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Environmental effects of ozone depletion and its interactions with 
climate change: Progress report, 2004  
 
United Nations Environment Programme, Environmental Effects Assessment Panel1 
 
 
Introduction 
The measures needed for the protection of the Earth’s ozone layer are decided regularly by the 

Parties to the Montreal Protocol, now consisting of 188 countries.  The Parties are advised on 

knowledge relevant to this task by three panels of experts: the Scientific, Environmental Effects, 

and Technology and Economic Assessment Panels.  These panels produce an assessment every 

four years.  The Environmental Effects Assessments are also published in the scientific literature; 

the latest report was published as a series of papers in Photochemical & Photobiological Sciences, 

2003, 2, 1-72.  In the intermediate years, the panels keep the Parties informed on new 

developments. The following Progress Report is the 2004 update by the Environmental Effects 

Assessment Panel and follows that for 2003 (Photochemical & Photobiological Sciences, 2004, 3, 

1-6). 

 

Since the first assessments in 1989, the complexity of the linkages between ozone depletion, UV-B 

radiation (Fig. 1) and climate change has become more apparent.  This makes it even clearer than 

before that we are dealing with long-term developments, which can be complicated by large year 

to year variability. 

 
Figs. 1,2    HERE underneath each other: see Photochemical & Photobiological 
Sciences, 2004, 3, 1-6 for layout 

                                                 
 
1 List of contributing authors in alphabetical order:  Anthony Andrady,  Pieter J. Aucamp, 
Alkiviadis F. Bais, Carlos L. Ballaré, Lars Olof Björn, Janet F. Bornman (Co-Chair), Martyn 
Caldwell, Terry Callaghan, Anthony P. Cullen, David J. Erickson, Frank R. de Gruijl, Donat-P. 
Häder, Mohammad Ilyas, G. Kulandaivelu, H.D. Kumar, Janice Longstreth, Richard L. McKenzie, 
Mary Norval, Halim Hamid Redhwi, Raymond C. Smith, Keith R. Solomon (Secretary), Barbara 
Sulzberger, Yukio Takizawa, Xiaoyan Tang (Co-Chair), Alan H. Teramura, Ayako Torikai, Jan C. 
van der Leun (Co-Chair), Stephen R. Wilson, Robert C. Worrest, Richard G. Zepp. 
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Ozone and UV changes 
• The Montreal Protocol is working, but detection of stratospheric ozone recovery remains 

difficult.  Concentrations of ozone-depleting gases in the atmosphere show a downward trend, 

which is now discernable in the lower stratosphere. Some evidence has been presented (e.g.,1) 

to indicate a slow-down of the depletion rate of stratospheric ozone, which is more clear-cut in 

the southern hemisphere, as expected from previous studies.2  The detection of a turnaround in 

total ozone would be difficult due to the natural inter-annual variation in several contributing 

factors3, 4 (also see Figure 2).  This variability in ozone may be much larger than has been 

assumed based on the measurements over the past 25 years.5, 6  Monitoring over several more 

years would be required before any increase in ozone attributable to the measures of the 

Montreal Protocol can be unambiguously identified. 

• Impacts of climate change on ozone depletion have been further explored, but there is not 

yet a consensus on whether the overall effect will be to delay or accelerate ozone recovery.  

Some processes would result in slowing of ozone recovery,7, 8 while others would result in an 

acceleration.9 Future changes in methyl bromide and methyl chloride emissions resulting from 

climate change may also be important. Although the majority of methyl bromide is from 

natural sources, and declines in its concentrations have been reported,10, 11 its future role in 

ozone depletion cannot yet be discounted.  For example, methyl bromide emissions from rice 

paddies may increase appreciably with global warming.12  Finally, the finding that the ozone-

depleted air exported from polar latitudes comprises a significant portion of ozone losses at 

mid-latitudes (e.g., 13-15) may also have negative implications for future ozone recovery at mid-

latitudes. This is important, since further cooling of the polar stratosphere, which is conducive 

to rapid ozone loss, is expected as a consequence of global climate change. 

