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Abstract 

Although single-species laboratory toxicity tests with microalgae are sensitive and highly 

reproducible, they lack environmental realism.  Interactions between algae and their 

associated bacteria, either in the plankton or in biofilms, may alter algal sensitivity to 

contaminants, which are not mimicked in laboratory toxicity tests.  This study investigated the 

effects of simple algal-bacterial relationships on the sensitivity of laboratory-cultured algae to 

copper using 72-h algal growth-rate inhibition bioassays.  Four species of microalgae were 

used, two isolates of each; a strain of algae with no microscopically visible and no culturable 

bacteria present (operationally defined as axenic) and a non-axenic strain.  The four algae 

used were the marine diatom Nitzschia closterium, the freshwater green alga 

Pseudokirchneriella subcapitata and two tropical Chlorella spp.  Under control conditions 

(no copper), N. closterium and P. subcapitata grew better in the presence of the bacterial 

community.  Sensitivity to copper (assessed as the concentration to inhibit the growth rate by 

50% after 72-h (IC50)) was not significantly different for the axenic and non-axenic strains of 

N. closterium, P. subcapitata or for Chlorella sp. (PNG isolate).  At pH 5.7, the axenic 

Chlorella sp. (NT isolate) had a 72-h IC50 of 46 µg Cu L-1, while in the presence of bacteria 

the IC50 increased (i.e., sensitivity decreased) to 208 µg Cu L-1.  However, when the bacterial 

status of both the operationally defined axenic and non-axenic cultures of N. closterium and 

Chlorella sp. (NT isolate) was investigated using polymerase chain reaction (PCR) 

amplification of 16S rRNA followed by DNA fingerprinting using denaturing gradient gel 

electrophoresis (DGGE), it was found that bacteria were actually present in all the algal 

cultures, i.e. the axenic cultures were not truly bacteria-free.  Based on sequence information, 

the bacteria present were nearly all identified as alphaproteobacteria, and a number of isolates 

had high similarity to bacteria previously identified as symbionts or species endophytically 

associated with marine organisms.  The “axenic” cultures contained less bacterial phylotypes 
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than the non-axenic cultures, and based on band-intensity, also contained less bacterial DNA.  

This supported the findings of few differences in copper sensitivity between strains, and 

suggests that standard microalgal toxicity tests probably inadvertently use non-axenic cultures 

in metal assessment. 

 

Keywords: bacteria, phytoplankton, microalgae, 16S rRNA, Cu, axenic 
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1. Introduction 

Algae are useful organisms to assess metal contamination and bioavailability in aquatic 

systems, as they are sensitive to metal contaminants at environmentally relevant 

concentrations (Stauber and Davies, 2000).  Algae are primary producers and affect the 

cycling of nutrients through marine, freshwater and aquaculture ecosystems (Sakata and 

Sakata, 1996; Azam and Malfatti, 2007). As such, algae are regarded as ecologically 

significant organisms and ideal candidates for ecotoxicological studies.  Usually toxicity tests 

use single species (monoculture) testing under controlled laboratory conditions to reduce 

variability and to simplify the interpretation of results.  However, these tests lack 

environmental realism because algae rarely occur in isolation, but rather as part of complex 

planktonic or biofilm communities.  One of the drivers for this research was the concern that 

laboratory-cultured algae may have sensitivities to metal contaminants that differ from that of 

their field counterparts because of the presence of natural bacteria and other biofilm 

components.  This could mean that guideline trigger values based on laboratory toxicity 

testing could be overly conservative if the field species are less sensitive, or vice versa if the 

sensitivities were higher. 

 

The environmental relevance of laboratory-based toxicity tests could be improved by 

incorporating multi-species or multi-taxa tests.  Several studies have used pollution-induced 

community tolerance (PICT) responses of phytoplankton, periphyton, benthic algae or 

biofilms to toxicants (Blanck and Dahl, 1996; Admiraal et al., 1999; Knauer et al, 1999; 

Schmitt-Jansen and Altenburger, 2005), focusing on changes in community structure in 

response to pollutants. Alteration of community structure can influence overall function (e.g. 

respiration, photosynthesis) and the sensitivity of the community to toxicants.  Recent 
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research has attempted to develop multi-species algal tests in toxicity-based metals 

assessment (Franklin et al., 2004, Yu et al., 2007).  These studies have explored the 

toxicological response of individual algal species when exposed in combination with one or 

two other algal species.  Such studies have previously been hampered by practical difficulties 

associated with counting individual species and assessing their responses in the 

presence/absence of toxicants.  Furthermore, little attention has been given to how algal 

interactions with non-algal species influences metal uptake and toxicity.  

  

Bacteria may have either a positive or negative effect on algae in polluted environments.  For 

example, the tolerance of the green macroalga Enteromorpha compressa to copper in a 

polluted coastal environment in Chile may have been attributable to a community of epiphytic 

bacteria colonising its surface (Riquelme et al., 1997).  Bacterial biofilms can mediate toxicity 

of metals to the host organism, e.g. through diffusion limitation of toxicants, protective effects 

of high concentrations of extracellular polymeric substances, protective effects of trapped 

nutrient stores, and effects due to a greater surface area (less toxicant per cell).  While the 

effects of metals on biofilms are quite widely reported (Morel and Palenik, 1989; Barranguet 

et al., 2000, 2002, 2003, Massieux et al., 2004, García-Meza et al., 2005), few studies on the 

effects of biofilms on metal toxicity to algae have been reported. 

 

In natural habitats, bacteria are always associated with algae and can have both beneficial or 

deleterious effects on algal growth.  Interactions between algae and bacteria are complex and 

include competition for resources (Grossart, 1999), production of anti-microbial agents 

(Fukami et al., 1997; Steinberg et al., 1997; Gross 2003), stress protection via production of 

extracellular polymeric substances, and metal binding or transformation through exudate 
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production (Koukal et al., 2007).  Algal cells may associate with a range of bacterial 

communities (Shafer et al., 2002; Grossart et al., 2005).  This association varies from general 

habitat sharing, to direct colonisation of bacteria on the algal surface (epiphytic biofilm) and 

endophytic association of bacteria within algae cells.   

