 

mental health should combine the three B vitamins as a more effective method of correcting 

deficiency, lowering of homocysteine levels and impacting on clinical outcomes. 

 

DISCUSSION 

We have presented multidimensional support for a pivotal role of some key nutrients 

and plant-derived phytochemicals from a healthy whole food diet in optimal brain function, 

with important implications for cognitive function and mental health. There is a relatively 

small body of interventions investigating nutritional supplements, with more research 

required. Trials investigating effects of nutritional supplements on mental health assist in 
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strengthening the evidence base, but do have their limitations. There is evidence that 

combinations of nutrients work together and yet a dearth of research investigating synergistic 

properties of nutrients at biochemical, physiological or psychological levels. It is noteworthy, 

for instance, that improvements in neuropsychological performance and growth were greater 

in Chinese children following supplementation with zinc plus micronutrients than with zinc 

or micronutrients alone [279]. It has been argued that psychiatric illness requires broad 

spectrum micronutrients due, for instance, to their multiple roles in neurotransmitter synthesis 

– although research in this area is lacking [280]. 

Furthermore, there is a paucity of dietary interventions that focus on mental health 

and wellbeing. As highlighted by Jacques and Tucker [281], ‘we don’t eat nutrients, we eat 

foods’ (p. 1). Not only do we eat foods in certain patterns, but it is likely that nutrients are 

more effective in the complex matrix of a healthy diet, attenuating oxidative and 

inflammatory pathways while amplifying a wide range of protective pathways. To assist in 

addressing the global crisis around chronic illness, poor mental health, and degenerative 

diseases with our aging population, considerable focus is required on research to unravel 

synergistic properties of nutrients and investigate benefits of Mediterranean-style whole food 

diets for mental as well as cardiometabolic health.  
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