• Changes in ozone and UV radiation can potentially influence climate.  Observational data 

and a new modelling study have both suggested that decreases in stratospheric ozone in 

Antarctica have led to climatic changes both in the stratosphere and at the Earth’s surface.  

These changes in ozone have led to increased westerly winds at latitudes 50 to 60ºS.  This in 
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turn has resulted in a surface cooling in Antarctica and a warming at high latitudes outside the 

Antarctic continent.16  Climate change can also be mediated through UV-induced changes17 in 

dimethyl sulphide (DMS), a substance emitted from phytoplankton that can modify the 

reflectivity of the atmosphere, as discussed further in the section on Aquatic Ecosystems, 

below. 

• Aerosols and trace gases emitted near the surface of the Earth have large impacts on UV 

radiation. New evidence has shown that in urban areas, aerosols and air-pollutants such as 

ozone and nitrogen dioxide can significantly attenuate solar UV (e.g., 18, 19).  The types of the 

aerosols and their optical properties are also important.20  Recent studies have shown that 

aerosols and trace gases from biomass burning can penetrate into the stratosphere,21 and 

consequently affect its chemistry.  Increases in UV-B and UV-A solar radiation observed 

during the last two decades in Germany and Greece22, 23 cannot be explained by changes in 

ozone amounts alone, and it is necessary to include diminishing influences from other factors 

such as pollution at these sites.24, 25 

• There have been further improvements in the dissemination of UV information to the 

public.  The UV Index (UVI), a measure of sunburning UV, is gaining wider acceptance. The 

routine forecasts to the public have been evaluated at some sites, and have been found to be 

sufficiently accurate.26  Methods for converting older UV-B data (and other weightings of UV) 

to UVI have been published.27  Progress has also been made to improve extended range 

forecasts of total ozone (and therefore UV-B radiation) over seasonal time scales.28, 29 

Health 
• Distinct pathways, possibly involving UV radiation, in development of melanomas 

occurring on the skin (cutaneous melanoma: CM) have been confirmed.  Mutations in 

multiple copies of a particular gene (BRAF) were common in melanomas occurring on skin 

exposed to intermittent sunlight such as on the trunk.30  In contrast, there was an almost 

complete absence of BRAF mutations in melanomas on chronically sun-damaged skin 30 or in 

UV-protected mucosal sites such as those of the oral cavity.31  The concept of different 

pathways leading to melanoma is strengthened by a case-case comparative study of patients in 

Queensland, Australia, which showed that melanomas on the trunk may arise by melanocyte 
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proliferation and occur in people with high mole counts, while melanomas of the same 

histological type occurring on the head and neck may arise as a result of chronic sun exposure 

and occur in people with high solar keratoses counts.32 

• The incidence of, and mortality rates from, CM continue to increase. In Eastern and 

Southern Europe, the rates of CM are still rising sharply, while in Western and Northern 

Europe, the rise is becoming more gradual.  Although the exact reason for these 

observations is unknown, one possibility is that incidence is approaching its peak in the West 

and North but not in the East and South.33 

• It is becoming increasingly clear that it is intermittent high dose exposure to UV that 

increases the risk of basal cell carcinoma (BCC).  Recent work found that such high dose 

exposure, i.e., sunburns received early in life, are a major risk factor for BCC.34  

• Regular but limited sun exposures are inferred to be adequate for maintaining 

appropriate vitamin D levels.  Vitamin D is found in food and dietary supplements, but in 

most people is mainly produced from UV-B irradiation of pro-vitamin D in the skin.  One 

recommendation is for people living at mid-latitudes to aim for 10-15 minutes per day in the 

sun when the weather allows.35  However, a proportion of the population, even in areas of 

intense solar exposure, e.g., Queensland, Australia, show deficient vitamin D levels.36  

Whether an increase in terrestrial UV would be beneficial to such individuals is questionable, 

particularly if their vitamin D deficiency results from an extreme indoor-living pattern.  