 

Despite the importance of bacteria in nature and their relationship to algae, toxicity testing 

protocols usually use axenic cultures, i.e., unialgal cultures free from bacteria.  The aim of 

this paper was to examine the influence of bacteria on the growth of a number of algal species 

under controlled laboratory conditions, and on the toxicity of copper to these algae. 

   

2. Materials and Methods 

2.1 General 

All general glassware and plasticware was cleaned in a laboratory dishwasher (GW 3050, 

Gallay, Auburn, NSW, Australia) with a phosphate-free detergent (Clean A Powder 

Detergent, Gallay), then acid-washed in HNO3 (30% v/v; Merck, Kilsyth, VIC, Australia) and 

rinsed three times with MilliQ® water (>18 M cm-1, Millipore, North Ryde, NSW 

Australia).  All glassware used in bioassays was pre-soaked in 10% HNO3 overnight and then 

washed thoroughly five times with demineralised water and five times with MilliQ® water.  

All chemicals were AR grade or better, and solutions were prepared with high purity MilliQ® 

water.  For DNA analysis, all plasticware was sterile, DNA- and RNA-free (CellStar 

polypropylene centrifuge tubes, Greiner Bio-One, Frickenhausen, Germany or other DNA-

grade plastic-ware, LabServ, BioLab Australia, Clayton, VIC, Australia). 
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2.2 Algal stock cultures 

A culture of the marine diatom, Nitzschia closterium (Ehrenberg) W. Smith 

(Bacillariophyceae), originally isolated from the Port Hacking River in NSW, Australia, was 

obtained from the CSIRO Collection of Living Microalgae (Strain CS-5).  It was maintained 

in a modified f medium, with reduced iron and trace element concentrations (Guillard and 

Ryther, 1962).  Three freshwater species were also selected.  Pseudokirchneriella subcapitata 

(Korshikov) Hindak (formerly Selenastrum capricornutum Printz) (Chlorophyceae) was 

obtained from the American Type Culture Collection (ATCC 22662) and is a temperate 

isolate from the Nitelv River, Askershus, Norway used widely in toxicity testing (USEPA, 

2002).  It was maintained in USEPA media (USEPA, 2002).  Chlorella sp. isolate 6 (1b) 

(Chlorophyceae) is a tropical species isolated from Lake Aesake, Papua New Guinea.  It was 

maintained in half strength MBL media (Stein, 1973) and is denoted as Chlorella sp. (PNG 

isolate) throughout this paper.  A second Chlorella sp. was obtained from the Environmental 

Research Institute of the Supervising Scientist (ERISS, NT, Australia).  It was originally 

isolated in Kakadu National Park, Northern Territory, Australia, in very soft, acidic water (2-4 

mg CaCO3 L
-1 hardness, pH 6) and was maintained in MBL medium (Franklin et al., 2000).  

It is denoted as Chlorella sp. (NT isolate) throughout this paper.  The two tropical Chlorella 

species were kept at 27(±2)°C on a 12 h light:12 h dark cycle, at a light intensity of 70 µmol 

photons m-2 s-1 (Philips TL 40-W cool-white fluorescent lighting).  N. closterium was 

maintained at 21°C on a 12 h light:12 h dark cycle, at a similar light intensity as the tropical 

species.  The temperate P. subcapitata was kept at 21(±2)°C on a continuous light cycle at a 

light intensity of 70 µmol photons m-2 s-1, as per the standard protocol (USEPA, 2002). A 

continuous light cycle is required for this test species to ensure exponential cell division 

(minimum one division per day) throughout the test period. 
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To establish (operationally defined) axenic strains of the four algae, cultures were streaked 

onto agar plates containing normal medium plus 2% bacto-agar (Oxoid, Bacto Laboratories, 

Liverpool, NSW, Australia).  After 7-10 days incubation (conditions described above) single 

colonies were isolated onto a new medium agar plate.  This process was repeated until no 

bacterial colonies were visible on the plates (i.e. only algal colonies visible).  A single algal 

colony was then transferred into fresh liquid algal medium and checked for bacterial colonies.  

After culturing for at least 14 days, this new liquid culture was spread onto either fresh or 

marine-water Peptone Yeast Extract Agar (PYEA: 2% agar (Oxoid), 0.1% peptone (Oxoid), 

0.1% yeast extract (Oxoid), in either MilliQ® or filtered natural seawater).  Cultures were 

operationally-defined as axenic if no bacteria were observed in the liquid cultures under a 

phase-contrast microscope. 

 

2.3 Growth-rate inhibition bioassays.   

The chronic toxicity of copper to four species of microalgae was tested using 72-h growth-

rate inhibition bioassays (details below).  A batch method was used for the bioassays using 

250-mL borosilicate glass Erlenmeyer flasks, treated with Coatasil silanising solution (APS 

Ajax Finechem, Seven Hills, NSW, Australia) to prevent adsorption of copper to the glass.   