• In contrast to earlier conclusions, the results of recent epidemiologic studies support a 

relationship between nuclear cataract (an opacity of the centre of the lens) and exposure 

to sunlight.  One study showed that the severity of nuclear cataract increased with UV-B 

exposure and that lifetime cumulative UV-B exposure and, in particular, exposure after the 

teenage years correlated with the presence of nuclear opacities in females.37  Another report 

indicated that the association was strongest for sun exposure occurring between the ages of 20 

and 29 years.38  Supporting evidence for such a difference in age susceptibility is provided by 

an animal study in which the same dose of UV radiation induced more severe cataracts in 

young than in older animals.39   
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• UV-absorbing soft contact lenses protect the lens and cornea of the eye against UV 

radiation from any direction.  Recent studies40, 41 have confirmed that such lenses provide 

better protection than some sunglasses, which may not adequately shield the lens and cornea of 

the eye from lateral and reflected UV.  

• The safety testing of substitutes for CFCs now in use, or proposed for use, continues to 

indicate very low toxicity.  However, in at least one industrial setting, the switch from CFC 11 

to a recommended substitute (HCFC 123) was associated with abnormal liver function tests in 

workers, indicating that it is important to monitor work practices in order to ensure continued 

safety.42. 

Terrestrial ecosystems 
• Recent reports confirm that UV-B may alter biochemical compounds in plants resulting 

in changed herbivory (consumption of plant tissues by insects and other animals).  

Reports continue to show both positive and negative effects of UV-B on herbivores in both 

crop and non-agricultural plants.  For example, reductions in herbivory were recently reported 

in UV-B-exposed southern beech trees43 and plants of wild tobacco44, whereas increases in 

herbivore numbers were reported for UV-B-exposed willows.45  However, the latter result did 

not lead to increased herbivory per se.  A review of numerous reports concluded that herbivory 

is generally reduced by UV-B and it was also suggested that enhanced UV-B may influence the 

predators of insect herbivores.46 

• New studies further probe the genetic basis of plant response to UV-B radiation.  Internal 

plant signals, including gene activation, triggered by various environmental stresses overlap at 

several levels in the pathways.  Recent studies have found commonalities in the responses 

induced by UV-B and other stress factors, including wounding and herbivory.44, 47, 48  This 

convergence in internal plant signals and response may contribute to an explanation of the 

interactions between solar UV-B and herbivory highlighted above.  A recent study has 

identified suites of genes that are regulated by low UV-B levels through mechanisms that are 

independent of known photoreceptors.49  There is also evidence that UV-B activates unique 

plant signalling pathways.48  In other work, the genetic basis of UV-B tolerance in rice has 

been reported to involve several different genes and the location of these putative genes is 
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being determined.50, 51  Another study has shown that plant growth inhibition by UV-B is better 

explained by DNA damage than by simple oxidative injury.52 

• Biological spectral weighting functions (action spectra; sensitivity to different UV 

wavelengths) for stimulation of some secondary compounds differ from those for plant 

growth.  Two recent reports indicate that weighting functions for production of UV-B-

absorbing pigments decline more abruptly with increasing wavelength than do those for plant 

growth and morphological changes.53, 54  Thus, increasing UV-B resulting from ozone 

reduction needs to be evaluated differently for these responses and perhaps for induction of a 

variety of plant secondary compounds that might mediate important ecological responses. 