 

Copper stock solutions (5 and 100 mg L-1) were prepared from copper sulfate (CuSO4·5H2O, 

AR grade, APS Ajax Finechem) using Milli Q water and acidified with HCl (0.2% v/v, pH < 

2, Tracepur, Merck).  The medium used to prepare test treatments for the marine test species 

(N. closterium) was filtered seawater (0.45 µm pore size, cartridge filter, Millipore).  The 

media used to prepare test treatments for the freshwater species are listed in Table 1.  P. 

subcapitata test-treatments were prepared in USEPA media without EDTA as per the 
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standard protocol (USEPA, 2002) (pH 7.4 - 7.5).  Chlorella sp. (PNG isolate) test-treatments 

were prepared in softwater (80-90 CaCO3 mg L-1 hardness, pH adjusted to pH 7.4 - 7.5) 

(Table 1).  Bioassays using Chlorella sp. (NT isolate) were conducted in a very softwater (2-4 

mg CaCO3 L
-1 hardness) at low pH (pH 5.7 and pH 6.5) to match the water quality conditions 

of the region from which this alga was isolated (Table 1) (Franklin et al., 2000).  For tests 

with Chlorella sp. (NT isolate), the pH of the treatment solutions was initially adjusted to 

either 5.7 or 6.5 by drop-wise addition of 0.1 M HCl or NaOH, prior to dispensing the 

solution in flasks.  The tests with Chlorella sp. (NT isolate) were done at two pH values 

because previous research had shown that small changes in pH had a large effect on copper 

toxicity to this species (Franklin et al., 2000).  Manual pH adjustment rather than pH buffers 

were used, as some buffers have previously been shown to affect control growth rates in some 

algae and/or to complex copper, reducing its bioavailability (Wilde et al., 2006).  At least five 

different copper treatments and a control (copper-free filtered test media) were prepared from 

the stock solutions in triplicate (or quadruplicate for some controls) and 50 mL dispensed into 

250-mL Erlenmeyer flasks.  Nominal copper exposure concentrations varied in each test, and 

were 0.5, 1, 2, 3, 4, 6, 8, 12, 18, 24, 40 and 45 µg Cu/L in N. closterium bioassays; 0.5, 1, 2, 

2.5, 4, 5, 6, 7.5, 10, 25 and 50 µg Cu/L in P. subcapitata bioassays; 2, 2.5, 3, 3.5, 4, 6, 12 and 

24 µg Cu/L in Chlorella sp. (PNG isolate) bioassays; 1.5, 6, 24, 60, 100, 400 and 600 µg 

Cu/L in Chlorella sp. (NT isolate) pH 5.7 bioassays, and; 0.5, 1, 2, 4, 5, 6, 8, 10, 20 and 30 µg 

Cu/L in Chlorella sp. (NT isolate) pH 6.5 bioassays.  Each flask was supplemented with 15 

mg NO 
3  L-1 (Chlorella spp. and N. closterium tests) (NaNO3, AR grade, APS Ajax 

Finechem) and 0.15 mg PO 3
4

 L-1 (Chlorella spp. tests) or 1.5 mg PO 3
4

 L-1 (N. closterium 

tests) (KH2PO4, AR grade, APS Ajax Finechem).  No further nutrient additions to the USEPA 

medium were required for P. subcapitata. 
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Cells in exponential growth phase (5-6 d old; or for Chlorella sp. (NT isolate) 4-5 d old), 

were used to inoculate the test treatments after centrifugation (1200 g, 7 min, Spintron GT-

175BR, Spintron, Melbourne, VIC, Australia) and three subsequent washes in test medium 

(seawater, softwater or USEPA medium (-EDTA)) to remove residual culture medium.  The 

test flasks were then inoculated with 2-4  103 cells mL-1.  A 5 mL sub-sample was 

immediately filtered through an acid-washed 0.45 µm membrane filter (MiniSart, Sartorius, 

Oakleigh, VIC, Australia), acidified with 0.2% HNO3 (TracePur, Merck), and dissolved 

copper was determined by inductively coupled plasma-atomic emission spectrometry (ICP-

AES) (Spectro Flame-EOP, Spectro Analytical Instruments, Kleve, Germany).  The flasks 

were incubated for 72 h in 12:12 h light/dark conditions at 140 µmol photons m-2 s-1 at 27°C 

(for tropical species) or 21°C (temperate species) (except P. subcapitata which was kept 

under constant illumination for the duration of tests as per the standard protocol).  Test flasks 

were rotated within the light cabinet and shaken twice daily by hand to ensure sufficient gas 

exchange.  The pH was recorded initially and after 72 h.  For Chlorella sp. (NT isolate), the 

pH was monitored and adjusted daily to pH 5.70 ± 0.05 or pH 6.50 ± 0.05 using drop-wise 

additions of 0.005 or 0.01 M HCl (TracePur, Merck) and NaOH (APS Ajax FineChem). 

 

The cell density in each treatment was measured daily using flow cytometry (BD-

FACSCalibur, Becton Dickinson BioSciences, San Jose, CA, USA).  Cells were excited with 

blue light (488 nm) and chlorophyll a autofluorescence was measured as light emission > 600 

nm (long pass filter).  TruCount fluorescent beads (BD Trucount™ Tubes, BD Biosciences) 

were added to each sample as an internal counting standard.  Further details on the flow 

cytometric method are detailed in Franklin et al. (2004).  The growth rate (cell division; µ), 

was calculated as the slope of the regression line from a plot of log10 (cell density) versus time 
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(h).  Growth rates for treatment flasks (24  µ  3.32, doublings day-1) were expressed as a 

percentage of the control growth rates. 

 

2.4 Copper analyses 

The concentration of dissolved copper in samples was measured by inductively coupled 

plasma-atomic emission spectroscopy (ICP-AES).  Copper concentrations were calculated 

from a matrix-matched calibration curve (Milli Q water or filtered seawater, acidified with 

0.2% HNO3) using serial dilution of a mixed metal standard (QCD Analysts, Eaglewood, FL, 

USA) and a drift standard incorporated into the analysis procedure.  The detection limit for 

copper was typically 0.5 to 1 µg L-1 for individual analytical runs.  Measured copper 

concentrations were used in all calculations of toxicity endpoints. 

 

2.5 Statistics 

The inhibitory concentration to reduce the growth rate by 50% (72-h IC50) was calculated 

using linear interpolation (ToxCalc, Ver 5.0.23C, Tidepool Software, San Francisco, CA, 

USA).  The data were tested for normality and homogenous variance, and Dunnett’s multiple 

comparison test was used to determine which treatments differed significantly from controls 

(1 tailed, p  0.05) and to estimate the no-observable effect concentration (NOEC) and the 

lowest-observable-effect concentration (LOEC).  Where data were pooled to gain a single 

IC50 value based on multiple tests, the Bonferroni t test or the Wilcoxon Rank Sum Test were 

used to determine which treatments differed significantly from controls (due to greater 

replicates of control versus treatment samples). 
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Control growth rates for single species of algae grown either axenically or with bacteria 

present were compared using t-tests.  Differences were significant if p  0.05.  The sensitivity 

of individual algal species grown either axenically or with bacteria present were compared 

using the method of Sprague and Fogels (1976).  A parameter f1,2 was calculated where f1,2 = 

 {[log (upper 95% CL1/IC501)]
2 + [log (upper 95% CL2/IC502)]

2} (where CL = confidence 

limit) and compared to the ratio of the largest IC50/smallest IC50.  If the ratio was larger than 

f1,2, the IC50s were deemed to be significantly different. 

 

2.6 Characterisation of bacteria associated with N. closterium and Chlorella sp. (NT isolate) 

cultures 

Samples of N. closterium and Chlorella sp. (NT isolate) cultures were transferred to 50 mL 

sterile, RNA- and DNA-free polypropylene centrifuge tubes (BD Falcon, Bacto Laboratories, 

Liverpool, NSW, Australia) under sterile conditions and frozen at -80°C until analysis.   

 

For DNA extraction, the sample tubes were thawed and cellular material collected by 

centrifugation (12000 g, 20 min, 25°C).  The pellet of biological material was collected using 

a flame-sterilised stainless steel laboratory spoon and DNA extracted using the MoBio 

PowerSoil™ DNA extraction kit (MoBio Laboratories, Carlsbad, CA, USA).  Extraction of 

nucleic acids from the cells was aided by the use of mechanical disruption via bead beating 

(FP120; Q-biogene Inc, USA).  DNA was extracted into 50 µL of Tris EDTA buffer and 

stored at -20°C.  

 

Polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) was used to 

establish the presence of bacterial DNA in the axenic and non-axenic N. closterium and 
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Chlorella sp. algal cultures and to estimate the potential number of species present.  PCR is 

used to amplify a specific type of nucleic acid present in a sample, in this case bacterial 

16S rRNA, after which further separation (e.g. DGGE) can be used for DNA fingerprinting of 

samples or identification of species present.  Bacterial specific PCR targeted the 16S rRNA 

gene with primers 27F (Lane, 1991) and 534R (Muyzer et al., 1993) – primer 27F was 

modified with the addition of a 42 base pair GC-rich ‘clamp’ (Muyzer et al., 1993).  PCR 

followed the method described in Wakelin et al. (2008) and was based on Qiagen™ Hot Start 

PCR reagents.  PCR products (2 µL) were electrophoretically separated in 1.5% agarose gels, 

stained with ethidium bromide (0.5 µg mL-1), and visualised under UV light to check for 

single-banding, or success of the PCR process. The remaining PCR products were used for 

DGGE analysis. 

 

DGGE separation of 16S rRNA PCR products was performed in the Ingeny PhorU system 

using a 30-60% urea-formamide denaturing gradient range in a 7% acrylamide:bis-acrylamide 

gel.  Electrophoresis was conducted at 60°C and 110 V for 14 h.  Gels were stained with 

SYBR gold (Molecular Probes, Invitrogen, Mount Waverley, VIC, Australia), visualised on a 

dark-reader (Clare Chemical Research, Dolores, CO, USA) and photographed with an 

Olympus SLR digital camera.  Each individual band on gels observed following DGGE was 

indicative of a bacterial phylotype.  More intense DGGE bands generally indicate a greater 

bacterial DNA density and thus a greater number of bacteria. 

 

DNA sequencing was used to phylogenetically characterise bacterial species present in the 

algal cultures.  Using the extracted DNA, bacterial 16S rRNA genes were specifically 

amplified as before, but using primers F968 and R1401 (Duineveld et al., 1998).  PCR 
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chemistry and conditions were as described in Wakelin et al. (2007), and agarose-gel 

electrophoresis as described before.  PCR products were overnight ligated at 4°C into the 

pGEMT vector and heat-shock transformed into E. coli JM109 competent cells (Promega).  

Following blue-white screening on X-gal/IPTG plates containing ampicillin, bacterial 

colonies were picked onto a library plate and sent to the Australian Genome Research Facility 

(Adelaide) for capillary sequencing from the M13 region.  Eight random colonies from each 

of the four samples were sequenced.  Following removal of flanking vector regions, the 16S 

rRNA sequences were compared against those in the GenBank database using the Blastn 

search tool.  Phylogenetic affiliations were based on the consensus of data within the distance 

tree view of the Blastn search results.  Where possible, sequence information present from 

characterised type-strains of bacteria was used to support the phylogenetic affiliations. 

 

3. Results 

3.1 Growth-rate inhibition bioassays  

Initial pH for N. closterium bioassays was between 8.10 and 8.30 (± 0.03 pH units) for 

individual tests, with increases of up to 0.5 pH unit (in controls where growth rates were 

higher).  The pH in P. subcapitata bioassays was initially 7.4 ± 0.1, with pH of individual 

treatments increasing by ≤ 0.2 units over the course of bioassays.  Initial pH of Chlorella sp. 

(PNG isolate) bioassays was 8.05 ± 0.10, with increases of ≤ 0.2 units over the course of 72 h.  

The pH for the Chlorella sp. (NT isolate tests) was adjusted by hand to within 0.05 of pH 5.7 

or pH 6.5 daily, but often adjustment was not required where growth was minimal.  However, 

pH values in controls were up to 0.2 units higher at the end of the test due to growth in the 

final few hours of the test. 
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Control growth rates for all species were within typical ranges: 1.2 to 1.9 doublings day-1 for 

the three freshwater algae, and 2.1 to 2.5 doublings day-1 for the marine alga N. closterium.  