• Synergistic interactions between UV-B and some other environmental factors can occur, 

although simple additive responses are found for many plant responses.  In agreement 

with past results, enhanced concentrations of CO2 supplied to cotton did not show any 

interaction with UV-B radiation55 and did not ameliorate any UV-B effects.56  For secondary 

compounds, however, other investigators saw synergistic effects between UV-B and other 

environmental stress factors. Drought and UV-B interacted synergistically to produce 

substantial increases in flavonol glycosides in drought-stressed plants.57  Under ambient UV-B, 

high temperatures induced accumulation of some secondary metabolites in a lichen species, but 

under enhanced UV-B the high-temperature-induced accumulation of these compounds was 

suppressed.58  A new field study on Rhododendron reported that UV-B increased cold-

hardiness.59  Although ambient UV-B did not significantly affect growth of ryegrass, it was 

reported to decrease the rate of evolution of herbicide resistance in populations of this grass.60   

Thus, the genetic structure of the population of grasses can be altered by a combination of 

herbicides and ambient UV-B.  Development of herbicide and pesticide resistance is a common 

problem when such chemicals are applied at high frequency and concentration.  In this study, 

UV-B appeared to decrease the development of plant resistance. 

• Although recent field experiments tend to confirm earlier findings that an impairment of 

plant productivity is seldom seen in realistic UV-B supplementation experiments, some 

exceptions have been observed.  Photosynthesis and productivity were not affected by 

supplemental UV-B in three recent studies of non-agricultural plants.61-63  For soybean, 
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Chimphango et al.64 reported no impairment of plant productivity due to UV-B 

supplementation in the varieties they studied; whereas Feng et al.65 and Zu et al.66 reported 

significant inhibition of growth and physiological function in some varieties in their field 

experiments. 

Aquatic ecosystems 
• With ozone-related increase in UV radiation, organisms that can produce or make use of 

photoprotective mechanisms appear favoured for survival.  UV screening in phytoplankton 

and zooplankton is mediated by protective pigments (phlorotannins, melanin, mycosporine-like 

amino acids (MAAs), scytonemin, and carotenoids).  De novo synthesis of proteins and lipids 

also allows the organisms to tolerate UV-B stress.  Phlorotannins appear to play multiple roles 

in brown algae, including the production of water soluble UV-screening compounds, forming 

natural UV-protected areas along coastal shores.67, 68  Enzymes and quenchers are involved in 

attenuating the effects of reactive oxygen species (ROS) induced by UV-B.69  In the natural 

habitat, UVR radiation can act as a trigger for the induction of photoprotective mechanisms 

against high solar irradiance.70  It is not yet known whether the selection of organisms with 

different photoprotection will influence species composition of aquatic ecosystems.  

• New long-term studies show interactions between effects of UV-B radiation and other 

environmental stressors in aquatic communities.  Results show that long-term effects of 

UV-B may become manifested only in combination with other stressors.71, 72  The interactive 

effects of multiple stressors on aquatic systems (including UV radiation, climate change, 

temperature, precipitation, eutrophication, food web alterations, pH, toxic metals, and oil 

contamination) often show enhanced damage to the system.  Results suggest that the ability to 

predict effects depends upon understanding the interactions among multiple environmental 

variables, imposing limits on inferences made from single-factor experiments.73  Cyanobacteria 

play a central role in polar ecosystems by contributing significantly to the nitrogen economy.  

Continuing ozone depletion, which affects these organisms, raises serious concerns about the 

already nutrient-impoverished plant communities in the Arctic.74  Climate change can alter 

responses to UV through temperature-mediated effects in aquatic ecosystems, and these effects 

can be species-specific and are dependent on repair ability.75 
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• Recent research continues to show that solar UV-B in conjunction with other stress 

factors can have detrimental effects on consumers in both marine and freshwater 

ecosystems. During the Antarctic Spring, larval and juvenile forms of krill are almost always 

found near the surface along the ice edge, even in daylight, where they are damaged by UV-B 

exposure. Adverse UV-B effects on krill would be significant because of the ecological 

importance of the species within the Antarctic marine ecosystem.  Other marine studies 

demonstrated that UV exposure causes mortality in Atlantic cod eggs.76  Shark ocular systems 

acclimate to increased exposure to UV-B radiation by increasing UV blocking pigment in their 

corneal tissue.77  Recent studies confirmed that exposure of sea urchin embryos to UV-B 

radiation causes a decrease in survival; a result of both direct and indirect effects.78  In a 