Variability in the control growth rates was  7% for all species except P. subcapitata, where 

variability in control growth rates was < 20%, but still within test acceptability limits.  

Control growth rates in individual toxicity tests were significantly higher in non-axenic 

cultures of N. closterium and P. subcapitata compared to the axenic cultures (t-tests, p < 

0.05).  Control growth rates in the axenic Chlorella sp. (NT isolate) bioassays were not 

significantly different from the non-axenic bioassays (Table 2).  The control growth rate of 

the non-axenic Chlorella sp. (PNG isolate) was significantly higher than the axenic isolate in 

one individual test, but lower in the second test. 

 

As the concentration of copper in solution increased, the growth rate (as a % of controls) 

decreased for all species (Figure 1).  The no-observable effect concentration (NOEC), the 

lowest-observable-effect concentration (LOEC) and 72-h IC50 values for each algal species 

and for each of the two culture types, axenic and non-axenic, are given in Table 2.  These 

results were calculated based on the pooled data from two definitive toxicity bioassays (N. 

closterium, Chlorella sp. (PNG isolate) and Chlorella sp. (NT isolate) at pH 5.7) or three 

definitive toxicity bioassays (P. subcapitata, Chlorella sp. (NT isolate) at pH 6.5). 

 

For N. closterium, Chlorella sp. (PNG isolate) and P. subcapitata, there was no significant 

difference in the sensitivity of the alga in the axenic culture when compared to the non-axenic 

culture in individual tests, or when data from multiple toxicity tests for an individual species 

was pooled.  The 72-h IC50 values were 7 and 8 µg Cu L-1 for the axenic and non-axenic N. 
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closterium cultures, respectively, 3 µg Cu L-1 for Chlorella sp. (PNG) isolate (both cultures) 

and 0.8 µg Cu L-1 for P. subcapitata (both cultures) (Table 2). 

 

When the NT isolate of Chlorella sp. was exposed to copper at pH 5.7, differences in IC50 

values were significant, with the axenic culture being more sensitive to copper than the non-

axenic culture (72-h IC50 values of 46 and 208 µg Cu L-1, respectively) (Table 2).  

Differences were significant in both the individual toxicity tests and when the data from the 

tests were pooled to obtain a single IC50 value.  Concentrations of copper as low as 5 µg L-1 

caused significant reduction in growth rate of algae in the axenic culture, whereas in the non-

axenic culture the LOEC was higher (55 µg Cu L-1), i.e., a decrease in the sensitivity of the 

alga was found when bacteria were present.  The NT Chlorella sp. isolate was more sensitive 

to copper at pH 6.5 than at pH 5.7, however, the bacteria had no protective effect at pH 6.5, 

with no significant difference in 72-h IC50 values of 28 and 19 µg Cu L-1 for the axenic and 

non-axenic cultures, respectively.  Calculated LOEC values were also similar for both axenic 

and non-axenic cultures at pH 6.5. 

 

3.2 Bacterial analysis 

The similar sensitivity of algae to copper in the presence/absence of bacteria was unexpected.  

As such, the association of bacteria with two algal species - N. closterium and Chlorella sp. 

(NT isolate) - was investigated further. 

 

16S rRNA genes were present in both the axenic and non-axenic cultures of N. closterium and 

Chlorella sp. (NT isolate).  DGGE separation of the PCR products revealed a number of 

ribosomal genotypes present in each sample (Figure 2).  The axenic algal cultures were 



 17

dominated by a single bacterial ribotype each (DGGE band; Figure 2), however the non-

axenic cultures had 2 major ribotypes present in each sample.  A similar bacterial ribotype 

was present in both the axenic and non-axenic Chlorella sp. (NT isolate) cultures (Fig 2).  

 

16S rRNA sequence information was used to explore the phylogenetic association of bacteria 

within the algal cultures.  Selected sequences representative of bacteria found in the algal 

cultures were loaded onto GenBank under accession numbers EU650654 to EU650661 (Table 

3).  From the axenic N. closterium culture, all of the clones sequenced were highly similar to 

Mesorhizobium spp., a genera of alphaproteobacteria (Table 3).  Sequences from the non-

axenic culture of N. closterium were more varied, but again were all from the 

alphaproteobacteria phylum.  The majority of the sequences (half) were from a poorly 

described alphaproteobacterial lineage (sequence EU650658; Table 3), however 

alphaproteobacterial sequences in the Rhodobacteriaceae and Sneathiellaceae families were 

also present.  Similarly, the axenic Chlorella sp. (NT isolate) culture had sequences associated 

with Rhodobacteriaceae (Table 3), however most sequences were from origins which 

indicated contamination of the DNA (e.g. skin-associated bacteria).   In the non-axenic 

Chlorella sp. (NT isolate) culture, sequences from the Methylobacteriaceae and 

Aurantimonadaceae were present (Table 3). 

 

4. Discussion 

The presence of bacteria, or rather, the presence of greater numbers and diversity of bacteria 

associated with the algal cultures (as more intense DGGE bands indicate a greater bacterial 

DNA density and a greater number of bacteria), was found to enhance the growth of two out 

of four of the algal species tested in controls (no copper).  This increase in growth rate 
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suggests that the relationship between algae and bacteria in these cultures is beneficial to the 

algal species.  Grossart et al. (2006) also found that the cell density of Skeletonema costatum 

in exponential growth phase was significantly higher in the presence of bacteria.  The ability 

of bacteria to augment algal growth has been shown to vary with the growth phase of the 

algae (Grossart et al, 2006).  Grossart et al. (2006) found that cell densities of Thalassiosira 

rotula remained high if exposed to bacteria in the exponential phase of growth, but if exposed 

in stationary phase, algal cell densities decreased rapidly.  Algal growth rates in this study 

were measured only in the exponential phase, in keeping with standard toxicity testing 

protocols which use exponentially dividing cells.  The relationship between bacteria and algae 

in laboratory bioassays has also been shown to vary with phosphate concentrations and light 

intensity, with algae generally out-competing bacteria in high phosphate and high light 

conditions (Gurung, 1999), as in our bioassays.  The response of the alga will also depend on 

the species of bacteria present, and the media in which the alga are grown (e.g. nutrients and 

vitamins) (Grossart and Simon, 2007).  Bacteria specifically isolated from the surface of 

marine diatoms were found to have a greater positive effect on algal growth than when marine 

bacteria isolated from ocean water were added to algal cultures (Grossart, 1999), suggesting 

that the spatial relationship between bacteria and algae may be important.  Rier and Stevenson 

(2002) suggested that bacteria tended to be more effective competitors for resources due to (i) 

faster growth rates, (ii) a greater surface area to volume ratio and (iii) faster uptake rates of 

phosphorus.  Competition effects to the detriment of the algal species were not observed in 

the current study, with algal species generally either gaining no benefit from the bacteria, or 

positive effects in the form of increased growth rates in both controls and copper-treatments, 

possibly due to nutrient remobilisation of essential elements for algal growth through 

bacteria-mediated degradation processes (Grossart, 1999).  
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The impact of algal growth, alone or in combination with copper, on the bacterial population 

was not assessed in this study, as the primary aim was to determine the differences in 

sensitivity of algae to copper in the presence/absence of natural bacteria.  However, bacteria 

may also benefit from association with algae.  In oligotrophic open ocean conditions the 

algal-bacterial relationship is strengthened because non-algal derived dissolved organic matter 

is very low in concentration and bacteria largely rely on algal-derived carbon as an energy 

source (Morán et al., 2002, Gurung et al., 1999).  Dissolved organic matter in laboratory algal 

bioassays has been found to be lower when bacteria are present, indicating rapid bacterial 

solubilisation and decomposition of algal-born organic matter (Grossart et al., 2006).  

Increased extracellular polymeric substance (EPS) production, either as a natural defence 

against colonisation (Steinberg et al., 1997) or as a result of nutrient or trace metal stress, can 

increase the sedimentation or sinking rate of algae through greater aggregation of cells, which 

is of primary importance in driving carbon circulation in oceanic systems (Azam and Malfatti, 

2007).  EPS is also important for the cycling of trace metals in aquatic systems, as metals 

bound to bacterial and algal agglomerates, and to colloidal material/EPS, will be removed 

from surface waters as the large particles sink (Morel and Price, 2003; Koukal et al., 2007).  

Bacterial colonisation has been shown to be higher on stressed algal cells than healthy algal 

cells (Grossart, 1999), which could be related to the release of organic material from the cell 

upon cell lysis as part of the natural senescence process or under conditions of induced stress, 

such as exposure to metal contaminants.   

 

The sensitivity of the axenic algal species to copper ranged over three orders of magnitude 

from 0.8 µg Cu L-1 for P. subcapitata to 46 µg Cu L-1 for Chlorella sp. (NT isolate) at pH 5.7.  

The Chlorella sp. (NT isolate) was less sensitive to copper at pH 6.5 (28 µg Cu L-1) than 

reported previously (1.5 µg Cu L-1, Franklin et al., 2000), but similarly sensitive at pH 5.7 
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(46 µg Cu L-1 this test; 35 µg Cu L-1 Franklin et al., 2000).  In contrast, previous tests with P. 

subcapitata reported 72-h IC50 values of 6.6 to 17 µg Cu L-1 at cell densities of 102–105 cells 

mL-1 (Franklin et al., 2000, 2002), compared to this study in which it was much more 

sensitive to copper (72-h IC50 of 0.8 µg Cu L-1 at an initial cell density of 103 cells mL-1).   

 

The presence of bacteria (or the greater concentration of certain bacteria in culture) was found 

to decrease the sensitivity of only one algal species to copper, the NT Chlorella sp. isolate. 

However, this protective effect was only observed at pH 5.7.  The presence of additional 

bacteria did not have any protective effect against copper for N. closterium, the PNG 

Chlorella sp. isolate or for P. subcapitata.  This was unexpected, as it was hypothesised that 

the presence of bacteria would increase the surface area, thereby providing a greater number 

of binding sites for copper and subsequently a decrease in copper uptake and toxicity.  It is 

likely that the two latter axenic strains, not characterised by DGGE, also contained bacteria. 

This potentially explains why the sensitivities of the axenic and non-axenic algae to copper 

were similar.  

 

DNA of bacterial origin was detected in both the axenic and non-axenic N. closterium and 

Chlorella sp. (NT isolate) cultures.  Such DNA can, however, be present regardless of 

whether the viable or active bacteria exist in culture.  The autoclaving process used to 

maintain algal cultures from week to week, while destroying live bacteria, liberates DNA into 

the culture media.  Furthermore, bacterial DNA present in batch seawater or MilliQ® water 

used as the culture medium base can also be potentially detected by DNA-based measures.  