freshwater system, a direct relationship was found between UV-B irradiance and sublethal, 

stressful behavioural effects in juvenile rainbow trout, although a response to UV-A could not 

be ruled out.79  In addition, exposure of northern pike larvae to UV-B radiation caused DNA 

damage and mortality.80  Many studies have suggested that a wide range of causes can explain 

amphibian declines (e.g., 81).  These causes include enhanced UV-B radiation, habitat 

destruction, disease, parasites, introduced exotic species, environmental contaminants and 

global climate change. With regards to UV-B as a causal agent, there are also reports showing 

that most amphibian habitats are protected from harmful levels of UV-B radiation by dissolved 

organic compounds (e.g., 82). 

• Preliminary work shows a correlation between global biomass productivity in the oceans 

and total ozone concentration. Biomass was assayed from ocean colour (SeaWiFS) data for 

the period of September 1997 to December 2003.83  Total column ozone values were taken 

from the Total Ozone Mapping Spectrometer (TOMS) onboard the Earth Probe satellite.84  In 

most years a small but significant reduction can be seen in the biomass of the Southern 

Hemisphere during the time of the Antarctic ozone hole. Satellite data of both surface solar 

ultraviolet radiation and chlorophyll over two decades show that increases in biologically 

significant ultraviolet radiation started occurring over the Southern Ocean even before the 

ozone “hole” was discovered.85 
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Biogeochemical cycles 
• UV-B can enhance the biological availability and reactivity of metals in aquatic 

environments.  UV-B can enhance the toxicity and reactivity of metals in aquatic 

environments.  Although essential as trace nutrients, most metals are toxic above a certain 

concentration threshold.  In sunlit surface waters and in clouds, metals such as iron and copper 

usually exist in forms that are not biologically available.  UV-B can alter the chemical 

speciation of these metals to produce forms that are available to aquatic microorganisms.  In 

the case of iron and copper, these alterations involve UV-induced reduction of iron(III) 86, 87 

and copper(II) complexes.88  Iron and copper also can affect aquatic carbon cycling by 

catalyzing UV-induced oxidation of organic matter.  Mercury cycling also is affected by UV 

exposure in aquatic ecosystems.  For example, elemental mercury in brackish water is oxidized 

by UV to form mercuric species 89 that are precursors to toxic methyl mercury that can 

adversely affect human health through biomagnification in aquatic food webs.  

• Climate-related changes in continental hydrology can alter the transport of UV-

absorbing substances from land to the ocean.  In Arctic systems boreal wetlands are the 

major source of dissolved organic matter (DOM) in streams, rivers, lakes and the coastal 

ocean.  The coloured part of dissolved organic matter (CDOM) controls the penetration of UV 

into these Arctic waters.  Changes in temperature and precipitation affect the concentration and 

discharge of DOM from boreal wetlands 90 and UV-B induces the degradation of CDOM at 

high latitudes.91  Degradation of terrestrially-derived DOM in the Arctic Ocean limits its 

movement into the deep ocean.92 

• Marine sulphur emissions depend on interactions between climate-sensitive surface 

turbulence, UV transmission and nitrate concentrations in the surface ocean.  Oceanic 

emissions of dimethyl sulphide (DMS) produce particulates (i.e., sulphate aerosols) that 

directly and indirectly (via clouds) have a cooling effect on the marine atmosphere.  New 

studies show that DMS concentrations can be enhanced by changes in its production during 

summer months in high UV, low nutrient waters such as the Sargasso Sea.17, 93  The build-up of 

DMS in nitrate-rich Antarctic Ocean waters is limited by its UV-induced photooxidation.94  

These results indicate that the effects of enhanced UV-B on DMS emissions are complex and 

can vary from one ocean region to another. 
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• Remote sensing techniques facilitate the global high resolution analysis of aquatic UV 

impacts on marine biogeochemical cycles.  Relationships have been developed between 

remotely sensed ocean colour and UV attenuation in coastal regions of the ocean.  The 

relationships were applied to determine changes in UV penetration into the Mid-Atlantic and 