For both algae, however, the axenic vs. non-axenic cultures (having been made from the same 

culture medium), differed in bacterial community structure as shown by both DGGE 

fingerprinting and sequence information. The phylogenetic identity of dominant bacterial 
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species present in the axenic cultures, Mesorhizobium sp. for N. closterium and a Ruegeria sp. 

for the Chlorella sp. (NT isolate), is also significant.  In particular, the Ruegeria sequence 

closely matched others which originated from studies assessing bacterial diversity associated 

with laboratory cultures of marine algae (e.g. GenBank accession DQ486504).  Bacterial 

sequences from the non-axenic Chlorella sp. (NT isolate) culture also showed high levels of 

similarity to submissions of bacteria intimately (symbiotically and even endophytically) 

associated with marine organisms.  In particular, this was true for sequence EU650658 which 

could not be reliably assigned to a known family of alphaproteobacteria.  Sequences with high 

similarity to EU650658 originated from tropical sponge tissue (EF092174), coral 

(DQ416480), and oligochaetes (EU287331).  Similar sequences have been found within bulk 

marine sediment (EU287331, EU287307, EU491873) and may have been present in 

symbiosis with higher organisms in this habitat.  Finally, the Chlorella sp. (NT isolate)-

associated Aurantimonas sequence was most similar to a 16S rRNA sequence originating 

from the phycosphere of a Chlorella vulgaris isolate (AM286549).  Together, these results 

provide overwhelming evidence for the presence of specific algal- bacterial communities to 

be present in both the axenic and non-axenic cultures.     

 

The inability to visibly detect or culture bacteria from the axenic cultures may be due to either 

the very close phycosphere association of the bacterium with the algal cell wall, or the 

bacteria existing endophytically within the algal cell.  Where bacteria are closely associated 

with the algal cell, it may be impossible to remove the bacteria from the alga using physical 

techniques.  Moreover, the algal species may benefit from the presence of bacteria, as shown 

by the increased growth rate in the current tests when more bacteria were present.  Other 

techniques previously used to render algal cultures “bacteria free” have included the use of 

antibiotics.  Antibiotics were not used here, as previous work has found that antibiotics were 
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toxic to algae, leading to changes in cell morphology and reduced growth (J. Stauber, 

unpublished results).  Recently, the toxicity of a suite of antibacterial agents to P. 

kirchneriella was tested, individually and in mixtures, and toxicity of these antibiotics to the 

alga was found (Yang et al., 2008) at µg L-1 concentrations.   

 

The interactions in mixed species toxicity testing are complex and, as in any particular 

community, some species may exhibit greater, decreased or no change in sensitivity to metals 

(Franklin et al., 2004).  In multispecies toxicity tests with freshwater algae Microcystis 

aeruginosa, P. subcapitata and Trachelomonas sp., the toxicity of copper to Trachelomonas 

sp. was greater when other species were present, with the 72-h IC50 decreasing from 9.8 µg 

Cu L-1 in individual assays to 2.8 µg Cu L-1 in multispecies assays (Franklin et al., 2004).  

The toxicity to M. aeruginosa and P. subcapitata was not affected.  In contrast, in a 

multispecies test with the marine algae Micromonas pusilla, Phaeodactylum tricornutum and 

Heterocapsa niei, toxicity to P. tricornutum was reduced while that for H. niei was not 

(Franklin et al., 2004).  As cells were added in quantities to give equivalent surfaces areas, 

these differences could not be simply related to a decrease in copper binding to cells (Franklin 

et al., 2004).  Similarly, in tests combining M. aeruginosa and either Chlorella pyrenoidosa or 

Scenedesmus obliquus, the addition of other algae in surface-area equivalent and cell number 

equivalent tests provided a protective effect against short-term (24-h) toxicity of copper to M. 

aeruginosa (based on esterase activity) (Yu et al., 2007).  Intracellular concentrations of 

reactive oxygen species were also higher for M. aeruginosa in single species assays compared 

to multispecies assays.  This suggests significant algal-algal interactions, beyond surface area 

effects (Yu et al., 2007). 
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Previous work on P. subcapitata has shown that the exudates it produces (7-d old culture) 

decreased the toxicity of cadmium, copper, lead and zinc to the alga based on the inhibition of 

photosynthesis after 1 h of exposure to high concentrations of metals.  The protective effect of 

the exudates was metal- and concentration-specific: at very high metal concentrations the 

exudates no longer ameliorated toxicity due to saturation of exudate binding sites (Koukal et 

al., 2007).  Exudate production of mixed bacterial/algal biofilm communities has been shown 

to increase upon metal exposure (García-Meza et al., 2005).  These exudates may be of 

bacterial or algal origin, but they can be a survival mechanism for these organisms under 

stress.  Boivin et al. (2007) did a comprehensive study that investigated the genetic and 

physiological structure of algal and bacterial communities across a natural contaminant 

gradient in flood-plain sediments.  Although they found that the structure and physiology of 

the bacterial communities correlated with the algal community structure, there was no pattern 

to changes in the bacterial and algal communities based upon metal contamination.  Due to 

the complexity of mixed species toxicity testing, the majority of research has focussed on 

PICT responses of phytoplankton, bacteria or biofilm communities (Blanck and Dahl, 1996; 

Boivin et al., 2006; Admiraal et al., 1999; Massieux et al., 2004); or functional changes 

brought about by metals for entire communities (Lehmann et al., 1999; Boivin et al., 2005) 

and not on the specific individual responses of algae or bacteria within a community to a 

metal.     

 

As the presence of bacteria had little effect on copper sensitivity of these algae, this work 

shows that algal cultures do not necessarily need to be axenic to be useful in toxicity testing.  