South-Atlantic Bight near the eastern coast of the U.S.A.95 

• Soil disturbance (e.g., ploughing) affects UV-B-mediated alterations in carbon utilization 

that occur in soil microbial communities.  Microbial communities in the rhizosphere (the soil 

around root systems) are necessary for plant nutrient supply.  New results in upland grasslands 

indicate that enhanced UV-B exposure altered carbon utilization by microbial rhizosphere 

communities in soils disturbed to a depth of 5 cm.  No changes were observed in undisturbed 

grasslands or unirradiated controls   The changes observed in the disturbed soils were likely 

mediated by UV-B effects on root exudation and/or changes in litter quality.63 

• Methyl halide emissions from terrestrial plants are enhanced by increased temperatures.  

Many terrestrial plants are known to be sources of methyl bromide and other methyl halides 

but little is known about the effects of environmental conditions on the emissions.  A recent 

study indicates that emissions of methyl bromide and other methyl halides from rice plants 

increase with increasing air temperature.12  Recent observations indicate that atmospheric 

methyl bromide concentrations are decreasing at a rate of 2.5 – 3.0 % per year.96  However, 

assuming that emissions of methyl bromide generally respond positively to increased 

temperature, future global warming may change the current rate of decline of methyl bromide 

concentrations in the atmosphere. 

Air Quality 
• Confidence in models of the impact of ozone change on the oxidation capacity of the 

atmosphere has improved.  These refinements imply that stratospheric ozone changes have 

had less impact on ground level OH production than originally thought.  Photolysis of ozone is 

a key process where ozone depletion could significantly have an impact on the oxidizing 

capacity of the troposphere. There is now much greater confidence in the quantification of the 

UV driven OH radical production.97 This has resulted in very good agreement between 

chemical and spectroradiometric measurements of the photolysis rate.98 Measurements in the 
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lower atmosphere of UV radiation and chemical composition, including OH, now normally 

agree with chemical models to within measurement accuracy.99, 100  

• An analysis of surface-level ozone observations in Antarctica suggests that there has been 

a significant change in the chemistry of the boundary layer of the atmosphere in this 

region as a result of stratospheric ozone depletion.  Measurements of surface ozone (1975 – 

2001) show a recent (since 1990) increase in the number of days when the daily ozone 

concentrations were greater in October – December than in June and July.101 This is consistent 

with more UV reaching the earth’s surface during the ozone hole, and is predicted to cause a 

43% enhancement in the production of nitrogen oxides from the ice in November.  Thus, the 

Antarctic boundary layer is estimated to be more highly oxidizing now than before the 

development of the ozone hole.  The ecological consequences of this have not been studied. 

• The tropospheric concentration of HFC-134a, the main known anthropogenic source of 

trifluoroacetic acid, is increasing rapidly.  The increase is in agreement with the known 

usage and atmospheric loss processes.  Observations in both hemispheres (Mace Head, Ireland 

and Cape Grim, Tasmania) between 1998 and 2002 show the concentration of HFC-134a 

increasing rapidly (3 picomole/mole/year).102 The good agreement between observations and 

known sources and sinks gives great confidence in predictions of the environmental build-up of 

trifluoroacetic acid.  As HFC-134a is a potent greenhouse gas, this increasing concentration has 

implications for climate change.103 

• The mechanisms of the atmospheric breakdown of hydrochlorofluorocarbons (HCFCs) 

have been further characterized, with some chemical intermediates more likely to be 

removed by clouds.  Studies on the atmospheric oxidation of the intermediate fluorinated 

aldehydes show that the atmospheric lifetime of these species with respect to OH oxidation is 

relatively long (around 18 days)104, indicating that they are not likely to form the 

perfluorocarboxylic acids (PFCAs), such as trifluoroacetic acid (TFA).  It is likely that these 

aldehydes are dissolved in cloud water and react/washout there.  This mechanism may also be 

an additional source of C8 (longer chain) PFCAs, which have low relevance to ozone depletion 

but have been observed to biomagnify in mammals and birds, where they may have harmful 

effects.105 
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• Risks to humans and the environment from substances, such as trifluoroacetic acid and 

chlorodifluoroacetic acid, produced by atmospheric degradation of 

hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are still considered 

minimal.  Recent studies have not identified additional environmental hazards from current 

environmental loadings in fresh water.106, 107  Although the amounts of these compounds are 

expected to continue to increase in the future because of climate change and continued use of 