This research suggests that algal toxicity tests that use non-axenic algal cultures are 

acceptable for metals assessment, where contamination is low, as it is likely to be difficult to 

obtain a culture that is truly bacteria-free.  The findings indicate that for the algal species 
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examined, laboratory tests are an acceptable mimic for the effects that might be observed in 

the field.   
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Table 1.  Final concentration of reagents (mg L-1) used in the media for freshwater toxicity 

testsa 

Chemical 
Reagent Added 

Test Media 
Chlorella sp. (NT isolate) 
Magela Creek Softwater 

(2-4 mg CaCO3 L
-1 

Hardness)  

Chlorella sp. (PNG isolate) 
Softwater (80-90 mg 
CaCO3 L

-1 Hardness) 

Pseudokirchneriella 
subcapitata 

USEPA Media (No 
EDTA) 

NaNO3 15 15 25.5 
K2HPO4 0.15 0.15 1.04 
MgSO4.7H2O 6.13 123 14.7 
MgCl2.6H2O   12.2 
CaSO4.2H2O  60  
CaCl2.2H2O 1.65  4.41 
NaHCO3 3.62 96 15.0 
KCl 0.71 8  
FeCl3.6H2O 0.44  0.160 
Al2(SO4)3.18H2O 0.87   
MnSO4.H2O 0.0297   
MnCl2.4H2O   0.416 
CuSO4.5H2O 0.00275   
CuCl2.2H2O   0.000012 
ZnSO4.7H2O 0.00308   
ZnCl2   0.00328 
UO2SO4.3H2O 0.00017   
H3BO3   0.185 
CoCl2.6H2O   0.00144 
Na2MoO4.2H2O   0.00728 
a Filtered seawater (0.45 µm) collected from Oak Park, Cronulla (NSW, Australia) was used for the test medium 
for the marine alga Nitzschia closterium.  For all bioassays using either filtered seawater, Magela Creek 
softwater or the 80-90 hardness softwater, 15 mg NO3

- L-1 and 0.15 mg PO4
3- L-1 were added to each test flask 

just prior to inoculation, while for the USEPA media for testing P. subcapitata, no further nutrient additions 
were required. 
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Table 2.  Comparison of 72-h IC50 values (µg Cu L-1) for four algal species for both axenic and non-axenic cultures. 
Alga Culture type Control Growth Rate NOEC LOEC 72-h IC50 
  (doublings day-1) c µg Cu L-1 
Nitzschia closterium a Axenic 2.12 ± 0.05 0.8 1 7 (6-8) 

Non-axenic 2.37 ± 0.05 1 1.5 8 (4-10) 
Chlorella sp. (PNG isolate) a Axenic 1.52 ± 0.09 2.3 2.8 3.0 (2.9-3.0) 

Non-axenic 1.38 ± 0.05 2.3 3 3.1 (3.0-3.2) 
Pseudokirchneriella subcapitata b

Axenic 1.28 ± 0.04 0.3 0.6 0.8 (0.8-0.9) 

Non-axenic 1.59 ± 0.14 d d 0.8 (0.5-1.1) 
Chlorella sp. (NT isolate) (pH 5.7) a

Axenic 1.75 ± 0.07 4 5 46 (36-57) 

Non-axenic 1.68 ± 0.10 26 55 208 (114-289) *e 
Chlorella sp. (NT isolate) (pH 6.5) b Axenic 1.62 ± 0.04 < 1 1 28 (27-28) 

Non-axenic 1.65 ± 0.08 < 1 1 19 (0-43) 
a Results obtained by pooling the data from two definitive toxicity tests. 
b Results obtained by pooling the data from three definitive toxicity tests. 
c Control growth rate is the mean (± standard error) growth rate calculated from all control replicates from 2 or 3 toxicity tests.  Tests for significant differences in control 
growth rates were only done on individual results for any particular test week, and not on the pooled data presented here. 
d Calculated NOEC and LOEC values higher than the IC50, therefore not reported. 
e Asterisk indicates significant difference in IC50 values for the axenic and non-axenic cultures.   
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Table 3. Origin and putative phylogenetic association of algae-associated bacterial 16S rRNA sequences submitted to GenBank 
 
Accession number Origin Phylogenetic association a  
EU650654 Nitzschia closterium axenic culture Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae; Mesorhizobium 
EU650655 Nitzschia closterium non-axenic culture Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Ruegeria 
EU650656 Nitzschia closterium non-axenic culture Alphaproteobacteria; Sneathiellales; Sneathiellaceae; Sneathiella 
EU650657 Nitzschia closterium non-axenic culture Alphaproteobacteria; Rhodospirillales; Rhodospirillaceae; Thalassospira 
EU650658 Nitzschia closterium non-axenic culture Alphaproteobacteria 
EU650659 Chlorella sp. (N.T. isolate) axenic culture Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Ruegeria 
EU650660 Chlorella sp. (N.T. isolate) non-axenic culture Alphaproteobacteria; Rhizobiales; Methylobacteriaceae; Methylobacterium 
EU650661 Chlorella sp. (N.T. isolate) non-axenic culture Alphaproteobacteria; Rhizobiales; Aurantimonadaceae; Aurantimonas 
a Based on the consensus of phylogenetic affiliation generated using the “distance tree view” of the Blastn search results.   
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Chlorella  sp. (NT isolate) at pH 5.7
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Figure 1.  Concentration-response curves for four algal species, (a) N. closterium, (b) P. 

subcapitata, (c) Chlorella sp. (PNG isolate) and (d, e) Chlorella sp. (NT isolate), exposed to 

copper for 72-h ( axenic culture; □ non-axenic culture).  Data for Chlorella sp. (NT isolate) 

are presented at two pH values, pH 5.7 (d) and pH 6.5 (e).  Results for each alga have been 

pooled from ≥ two bioassays.  Each data point is the mean of ≥ three replicates with the bars 

representing the standard error.  Initial measured copper concentrations were used.  Note that 

the x axis is on a log scale, the scale of which varies for each concentration-response curve. 

(d) 

(e) 
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Figure 2.  Bacteria in algal cultures using denaturing gradient gel electrophoresis (DGGE).  

Cultures were operationally defined as axenic or non-axenic (See Methods).  Lane A. Axenic 

Nitzschia closterium.  Lane B. Non-axenic Nitzschia closterium.  Lane C. Axenic Chlorella 

sp. (NT isolate).  Lane D. Non-axenic Chlorella sp. (NT isolate).  Each band represents an 

operationally distinct taxonomic unit, i.e., species of bacteria. Note that band intensity was 

quantified using image analysis and that a higher band intensity can indicate greater bacterial 

DNA density and thus the presence of more bacteria. 

A B C D 
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