HCFCs and HFCs, risks for freshwater organisms and humans are judged minimal.  

Trifluoroacetic acid in oceans is present at concentrations of 200 ng/L and appears to have pre-

industrial origins.108  Risks to saltwater organisms are likely to be minimal as potential inputs 

to the oceans represent a very small proportion of the total amount already present. 

Materials 
• Several mechanistic studies on the degradation of conventionally stabilized polyethylenes 

by solar UV wavelengths contribute to better understanding of the photodamaging 

process.  Conventional light stabilizers (HALS) and carbon fillers provide synergistic 

photostabilization of polyethylenes exposed to solar UV wavelengths.109  The presence of 

calcium carbonate filler in polyethylenes was reported to significantly lower the rate of 

photodamage on exposure to solar UV radiation.  Where the polyethylenes were exposed to 

UV radiation while under mechanical stress, the rate of degradation was reported to increase 

linearly with stress.110  In agricultural and building application, plastic materials are routinely 

subjected to stress. These findings suggest potential refinements in the estimation of outdoor 

lifetimes for these materials. 

• Natural polymers including wood, hair and wool are readily discoloured by solar UV-B 

radiation.  Semi-quantitative data on the discoloration of commercially important tropical 

hardwoods exposed to solar radiation111 showed that the characteristics of wood extractives 

determined their susceptibility to light-induced discoloration.  Studies on human hair confirm 

the particular damaging role of solar UV-B wavelengths; the discoloration due to the UV- B 

component in sunlight can be 2-5 times as high as for the combined UV-A and visible radiation 

in sunlight.112  Studies on dyed wool showed that UV-induced fading occurs faster with natural 

dyes compared to synthetic dyes.113 
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• New techniques aid the detection of early stages of UV-induced degradation of polymers 

and refinements in modelling of photodamage to materials are being developed.  New 

analytical techniques (positron-based)114 are being developed to supplement the exiting 

approaches to characterize the early stage in photodegradation of complex substrates, such as 

organic coatings.  Recent advances in quantifying the irradiance dependence of photodamage 
115 have facilitated the development of better models to estimate UV-induced damage to 

materials. 

• Photodegradation studies on polycarbonates used in glazing have further clarified the 

mechanism of damage.  Chemical analysis of the degradation products as a function of depth 

in polycarbonates exposed to UV radiation revealed protective surface hardening due to 

crosslinking of the polymer.116  A photoresistant copolymer grade of polycarbonate that can be 

used as a photoprotective surface layer on films and moulded pieces has been developed 

recently.117  These findings could help in the development of polycarbonates that are more 

resistant to photodamage by solar UV radiation. 
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Fig. 1 The Antarctic ozone hole area (area with O3 < 220 DU) for 2001, 2002, 2003, and 2004 to date, 
compared with a 1979–2000 climatology.  These calculations are based on the NIWA assimilated total 
column ozone database. 
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Fig. 2.  Detection of a turnaround for ozone is difficult. The plot shows monthly averaged ozone 
amounts measured with satellite instruments over the past 25 years, and compares these with 
annual means calculated with the NASA Goddard 2D model, which is just one of several such 
models available.  The effects of the Pinatubo volcanic eruption, the solar cycle, the annual and 
inter-annual cycles (e.g., from the Quasi Biennial Oscillation) are evident.  These contribute to the 
difficulty in unambiguously detecting the recovery of ozone from the presently available data.  
Redrawn from Bhartia et al.4 
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